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Adding or Removing an Element from a Pseudo-Symmetric
Numerical Semigroup.

J. C. ROSALES

Sunto. — Se S ¢ un semigruppo numerico pseudo-simmetrico, se g e il suo numero di
Frobenius e se x ¢ un generatore minimo di S allora anche SU{g}, S\ {x} e
SU{ig.9} sono semigruppi numerici. In questo lavoro ci proponiamo di studiare
tali costruzioni.

Summary. - If'S is a pseudo-symmetric numerical semigroup, g is its Frobenius number
and x is a minimal generator of S, then SU{g}, S\ {x} and SU{}g,g} are also
numerical semigroups. In this paper we study these constructions.

Introduction.

A numerical semigroup is a subset S of IN (the set of nonnegative integers)
closed under addition, 0 € S and generates 7 as a group (as usual 7 denotes the
set of integers). It is well known (see for instance [2] or [13]) that the set
H(S) = '\ S is finite. The elements of H(S) are called gaps of S and the car-
dinality of H(S) is an important invariant of S called gender of S in [8] or degree
of singularity in [2]. The largest integer not belonging to S is the Frobenius
number of S, denoted by g(S). Its study has been the subject of many papers (see
for instance [3, 4, 10, 17, 18]). Given a numerical semigroup S, set

PgS)={xecZ\Slx+seSforallseS\{0}}.

The elements of Pg(S) are called pseudo-Frobenius numbers of S (see [14]).
The cardinality of Pg(S) is another invariant widely studied of S (see for in-
stance [2, 5]) and it is known as the type of S.

Given a nonempty subset A of [N, denote by (A) the submonoid of N gener-
ated by A. A subset A of a numerical semigroup is a system of generators of S if
S = (A) and we say that A is a minimal system of generators if in addition no
proper subset of A generates S. It is well known (see for instance [13]) that every
numerical semigroup S admits a unique minimal system of generators, which is
finite and equals S\ {0} \ (S\ {0} + S\ {0}), that is, the set of elements of
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S\ {0} that cannot be expressed as a sum of two nonzero elements of S. This fact
motivates the introduction of two other invariants of the numerical semigroup S.
If {n1 <--- <m,} is a minimal system of generators of S, then 7, is the mul-
tiplicity of S, denoted by m(S), and p is the embedding dimension of S, denoted
by e(S). The elements of {n,,...,n,} are called minimal generators of S. These
concepts have their Algebraic Geometric interpretation through what is known
as the semigroup ring associated to S (see for instance [6, 7]), and it is from this
connection that they are named in this way.

A numerical semigroup is irreducible if it cannot be expressed as an inter-
section of two numerical semigroups that contain it properly. In [16] it is shown
that S is irreducible if and only if it is maximal (with respect to set inclusion) in
the set of numerical semigroups with Frobenius number g(S). From [2] and [5],
this implies that the class of irreducible numerical semigroups with even (re-
spectively odd) Frobenius number coincides with the class of pseudo-symmetric
(respectively symmetric) numerical semigroups. These two classes of numerical
semigroups have special interest in Ring Theory since their associated semi-
group rings are Kunz (see [2]) and Gorenstein (see [9]), respectively.

If S is a numerical semigroup, S # N (observe that if S =1, then
g(N) = —1), and x is a minimal generator of S, then SU {g(S)} and S\ {x} are
also numerical semigroups. In [12] the author studies those numerical semi-
groups obtained in this way when S is a symmetric numerical semigroup. Here
we focus our attention in this construction for S a pseudo-symmetric semigroup.
Moreover, in this setting, Pg(S) = {1g(S), 2(S)} and thus S U {1g(S), g(S)} is also
a numerical semigroup. This new construction is also studied in this work. If S is
a pseudo-symmetric semigroup and x is a minimal generator of S, we will say that
S\ {x} is unitary reduction of a pseudo-symmetric semigroup, URPSY-semi-
group for short; S U {g(S)} is a unitary extension of a pseudo-symmetric semi-
group, UEPSY-semigroup for short; and S U {1g(S), g(S)} an extension by the
pseudo-Frobenius numbers of S, a PEPSY-semigroup for short.

The contents of this paper are organized as follows. In Section 1 we study
UEPSY-semigroups. We give a characterization in Theorem 10 for this kind of
semigroups in terms of their number of gaps and a minimal generator. Corollary
11 provides us with a formula for the Frobenius number of a UEPSY-semigroup
S in terms of its minimal generators, and Theorem 18 describes the set Pg(S).
Section 2 is devoted to the URPSY-semigroups. In Theorem 24 these semi-
groups are characterized in terms of their number of gaps. Theorem 28 shows
that the type of a URPSY-semigroup is 2, 3 or 4, and describes each of these
situations. In Corollary 29 we prove that for every integer e > 4 there exists a
numerical semigroup S with e(S) = e and t(S) = 4, giving in this way continuity
to the results obtained in [11, 15, 12] where it is shown that for every integer
e > 2 there exists numerical semigroups with type ¢ equal to 1, 2 and 3 (except for
the cases (e,t) € {(2,2),(3,3)}). Finally in Section 3 we deal with PEPSY-semi-
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groups. Theorem 33 characterizes them in terms of their number of gaps, a
minimal generator and an element which must be of unique expression. As a
consequence of this result in Corollary 34 we give an upper bound for the
Frobenius number of these semigroups in terms of their minimal generators. We
end this section with Theorem 38 that states that in this class of numerical
semigroups the type equals the embedding dimension minus one.

1. - UEPSY-semigroups.

A numerical semigroup S is pseudo-symmetric if g(S) is even and for all
x € 7\ S we have that either x = % 2(S) or g(S) — x € S. A numerical semigroup
S is a UEPSY-semigroup if there exists a pseudo-symmetric numerical semi-
group S’ such that 8’ C S and #(S \ §') = 1, that is, S is obtained from a pseudo-
symmetrie semigroup by adjoining one element to it. This element must be its
Frobenius number as we see next.

ProposITION 1. — Let S be a numerical semigroup. Then S is a UEPSY-
semiagroup if and only if there exists a pseudo-symmetric numerical semigroup
S’ such that S = S" U {g(5")}.

PROOF. — Necessity. Since S is UEPSY-semigroup, there exists S’ a
pseudo-symmetric numerical semigroup such that S’ ¢ S and #(S\ S’) = 1, that
is, S=SU{h}forhe S\S'.Ash ¢S and S’ is a pseudo-symmetric numerical
semigroup, it follows that either h = %g(S’) or g(§)—heS'. Note that
S'U {$g(S)} is not a numerical semigroup, because }g(S') +1g(S) = g(S") ¢
S'u {%g(S’)}. Hence g(S') — h € §' and thus {k,g(S") — k} C S, which leads to
2(S") = h + (g(S") — h) € S. Using now that S = S’ U {k}, 2(S") ¢ S’ and g(S’) € S,
we conclude that 7 = g(S’).

Sufficiency. Follows from the definition. |

The following result can be found in [2] and [5].

LEMMA 2. — A numerical semigroup S is pseudo-symmetric if and only if
2(S) is even and S is maximal (with respect to set inclusion) in the set of all
numerical semigroups with Frobenius number g(S).

In the sequel we use the symbol — in a set X = {ay,...,2,, —} C N to in-
dicate that x, + k € X for all k € I\,

LEMMA 3. — Let S be a numerical semigroup with g(S) = m(S) — 1. Then S is
pseudo-symmetric if and only if S = {0,3, —}.



684 J. C. ROSALES

PROOF. — Necessity. If g(S) = m(S) — 1, then S = {0, m(S), —}. If m(S) > 4,
then 1 ¢S, 1#1g(S) and g(S) —1=m(S) —2 ¢ S. Hence S is not pseudo-
symmetric. We conclude by observing that neither n nor {0,2,—} are
pseudo-symmetric numerical semigroups (their frobenius numbers are —1 and
1, respectively).

Sufficiency. Trivial. [ ]

From [5] or [2] we can deduce the following result.

LEMMA 4. — A numerical semigroup 1s pseudo-symmetric if and only if
#H(S) = g(52)+2.

LEMMA 5. — Let S be a numerical semigroup such that m(S) < g(S) < 2m(S).
Then S is pseudo-symmetric if and only if

S = {0,m(S), m(S) + 1,...,2m(S) — 32m(S) — 1, —}.

PROOF. — Necessity. Let i € {1,...,m(S) — 1} be such that g(S) = m(S) +:.
By Lemma 2, we deduce that S = {0,m(S),...,m(S)+7—1,m(S)+i+1,—}.
Hence #H(S) = m(S), and by Lemma 4, m(S) = %, whence ¢ = m(S) — 2.

Sufficiency. Follows trivially from Lemma 4. |

PROPOSITION 6. — A numerical semigroup S is a UEPSY-semigroup if and
only if one of the following conditions holds:

(1) S = {0,m(S),—} and m(S) > 2
(2) there exists a pseudo-symmetric numerical semigroup S’ such that
2(S") > 2m(S") and S = S U {g(S)}.

PrOOF. - Assume that S is a UEPSY-semigroup. By Proposition 1, there
exists a pseudo-symmetric numerical semigroup S’ such that S =.S" U {g(S")}.
If g(S") >2m(S’), then (2) holds. Otherwise, either g(S')=m(S)—-1 or
m(S") < g(S") < 2m(S’). The rest of the proof follows from Lemmas 3 and 5.

If condition (2) holds, then S clearly is a UEPSY-semigroup. If
S ={0,m(S),—} with m(S)>3, then S=S8uU{g®l)}, where S =
{0,m(S), ...,2m(S) — 3,2m(S) — 1, —}, and by Lemma 5 we know that S’ is a
pseudo-symmetric numerical semigroup, whence S is a UEPSY-semigroup. If
S ={0,2 -}, then S =S U {g(S)} with S’ = {0,3, —}, which in view of Lemma
3 is a pseudo-symmetric numerical semigroup. ]

The semigroups of the form {0, m, — } will appear again later in this paper. We
call them interval semigroups. For a semigroup of this kind it is straightforward
to compute its Frobenius number, type, multiplicity, embedding dimension and
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number of gaps. Proposition 6 allows us to focus in the sequel on the study of
numerical semigroups of the form S’ U {g(S")} with S’ a pseudo-symmetric nu-
merical semigroup such that g(S") > 2m(S’). Our next goal is Theorem 10; before
proving it we need some previous results.

LeMMA 7. -1If S is a pseudo-symmetric nwmerical semigroup with
g(S) > 2m(S), then g(S U {g(S)}) = g(S) — m(S).

Proor. — The integer g(S) — m(S) cannot be in S U {g(S)}, since otherwise
{g(S) —m(S),m(S)} ¢ S and this yields g(S)e€S. Let us prove that
g(S) —m(S)+ 1 e Su{glS)}foralli e N\ {0}. If g(S) — m(S) +¢ ¢ S, then as S
is pseudo-symmetric this implies that either g(S)—m(S)+i=1g(S) or
2(S) — (@) — m(S) + 1) € S. Since g(S) > 2m(S), we have that g(S) — m(S)+
1 # %g(S), and thus m(S) —1 € S. But m(S) is the least positive integer of S and
1 # 0, whence m(S) =7, or in other words, g(S) — m(S) + i = g(S) € SU {g(S)}.
Therefore g(S) —m(S)+ie€SuU{gS)} for all i€ N\ {0} and as g(S)-—
m(S) ¢ S U {g(S)}, this means that g(S) — m(S) = g(S U {g(S)}). [ ]

The proof of the following two lemmas is trivial.

LEMMA 8. - Let S be a numerical semigroup with g(S) > m(S). Then
m(S U {g(S)}) = m(S).

LEMMA 9. — Let S be a numerical semigroup and let x € S. Then S\ {x} is a
numerical semigroup if and only if x is a minimal generator of S.

THEOREM 10. — Let S be a numerical semigroup that is not an interval
semagroup. The following conditions are equivalent:

(1) S s a UEPSY-semigroup,
(2) #H(S) = M and g(S) + m(S) is a minimal generator of S.

ProoF. — (1) implies (2). By Proposition 6, there exists a pseudo-symmetric
numerical semigroup S’ such that g(S") > 2m(S’) and S = S' U {g(S’)}. Lemmas
7 and 8 assert that g(S) = g(8’) —m(S). Hence from Lemma 4 we deduce
that #H(S) = #H(S) — 1 =8512 1 — £ Ripally, note that g(S’) =
2(S) + m(S) is a minimal generator of S =S" U {g(S")}.

(2) 1mplies (1). If g(S) + m(S) is a minimal generator of S, by Lemma 9 we
obtain that S’ =S8\ {g(S) + m(S)} is a numerical semigroup. Observe that
g(8") = g(S) + m(S). In this way, #H(S") = #H(S) + 1 = £5)*2 which by Lemma
4 implies that S’ is a pseudo-symmetric numerical semigroup. As S = S’ U {g(S")}
we conclude that S is a UEPSY-semigroup. |
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Given a numerical semigroup S and an element n € S\ {0}. The Apéry set of
S with respect to n (see [1]) is defined by

Ap(S,n)={seS|s—n &S}

It is well known that #Ap(S,n) = n, every minimal generator x of S, x # n,
belongs to Ap(S,n), and the maximum of Ap(S,n) equals g(S) +n. As a con-
sequence of Theorem 10 and these remarks we obtain the following.

COROLLARY 11. — Let S be a UEPSY -semigroup and let {n; < --- < n,} be its
minimal system of generators. Then g(S) = n, — ny1.

Recall that for a numerical semigroup S, Pg(S)={xecZ\Slxt+
s e S for all s € S\ {0}} and that its cardinality is the type of S, t(S). Our next
goal is to prove Theorem 18. We first need several lemmas.

LeMMA 12. -[2, 5] Let S be a numerical semigroup. Then S is
pseudo-symmetric if and only if Pg(S) = {}g(S), g(S)}.

The next result can be found in [12].

LEMMA 13. — Let S be a numerical semigroup and {n; < --- < n,} be its
minimal system of generators. If g(S) > ny, then

(Pg(S)\ {g(8)}) U {g(S) —m} < Pg(SU{g(S)})
c (Pgd)\ {2(S)}) u{elS) —m,....&(S) —ny}.

LEMMA 14. - Let S be a pseudo-symmetric numerical semigroup with
minimal system of generators {ni,...,m,} and let i€ {l,...,p}. Then
g(S) — n; € Pg(S U {g(®)}) if and only if g(S) > n; and n; —1g(S) & S.

PROOF. — Necessity. If n; > g(S), then g(S) —n; < 0 and thus g(S) —n; ¢
Pg(Su{g(®)}). Hence g©) >mn; If n;—1gS)eS, then n;—1g(S) e
Su{g®©P\ {0} and as g(s) —n; € Pg(S U {g(S)}) this leads to g(S) — n;+
(n; —1g(8) =1g(S) € S U {g(S)}, which is impossible.

Sufficiency. Clearly g(S) —n; ¢ SU{g(S)}. We claim that g(S) —n;+s €
SuU{gS)} foralls € (SU{gS)}) \ {0}. If s = g(S), then the claim follows easily.
Assume that g(S) —n; +s € SuU{g(S)} for some seS, s#0. Then g(S)—
n; +s # g(S) and g(S) —n; +s ¢S. This implies that s #n; and as S is
pseudo-symmetric, we have that either g(S) —n; +s = 1g(S) or g(S) — (&(S) —
n;+s)=mn; —s €8. Since n; —1g(S) ¢S, we get that g(S) —n; +s # 1g(S).
Hence n; — s € S. But as n; is a minimal generator of S, this forces s to be n;, in
contradiction with s # n;. ]

The following result appears in [16].
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LEMMA 15. — Let S be a numerical semigroup and let n be a nonzero element
of S. Then S is pseudo-symmetric if and only if

ApS,n) ={0=w1) <w@) <--- <wn —1)=g) +n} U {;g(S)Jrn}
and w@) +wn —1) =wn —1) forall i € {1,...,n — 1}.

LEMMA 16. — Let S be a pseudo-symmetric numerical semigroup such that
2(S) > 2m(S) and m(S) > 4. Then every minimal generator of S is less than g(S).

Proor. — By hypothesis, m(S) < g(S). From the remark made before
Corollary 11, we know that every minimal generator of S not equal to m(S) is in
Ap(S, m(S)). Note also that under the standing hypothesis % 2(S) +m(S) < g(S).
Let « be a minimal generator of S such that x ¢ {m(S),%g(S) + m(S)}. Using
Lemma 15 we have that e {w@)<- - <wm(S)—1)=g(S)+ m(S)}.
Moreover, x # g(S) + m(S) since otherwise by Lemma 15 we would have that
x = g(S) + m(S) = w@2) + wm(S) — 2), contradicting that x is a minimal gen-
erator of S. Hence x = w(?) for some 7 € {2,..., m(S) — 2} and by Lemma 15,
x + wm(S) — 1) = g(S) + m(S). As wm(S) — 1) € S\ {0}, we get wm(S) — 1) >
m(S) and thus x < g(S). [ |

LEMMA 17. - Let S be a pseudo-symmetric numerical semigroup with
minimal system of generators {n; < --- <mnp}, gS) > 2m(S) and m(S) > 4.
Then

{nly s ,’le,g(S)}

is a minimal system of generators of SU{g(S)} and thus e(S U {g(S)}) =
elS) + 1L

PrOOF. — Clearly {n1,...,n,,g(S)} generates S U {g(S)}. The minimality of

the set {n1,...,n,,8(S)} follows from the fact that {n,...,n,} is a minimal
system of generators of S and that n; < g(S)foralli € {1,...,p} (see Lemma 16).
|

We are ready to prove the announced result describing the set of pseudo-
Frobenius numbers of a UEPSY-semigroup.

THEOREM 18. — Let S be a UEPSY -semigroup such that m(S) > 4 and S is not
an interval semigroup. Let {ny < --- < m,} be a minimal system of generators of
S. Then

Pg(S) = {np —ng|n; #n, and w; —%np ¢S} U {%np}.
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Proor. — By Proposition 6, we know that there exists a pseudo-symmetric
numerical semigroup S’ such that g(S’) > 2m(S’) and S = §’ U {g(S")}. Corollary
11 states that n, =g(S)+mn; and from Lemmas 7, and 8 we obtain
n1 =m(S) =m(S’) and g(S)=g(S’) —n, whence n,=g(S’). Using now
Lemma 17 we deduce that {n,...,n,_1} is a minimal system of generators
of §'. By Lemma 12 we know that Pg(S’) = {n,,7,} and by Lemma 13, we
have that Pg(S)=Pg(l" U{gl"}) C {n, —n1,...,np —np_1} U {%np} and
that 1n, € Pg(S). The proof concludes by using Lemma 14. |

COROLLARY 19. — Let S be a UEPSY-semigroup such that m(S) > 4 and S s
not an nterval semigroup. Then 2 < t(S) < e(S).

ProoOF. — It suffices to apply Theorem 18, observing that if {n; < --- <mn,}is
a minimal system of generators of S, then {% Ny, ny — N1} C Pg(S). [ |

To conclude this section we focus our attention on those UEPSY-semigroup s
that are not interval semigroups and with m(S) < 3. If S is such a numerical
semigroup, by Proposition 6, we know that there exists a pseudo-symmetric
numerical semigroup S’ such that g(S") > 2m(S’) and S = S’ U {g(S")}. It follows
that in this situation m(S) = m(S’). Therefore our study is equivalent to the study
of pseudo-symmetric numerical semigroups with multiplicity less than or equal
to 3. Clearly, there are no pseudo-symmetric numerical semigroups with mul-
tiplicity 1 or 2, and thus there are no UEPSY-semigroup with multiplicity 1 or 2
other than interval semigroups. The following result can be deduced from [16].

LEMMA 20. — Let S be a numerical semigroup. Then S is a pseudo-symmetric
numerical semigroup with m(S) = 3 if and only if S = (3,x + 3,2x + 3) with x a
positive integer not divisible by 3.

As a consequence of this we obtain the following result.

PROPOSITION 21. — Let S be a numerical semigroup that is not an interval
semigroup. Then S is a UEPSY-semigroup with m(S) <3 if and only if
S = (3, z + 3,2z) with x a positive integer greater than or equal to 4 not divisible
by 3.

2. — URPSY-semigroup.

A numerical semigroup S is a URPSY-semigroup if there exists a
pseudo-symmetric numerical semigroup S’ such that S C S" and #(S"\ S) = 1. In
this setting, S =8\ {«} for some « € §’, which in view of Lemma 9 must be a
minimal generator of S’. We summarize this in the next proposition.
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ProposiTiON 22. — Let S be a numerical semigroup. Then S 1is a
URPSY -semigroup if and only if there exists a pseudo-symmetric numerical
semigroup S" and a minimal generator x of S’ such that S = S\ {z}.

ProposiTiON 23. — Let S be a numerical semigroup. Then S 1is a
URPSY -semigroup if and only if one of the following conditions holds:

1) Se{{(4,5,6,7),(3,5,7),(4,5,11)},

2) S = (3,x+ 3) with x a positive integer not divisible by 3,

@) S=(m,m+1,...,2m —3) with m a positive integer greater than or
equal to 5,

(4) there exists a pseudo-symmetric numerical semigroup S’ and a mini-
mal generator x < g(S") of S’ such that S = S\ {x}.

PROOF. — Necessity. By Proposition 22 there exists a pseudo-symmetric nu-
merical semigroup S’ and a minimal generator x of S’ such that S =8\ {«x}. If
x < g(S"), then (4) holds. Assume that x > g(S’). From Lemma 16 we get that
either g(S") < 2m(S’) or m(S’) = 3 (there are no pseudo-symmetric numerical
semigroups with multiplicity 1 or 2). Using now Lemmas 3, 5 and 20, we have that
S’ is of one of the following forms:

o §' = (3, x+ 3,2x + 3) with « a positive integer not divisible by 3,

e §={0,3,—}
e S'={mm+1,...,2m—3,2m — 1) with m an integer greater than or
equal to 4.

Considering the semigroups S’ \ {x} with # a minimal generator greater than
g(S"), where S’ ranges in any of the above cases, yields the desired result.

Sufficiency. The reader can check that any of the semigroups fulfilling con-
ditions (1) to (4) is a URPSY-semigroup. [ |

Since the semigroups given in (1)-(3) of the preceding proposition are well
typified, we focus in the sequel in the study of those URPSY-semigroup fulfilling
condition (4) of Proposition 23.

THEOREM 24. — Let S be a numerical semigroup not fulfilling any of the
conditions (1)-(3) of Proposition 23. Then S is an URPSY -semigroup if and only
if #H(S) = 85+,

PROOF. — Necessity. By Proposition 23, there exists a pseudo-symmetric
numerical semigroup S’ and a minimal generator x of S’ such that x < g(S’) and
S=8\{x}. From this it follows that g(S)=g(S’), and by Lemma 4,
HH(S) = #H(S) +1 = 8812 4 1 — g®)rd
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Sufficiency. By Lemma 4 we know that S is not a pseudo-symmetric
numerical semigroup. Hence there exists & = max{h € 7\ S|g(S) —h ¢S,
h #1g(S)} (here max stands for maximum). Clearly > 1 g(S) and thus 2% € S.
Moreover, the maximality of & warranties that 2 +s € S for all s € S\ {0}.
Therefore S'=SU{k} is a numerical semigroup with g(S") = g(S).
Moreover, #H(S') = #H(S) — 1 = &2 which by Lemma 4 implies that S’
is pseudo-symmetric, whence S is a URPSY-semigroup. ]

Theorem 28 describes the type of a URPSY-semigroup. Before proving it we
need a couple of technical lemmas.

LEMMA 25. — Let S be a pseudo-symmetric numerical semigroup and x be
one of its minimal generators. If x < g(S), then

1
{g(S),x} CPg(S\ {x}) C {g(S),x,Qg(SL g(S) — x}.

ProoF. — Clearly {g(S),z} CPg(S \{z}). Let ¢’ €Pg(S \{x}) \{e(S),z,32(S)}.
Then ¢’ + x cannot be in S, since otherwise ¢’ +s € S for all s € S\ {0} and this
would lead to g’ € Pg(S), which by Lemma 12 equals {g(S),1g(S)}. It is easy to see
that ¢ +x+s€S for all s €S\ {0} and thus ¢’ +x € Pg(S) = {g(S),%g(S)},
whence either ¢ =g(S)—a or ¢ =1g(S)—w» As lg(S) €Pg(®), 1g©)+
x €S\ {x}, and since 1g(S) —x+ (1(S) +x) = g(S) ¢ S\ {«x}, we have that
388) —x ¢ Pg(S\ {x}). Hence ¢’ = g(S) — «.

LEMMA 26. — Let S be a pseudo-symmetric numerical semigroup and let x be
one of its minimal generators with x < g(S). Then %g(S) € Pg(S\ {x}) if and
only if x —3g(S) ¢ S.

PROOF. — If & — $g(S) €S, thenx — 1 g(S) € S\{0,x}. AsFg(S) + (x— 1g(8) =
x ¢ S\ {x}, we have that g(S) ¢ Pg(S \ {x}).

Assume now that 3g(S) ¢ Pg(S \ {x}). Since ;g(S) € Pg(S) (see Lemma 12),
we deduce that there exists s €S\ {0,2} such that }g(S)+s=x, whence
x—1g(S)=s€S8. [

LEMMA 27. — Let S be a pseudo-symmetric numerical semigroup and let x be
a minimal generator of S such that x < g(S). Then g(S) — x € Pg(S \ {x}) if and
only if 2x — g(S) € S.

PROOF. — Necessity. As g(S) — x € Pg(S \ {x}), we have that g(S) —x +s £ x
for all s € S\ {0,2}. Hence 2x — g(S) ¢ S\ {0, 2} and thus 2x — g(S) ¢ S.

Sufficiency. Clearly g(S) —x ¢ S\ {x}. If g(S) — « & Pg(S \ {«}), then there
exists s €S\ {0,x2} such that g(S)—x+s¢ S\ {x}. Hence either g(S)—
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x+s=uworglS)—x+s¢S. This first condition yields 2x — g(S) € S, which is
impossible. Therefore g(S) — x + s ¢ S and using that S is a pseudo-symmetric
numerical semigroup, this leads to either g(s)—x+s= % 2(S) or g(S)-—
@lS)—x+s)=x—seS. Again, the first condition cannot hold, since
g(S) — « + s = 1g(S) implies & — 1 g(S) € S and thus 2x — g(S) € S, which is im-
possible. Hence « — s € S, and as « is a minimal generator and s € S\ {0,«}, this
yields a contradiction. ]

THEOREM 28. — Let S be a pseudo-symmetric numerical semigroup and let x

be one of its minimal generators with x < g(S). Then t(S\ {x}) € {2,3,4}.
Moreover

1) ¢S\ {x}) = 2if and only if ¢ — %g(S) € S; in this setting Pg(S \ {x}) =
{2(S), x},

@) ¢S\ {x}) =3 if and only if 2x — g(S) € S and x — %g(S) € S; i this
setting Pg(S \ {x}) = {g(S),x,3g(S)},

3) S\ {x}) =4 if and only if 2¢ — g(S) & S; in this setting Pg(S \ {x}) =
{2(S), %, 3g(S), g(S) — x}.

Proor. — The proof follows easily from Lemmas 25, 26 and 27. Observe that if
x —1g(S) € 8, then 2x — g(S) = 2(x — 1g(S)) € S. [ |

From [11] it can be deduced that for every integer e > 2 there exists a nu-
merical semigroup S with e(S) = e and t(S) = 1. In [12] we prove that

(1) foralle > 3,there exists a numerical semigroup S such that e(S) = e and
t(S) = 2 (this result also follows from [15]),

(2) foralle > 4, there exists a numerical semigroup S such that e(S) = eand
t(S) = 3.

As an application of the results presented so far in this section, we prove that
for all integer e > 4 there exists a numerical semigroup S with e(S) = e and
t(S) = 4.

It is well known (see [5]) that if S is a numerical semigroup with e(S) = 2 (re-
spectively e(S) = 3), then t(S) = 1 (respectively t(S) € {1,2}), whence there are no
numerical semigroups with type equal to 4 and embedding dimension 2 or 3.

COROLLARY 29. — For every integer e > 4, there exists a numerical semi-
group S with e(S) = e and t(S) = 4.

PRrOOF. - For e =4, the numerical semigroup S = (8,20,21,23) has em-
bedding dimension and type equal to 4 (the reader will not find any diffi-
culties in proving this by using that Ap(S,8) = {0,41,42,43,20,21, 46,23}
and [5, Proposition 7]). Now assume that e¢>5 and let S={0,e,e+
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1,...,2¢ —3,2¢ —1,—}. By Lemma 5, we know that S is a pseudo-symmetric
numerical semigroup. Moreover, g(S) = 2e — 2, e is a minimal generator of S less
than g(S), and 2e — g(S) = 2 ¢ S. Hence by Theorem 28, t(S \ {e}) = 4. Finally, it
is easy to prove that {e +1,...,2¢ — 3,2¢ — 1,2¢, 2¢ + 1} is a minimal system of
generators of S\ {e} and thus e(S\ {e}) =e. u

3. — PEPSY-semigroup.

Let S be a pseudo-symmetric numerical semigroup. By Lemma 12, we know
that Pg(S) = {g(S),1g(S)}. From this it follows easily that S U {3g(S), g(S)} is a
numerical semigroup. This fact allows us to give the following definition. A nu-
merical semigroup S is a PEPSY -semigroup if there exists a pseudo-symmetric
numerical semigroup S’ such that S =S" U {g(S"), % 2(SH}.

PRrROPOSITION 30. — A numerical semigroup S is a PEPSY -semigroup if and
only if one of the following conditions holds:
1 S={0,m,—}withm > 1,
(2) there exists a pseudo-symmetric numerical semigroup S’ with g(S') >
2m(S") and S = S" U {g(S"), (S}

PROOF. — Necessity. Let S’ be a pseudo-symmetric numerical semigroup such
that S = §" U {g(s), %g(S’)}. If g(S") > 2m(S’), then (2) is fulfilled by S. If to the
contrary g(S’) < 2m(S’), then by Lemmas 3 and 5, we know that S’ = {0,3,—} or

S ={0,m,...,2m —3,2m — 1, —} for some m > 3. The reader can check that in
any of these two cases S’ U {g(S’),%g(S’)} is of the form {0, x, —} for some > 1.
Sufficiency. Trivial. |

In view of this last proposition, every PEPSY-semigroup that is not an interval
semigroup comes from a pseudo-symmetric numerical semigroup S’ with
2(8") > 2m(S’). Theorem 33 is the analogue of Theorem 10 for PEPSY-semigroups.
Before proving it, we need to introduce some results and concepts.

LEMMA 31. — Let S be a pseudo-symmetric numerical semigroup. Then

g<S U {%g(S), g(S)}> — 2(8) - m(S).

PRrOOF. - The proof is similar to the proof of Lemma 7. In this case we do not
need g(S) to be greater than 2m(S), since we can allow g(S) — m(S) + i to be 1 g(S).
|

The following result has an immediate proof.
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LEmMA 32. — Let S be a pseudo-symmetric numerical semigroup with

2(S) > 2m(S). Then
m(S U {;g(s)vg(s)}> =m(S).

Let S be a numerical semigroup and let {n;, .. .,%,} be its minimal system of
generators. Given s € S we know that there exists (a1,...,a,) € N? such that
s =aim +---+ayn,. An element s € S has unique expression if the corre-
sponding (ai,...,a,) € N? is unique.

THEOREM 33. — Let S be a numerical semigroup that is not an interval
semigroup. The following conditions are equivalent:
(1) S is a PEPSY-semigroup,
) #H(S) = g(s)+gl(s)‘2, g(S);m@ is a minimal generator of S and
2(S) + m(S) is an element of S of unique expression.

Proor. — (1) implies (2). By Proposition 30, we know that there exists a
pseudo-symmetric numerical semigroup S’ with g(S’) > 2m(S’) and such that
S=8Su {% 2(S"), 2(S")}. By Lemmas 31 and 32, we know that g(S) = g(S") — m(S’)
and m(S) = m(S’). Using now Lemma 4, we obtain #H(S) = #H(S") —2 =
w. Clearly, if {n1,...,m,} is a minimal system of generators of S’, then
there exists {i1,...,%} C{1,...,p} such that {n;,... 7ni7,,%g(S’)} is a minimal
system of generators of S, and thus M = 1g(8") is a minimal generator of S.
We prove that g(S) + m(S) = On;, + - -- + On;, + 2 % g(S’) is the unique expression
of g(S) + m(S) in S. Assume to the contrary there exists (ay,...,a,, a,11) € N+
such that g(S)+ m(S) = ain;, + -+ + a0, + 013(S) and (aq, ..., ¢r1) #
,...,0,2). Since g(S) + m(S) = g(8") €8 and {n;,,...,n; } C S, we have that
ary1 # Oandas (ay,...,a,41) # (0,...,0,2), we deduce that a,.,; = 1. But then we
obtain 1g(S') = g(S) + m(S) —1g(S") = min;, + -+ - + a,n;, €', which is im-
possible.

(2) implies (1). As M is a minimal generator of S and g(S) + m(S) has
unique expression (which is g(S)+ m(S) = ZM), we have that S’ =
S\ {w ,2(6S) + m(S)} is a numerical semigroup. The rest of the proof fol-
lows by counting the number of gaps of S’ and applying Lemma 4. ]

As a consequence of Theorem 33 and the remark preceding Corollary 11 we
have the following result.

COROLLARY 34. — Let S be a PEPSY-semigroup that is not an interval
semigroup and let {n; < --- <n,} be its minimal system of generators. Then
2(S) < 2np — . Moreover, g(S) =2n; —ny for some i € {2,...,p} such that
2n; > my, and 2n; has unique expression tn S.
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We finish this section with Theorem 38. For its proof we still need some
lemmas.

LEMMA 35. — Let S be a pseudo-symmetric numerical semigroup with
minimal system of generators {n1,...,n,}. Then

Pe(Su {300 | ) C 8S) - . ® - 1)

PrOOF. - Let ¢’ € Pg(S U {12(S),g(S)}). Assume that 1g(S) — ¢’ € S. Then
there exists s € S\ {0} suchthat g’ = 1g(S) — sandas ¢’ € Pg(S U {}g(S), g(S)}),
we have that g(S) —s =g +1g(S) € SU{Lg(S),2(S)}. Since g(S) —s ¢ S and
2(S) — s # g(S), this leads to g(S) — s = %g(S) and thus g(S) = 2s € S, in contra-
diction with the definition of g(S). Therefore % 2(S) — ¢’ & S. From the definition
of ¢, we have that ¢’ ¢ {1 g(S), g(S)}, which by Lemma 12 implies that ¢’ ¢ Pg(S).
Hence ¢’ € Pg(SuU {% 2(S), g(S)} \ Pg(S), that is, there exists y € S\ {0} such
that ¢’ +y € {32(S), g(S)}. We already know that ¢’ + y cannot be equal to 1 g(S)
and consequently ¢’ +y = g(S). As y € S\ {0}, there exists ¢ € {1,...,p} such
that y —m; =2¢€S. Besides, ¢ +mn; € SU {%g(S), 2(S)} (recall that ¢ €
Pg(S U {32(S),g(S)})) and we already know that ¢’ +mn; #1g(S) and that
g +n; € S, since otherwise ¢’ + n; + 2z = ¢ + y would be in S. Hence ¢’ + n; must
be equal to g(S), forcing y to be n;. We conclude that g’ = 2(S) — n;.

LEMMA 36. — Let S be a pseudo-symmetric numerical semigroup with
minimal system of generators {ni,...,n,}. Then g(S)—n; € Pg(SU
(32(S). )} if and only if g(S) > n; and n; —1g(S) € S.

PROOF. — Necessity. As in the proof of Lemma 14, n; must be less than
g(S). Moreover, if n; —3g(S) €S, then g(S)—(n; —1g(S)) ¢S, and thus
2(S) —n; + %g(S) gSU {% 2(S),g(S)}, which implies that g(S) —mn; ¢ Pg(SU
{12(S), gS)}).

Sufficiency. The proof is analogue to the sufficiency part of Lemma 14. The
only case the reader must check is that g(S) —n; +seSuU {% 2(S),g(S)} for
s =1g(S). [ |

LEMMA 37. — Let S be a pseudo-symmetric numerical semigroup such that
g(S) > 2m(S) and let {n1 < --- < n,} be its minimal system of generators. Let

{Niy, ..., m,} = {nimi - %g(S) g_iS}.

Then {n;,...,n;,1gS)} is the minimal system of generators of
Su{3e®), g®)}.
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ProoF. — Clearly {n1,...,n,,1g(S)} generates SuU{g(S),g(S)}. If n;—
18(S) =s € S, then s # 0 and thus n; = s + 1 g(S) is not a minimal generator of
SuU {% 2(S), g(S)}. From this it can be deduced that {n;,,...,n;,, %g(S)} generates
S U {% g(S),g(S)}. As 1g(S) ¢ S, we have that 1g(S) & (n;, ..., n; ), which means
that 1 g(S) is a minimal generator of S U {1 g(S), g(S)}. Now takej € {1,...,7}. We
prove that n; cannot be expressed as a sum of two nonzero elements of
SuU {2 2(S), g(S )}. This in particular would imply that n;; is a minimal generator of
SuU{ig(@S),g(S)}. Assume to the contrary that n; =x+y with x,y¢€
Su {% 2(S),g(S)} \ {0}. Since n;; is a minimal generator of S, we have that x and
y cannot be both in S. Hence either x € {£2(8), g} or y € {1(S), g(S)}.
Suppose without loss of generality that « € {]g(S), g(S)}.

o Ifx =1g(S), then ni; — 18(S) = y and as we know that ni; — 3 lo(S) ¢S,
this forces y to be in {2 2(S), g(S)} The casey =5 1o(S) leads to ni; = 2(S), which is
impossible. Hence y = g(S) and thus nj; = 2(S) + 2g(S) > g(S) +m(S) and this
implies that ni; — m(S) > g(S). But this yields ni; — m(S) € S, which is also im-
possible since #;, is a minimal generator of S. '

o Ifxr= g(S) then nj; = 2(S) + . Since y € (SU {2 2(S),gS}P \ {0} and
both 1 58(S) and g(S) are g’reater than m(S), we have that y > m(S). As above, ¥
cannotbe greaterthan m(S) and consequently ¥ = m(S), that is, ni; = 2(S) + m(S).
Hence ni; —3 lo(S) = 2 1o(S) + m(S) and since S is pseudo symmetrlc, 3 Lo(S) €
Pg(S), we have that 1 38(S) +m(S) € S, whence ni; — 3 1o(S) € S, contradicting the
choice of n;,.

In any case we get a contradiction and therefore 7;, is a minimal generator of
SuU{3g@S), 2S)}. u

THEOREM 38. — Let S be a PEPSY-semigroup that is not an interval sema-
group. Then t(S) = e(S) — 1.

Proor. — By Proposition 30, we know that there exists a pseudo-symmetric
numerical semigroup S’ such that S = §' U {% 2(S"), 2(S)} and g(S) > 2m(S").
e Form(S’) > 4, by Lemma 16, we know that all the minimal generators of
S’ are less than g(S’). The result now follows from Lemmas 35, 36 and 37.
e For m(S’) < 3, Lemma 20 ensures that S’ = (3,2 + 3, 2x + 3) for some

positive integer « that is not a multiple of 3. Then g(S') =2,
S=8U{x,2x} = (3,x),and t(S) =1 =e(S) — 1. |
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