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On a Recursive Formula for the Sequence of Primes
and Applications to the Twin Prime Problem (*).

GIOVANNI FIORITO

Sunto. – In questo lavoro presentiamo una formula ricorrente per la successione dei
numeri primi ]pn(, che utilizziamo per trovare una condizione necessaria e suffi-
ciente affinché un numero primo pn11 sia uguale a pn12. Il precedente risultato
viene utilizzato per calcolare la probabilità che pn11 sia uguale a pn12. Inoltre
proviamo che il limite per n tendente all’infinito della suddetta probabilità è zero.
Infine, per ogni numero primo pn costruiamo una successione i cui termini che ap-
partengono all’intervallo [pn

222, pn11
2 22[ sono i primi termini di due numeri

primi gemelli. Questo risultato e alcune sue implicazioni rendono ulteriormente
plausibile che l’insieme dei numeri primi gemelli sia infinito.

Summary. – In this paper we give a recursive formula for the sequence of primes ]pn(
and apply it to find a necessary and sufficient condition in order that a prime
number pn11 is equal to pn12. Applications of previous results are given to eva-
luate the probability that pn11 is of the form pn12; moreover we prove that the li-
mit of this probability is equal to zero as n goes to Q . Finally, for every prime pn we
construct a sequence whose terms that are in the interval [pn

222, pn11
2 22[ are the

first terms of two twin primes. This result and some of its implications make fur-
thermore plausible that the set of twin primes is infinite.

Introduction.

It is well known there are many open problems about the sequence of pri-
mes (see [1], [3], [4], [5], [6], [7]); one of these is the twin prime problem, which
consists in finding out if there exist infinitely many primes p such that p12 is
also prime (if the numbers p and p12 are both primes, they are called twin
primes). In the first part of this paper we give a recursive formula for the se-
quence of primes ]pn (, that we think be novel (for other recursive formulas
see reference A 17 p. 37 of [3]). In the second part we apply it to find a neces-
sary and sufficient condition in order that a prime number pn11 is equal to

(*) Mathematics Subject Classification: 11A41, 11B25, 40A05, 40A20.
Key words and phrases: primes, recursive formula, twin primes, periodically mono-

tone sequences.
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pn 12. Moreover applications of previous results are given to evaluate the pro-
bability that pn11 is of the form pn 12 and from this we deduce that the limit
of this probability is equal to zero when n goes to Q . Finally, in the third part,
for every prime pn we construct a sequence S pn

whose terms that are in the in-
terval [pn

2 22, pn11
2 22[ are the first terms of two twin primes and moreover

we prove a theorem on the mean number of the terms of the sequence S pn
that

are in the interval [pn
2 22, pn11

2 22[, which makes furthermore plausible that
the set of twin primes is infinite. In the sequel we put as usual

N4 ]1, 2 , 3 , R( and N0 4 ]0, 1 , 2 , 3 , R( .

Moreover let us indicate by ]Tn ( the sequence of the first terms of the twin
primes, so we have for example

T1 43, T2 45, T3 411, T4 417, T5 429 .

Finally let us denote by R g pn

pr

h the remainder of the integral division of pn by
pr for r41, 2 , 3 , R , n .

1. – A recursive formula for the sequence of primes.

THEOREM 1.1. – The sequence of primes ]pn ( is given by the following re-
cursive formula:

(1.1)
.
/
´

p1 42,

pn11 4pn 1min{N2 0
r41

n mpr 2Rg pn

pr
h1kpr , ( k�N0n} ( nF1 .

PROOF. – The proof is elementary. Indeed, by observing that

pn 1pr 2Rg pn

pr
h1kpr , ( k�N0 (r41, 2 , R , n)

represents all the multiple numbers of pr , that are greater than pn , it follows
that the set

N2 0
r41

n mpr 2Rg pn

pr
h1kpr , ( k�N0n

is not empty and the number

p4pn 1min{N2 0
r41

n mpr 2Rg pn

pr
h1kpr , ( k�N0n}

is not divisible for p1 , p2 , R , pn . Now, let us observe that a prime number q
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such that

pn EqEp

cannot be exists. Indeed, on the contrary, it should be

q2pn �N2 0
r41

n mpr 2Rg pn

pr
h1kpr , ( k�N0n

and then

q2pn F min{N2 0
r41

n mpr 2Rg pn

pr
h1kpr , ( k�N0n} .

On the other hand we also have

q2pn Ep2pn 4 min{N2 0
r41

n mpr 2Rg pn

pr
h1kpr , ( k�N0n} ,

and this is a contraddiction.
From the previous considerations it follows easily that p is the least prime

greater than pn , and so we have pn11 4p . r

REMARK 1.1. – For the Bertrand’s postulate (see [4], theorem 418 p. 343) we
have for nF2

min{N2 0
r41

n mpr 2Rg pn

pr
h1kpr , ( k�N0n}Epn

and therefore we get

min{N2 0
r41

n mpr 2Rg pn

pr
h1kpr , ( k�N0n}4

min{N2 0
r41

n21mpr 2Rg pn

pr
h1kpr , ( k�N0n} .

REMARK 1.2. – For computing the number

dn 4 min{N2 0
r41

n21mpr 2Rg pn

pr
h1kpr , ( k�N0n}

for nF2, it is useful to observe that dn is even and then to proceed as follows.
If

pr 2Rg pn

pr
hc2 for r41, 2 , 3 , R , n21
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then dn 42, otherwise dn F4. If dn F4 and if the equations

pr 2Rg pn

pr
h1kpr 44 (r41, 2 , 3 , R , n21)

have no integral solutions k then dn 44, otherwise dn F6, and so on.

REMARK 1.3. – For computing the number R g pn

pr

h for r42, 3 , R , n21 it

is useful to observe that for r42, 3 , R , n22 and nF4 the following recursi-
ve formula holds

Rg pn

pr
h4R

u Rg pn21

pr
h1dn21

pr

v
(1.2)

and for r4n21 we have obviously R g pn

pr
h4dn21 .

REMARK 1.4. – Taking into account the Remark 1.3, the formula 1.1 can be
employed to construct easily tables of primes.

2. – Some consequences of recursive formula.

The following theorems follow from theorem 1.1 and Remark 1.2.

THEOREM 2.1. – We have for nF3

pn11 4pn 12

(and therefore pn and pn11 are twin primes) if and only if it results

pr 2Rg pn

pr
hc2

for rF1 and such that pr Gkpn 12.

PROOF. – From theorem 1.1 and Remark 1.2 it follows that

pn11 4pn 12

if and only if it results

pr 2Rg pn

pr
hc2
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for r41, 2 , 3 , R , n21. Now let us observe that the condition

pr 2Rg pn

pr
hc2

is equivalent to say that pn 12 is not divisible by pr . Indeed if

pr 2Rg pn

pr
h42

we have

pn 4qpr 1pr 22 ,

where q is the quotient of pn by pr . From the previous relation it follows

pn 12 4 (q11) pr ,

and therefore pn 12 is divisible by pr . If

Rg pn

pr
hcpr 22

let us distinguish two cases. If

Rg pn

pr
hEpr 22

then it follows

pn 4qpr 1Rg pn

pr
h

and then

pn 12 4qpr 1Rg pn

pr
h12 ,

and this proves that pn 12 is not divisible by pr . If

Rg pn

pr
h4pr 21

then it follows

pn 4qpr 1pr 21

and then

pn 12 4 (q11)pr 11
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and this proves again that pn 12 is not divisible by pr . From the previous ob-
servation the thesis follows easily. r

If we observe that

Rg pn

pr
h� ]1, 2 , 3 , R , pr 21(

we can evaluate easily the probability that

pn11 4pn 12

for large n . Indeed the following theorem holds.

THEOREM 2.2. – The probability

P(pn11 4pn 12)

for large n is given by the formula

P(pn11 4pn 12) 4
1

2
Q

3

4
Q

5

6
Q

9

10
R

pr 22

pr 21
,

where pr is the greatest prime such that pr Gkpn 12.

From previous theorem we get also the following result.

THEOREM 2.3. – The formula

lim
nKQ

P(pn11 4pn 12) 40

holds.

PROOF. – From the theorem 2.2 we get

P(pn11 4pn 12) 4g12
1

2
hQ g12

1

4
hQ g12

1

6
hRg12

1

pr 21
h ,

where pr is the greatest prime such that pr Gkpn 12 . Therefore

lim
nKQ

P(pn11 4pn 12) 4 »
n42

Q g12
1

pn 21
h .

But the infinite product is divergent to zero because the series

!
n41

Q 1

pn

is divergent (to Q) (see [4], p. 16 Th. 19), and the thesis follows. r
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Let us observe that the previous theorems are a theoretic explanation of
the fact that twin primes become rarer and rarer as n becomes very large. Mo-
reover these results match (but they are of different type) with other theoretic
explanations (see for instance [4] p. 412 and [6] p. 133 ex. 9.1.15 and p. 143 ex.
9.3.12).

3. – The twin prime problem.

By using the theorem 2.1, for every prime pn F3 it is possible to construct a
sequence S pn

of natural numbers that contains among its terms all terms of
the sequence ]Tm ( for Tm Dpn , moreover all the terms of the sequence S pn

that are in the interval [pn
2 22, pn11

2 22[ are terms of the sequence ]Tn (. Let
us proceed to construct S 3 .

If pn (pn F5) is such that pn11 4pn 12, then necessarely it is a term of the
sequence

]516k(k�N0
.(3.1)

Indeed this is obvious for pn 45; if pn D5, for the theorem 2.1, we have

Rg pn

3
h42 ,

and being also R g 5

3
h42, it follows that pn 25 is multiple of 3; but pn 25

must be even and therefore we have

pn 25 46k

for some k�N . Therefore S 3 is the sequence

]516k(k�N0
,

which is an arithmetic progression with difference 6 . Let us observe that all
the terms of S 3 that are in the interval [32 22, 52 22[ are terms of ]Tn (, na-
mely 11 and 17 .

Let us also observe that from 3.1 it follows that the difference

Tn 2Tm ( n , m (nDm)

is multiple of 6 .
Now, for finding S 5 , let us consider the sequence ]516k(k�N0

and search
k such that

Rg 516k

5
hc0 and Rg 516k

5
hc3 .(3.2)
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Computing

Rg 516k

5
h

for k40, 1 , 2 , 3 , 4 , we obtain respectively the numbers 0 , 1 , 2 , 3 , 4; therefo-
re, by observing that the sequence

mRg 516k

5
hn

is periodic with period 5 , it follows that the condition 3.2 is verified if

k4115h or k4215h or k4415h (h�N0 ) .

In this way we get the 3 sequences

]11130k(k�N0
, ]17130k(k�N0

, ]29130k(k�N0
(3.3)

(which are arithmetic progressions with difference 30). So we obtain that S 5 is
the periodically monotone sequence (1) whose principal terms are

11 , 17 , 29 ,

whose period is 3 and whose monotony constant is 30 . Let us observe that all
the terms of S 5 that are in the interval [52 22, 72 22[ are terms of ]Tn (, na-
mely 29 and 41 .

Let us also observe that from 3.3 it follows that all terms of the sequence
]Tn ( for Tn F11 have as unity digit always one of the numbers 1 , 7 , 9 .

Now, for finding S 7 , let us search k such that

Rg 11130k

7
hc0 , Rg 11130k

7
hc5 .

Rg 17130k

7
hc0 , Rg 17130k

7
hc5 .(3.4)

Rg 29130k

7
hc0 , Rg 29130k

7
hc5 .

(1) A sequence ]xn( in R is called periodically monotone if there exist a natural
number q and a real number k such that

xn1q4xn1k ( n�N(*)

The lowest natural number q for which (*) holds is called period. the constant k is called
monotony constant. The terms x1 , x2 , R , xq are called principal terms of ]xn(. The pe-
riodically monotone sequences generalize the periodic sequences and the arithmetic
progressions (see [2]).
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Computing all the remainders for k40, 1 , 2 , 3 , 4 , 5 , 6 and taking into ac-
count that the sequences

mRg 11130k

7
hn , mRg 17130k

7
hn , mRg 29130k

7
hn

are periodic with period 7 , we obtain the following 15 sequences (which are
arithmetic progressions with difference 2 Q3 Q5 Q7 4210 and k�N0):

]111210k( , ]171210k( , ]291210k( ,

]411210k( , ]591210k( , ]711210k( ,

]1011210k( , ]1071210k( , ]1371210k( ,

]1491210k( , ]1671210k( , ]1791210k( ,

]1911210k( , ]1971210k( , ]2091210k( .

So we obtain that S 7 is the periodically monotone sequence whose principal
terms are

11 , 17 , 29 , 41 , 59 , 71 , 101 , 107 , 137 , 149 , 167 , 179 , 191 , 197 , 209 ,

whose period is 15 and whose monotony constant is 210 42 Q3 Q5 Q7.
Let us observe that all the terms of S 7 that are in the interval [72 2

2, 112 22[ are terms of ]Tn (, namely 59 , 71 , 101 and 107 .
The reasoning can be iterated so that the following theorem holds.

THEOREM 3.1. – For every prime number pn (nF2) there exists a periodi-
cally monotone sequence S pn

with period

1 Q3 Q5 Q9 Q11 Q15 QR Q (pn 22) ,

whose monotony constant is

2 Q3 Q5 Q7 QR Qpn

and such that every term p of S pn
satisfies the conditions

Rg p

pr
hc0 and Rg p

pr
hcpr 22

( r41, 2 , 3 , 4 , 5 , R , n.

REMARK 3.1. – The principal terms of the sequence S pn
are obtained taking

the terms of the sequence S pn21
that are in the interval

]pn , 2 Q3 Q5 Q7 QR Qpn [
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and deleting those terms that are of the form

pn Qp or pn Qp22 ,

where p is prime greater than or equal to pn or p is composite with prime fac-
tors greater than or equal to pn . Consequentely the principal terms of the se-
quence S pn

are distributed in the interval ]pn , 2 Q3 Q5 Q7 QR Qpn [.
The following definitions will be used in the sequel.

DEFINITION 3.1. – The number

r n 4
2 Q3 Q5 Q7 QR Qpn

1 Q3 Q5 Q9 Q11 Q15 QR Q (pn 22)
,

that is the quotient of the monotony constant by the period of the sequence
S pn

, is called mean distance between two consecutive terms of S pn
.

DEFINITION 3.2. – Let (a , b) an interval (aFpn ). The number

b2a

r n

is called mean number of the terms of the sequence S pn
that are in the interval

(a , b).
We have also the following theorems

THEOREM 3.2. – For every prime number pn (nF2) all the terms of the se-
quence S pn

that are in the interval [pn
2 22, pn11

2 22[ are terms of the sequen-
ce ]Tn (. Moreover if a term of the sequence ]Tn ( is in the interval [pn

2 2

2, pn11
2 22[, then it is a term of the sequence S pn

.

PROOF. – Let p be an arbitrary term of the sequence S pn
such that

p� [pn
2 22, pn11

2 22[ .

For the theorem 3.1 p is not divisible by p1 , p2 , p3 , R , pn and then p is prime.
Moreover, again for the theorem 3.1 and for the observation contained in the
proof of theorem 2.1, also p12 is not divisible by p1 , p2 , p3 , R , pn and there-
fore p12 is prime too. The second part of the statement is obvious. r

THEOREM 3.3. – The set ]Tn , ( n�N( is infinite (and therefore there are
infinitely many twin primes) if and only if there exists a subsequence

][pnk
2 22, pnk11

2 22[(

such that every interval [pnk
2 22, pnk11

2 22[ contains at least a term of the se-
quence S pnk

.
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PROOF. – Let the set ]Tn , ( n�N( be infinite. Then we define pn1
a prime

such that

11 � [pn1
2 22, pn111

2 22[ .

For the theorem 3.2 we have that 11 is a term of the sequence S pn1
. Now we ta-

ke Tk1
Dpn111

2 22 and denote by pn2
(n2 Dn1 ) a prime such that

Tk1
� [pn2

2 22, pn211
2 22[ ;

For the theorem 3.2 we have that Tk1
is a term of the sequence S pn2

. Similarly
we take Tk2

Dpn211
2 22 and denote by pn3

(n3 Dn2 ) a prime such that

Tk2
� [pn3

2 22, pn311
2 22[ ;

Again for the theorem 3.2 we have that Tk2
is a term of the sequence S pn3

. Be-
cause the reasoning can be iterated we have proved the «only if» part of the
statement. The «if» part of the statement is obvious. r

THEOREM 3.4. – The mean number s pn
of the terms of the sequence S pn

that
are in the interval [pn

2 22, pn11
2 22[ satisfies the condition

s pn
F19 ( pn F661 .

PROOF. – For the definitions 3.1 and 3.2 we have

s pn
4

pn11
2 2pn

2

2 Q3 Q5 Q7 QR Qpn

1 Q3 Q5 Q9 Q11 Q15 QR Q (pn 22)

.

Now it results

s pn
F

4pn

2 Q3 Q5 Q7 QR Qpn

1 Q3 Q5 Q9 Q11 Q15 QR Q (pn 22)

.

But, putting

Sn 4
4pn

2 Q3 Q5 Q7 QR Qpn

1 Q3 Q5 Q9 Q11 Q15 QR Q (pn 22)

,

we have

Sn11

Sn

4
pn11 22

pn

F1 ,



GIOVANNI FIORITO678

hence the sequence ]Sn ( is not-decreasing. Because it results Sn F19 for pn 4

661, the thesis follows. r

The previous theorems make plausible that the following proposition is
true (but we cannot prove it) and therefore the set ]Tn , ( n�N( is
infinite.

PROPOSITION 3.1. – The number of the terms of the sequence ]Tn ( that are
less than pn11

2 22 is approximatively given by

t n 421 !
k42

n pk11
2 2pk

2

2 Q3 Q5 Q7 QR Qpk

1 Q3 Q5 Q9 Q11 Q15 QR Q (pk 22)

and we have

lim
nKQ

t n 41Q .

In the following table are listed the values of s pn
, r n and m n in some inter-

vals [pn
2 22, p 2

n11 22[, where s pn
, r n have been defined previously and m n de-

notes the number of the terms of the sequence ]Tn ( that are in the interval
[pn

2 22, p 2
n11 22[.

[pn
2 22, p 2

n11 22[ s pn
r n m n

[32 22, 52 22[ 2.6 6 2

[52 22, 72 22[ 2.4 10 2

[72 22, 112 22[ 5.1 14 4

[112 22, 132 22[ 2.8 17.1 2

[132 22, 172 22[ 5.2 20.2 7

[172 22, 192 22[ 3.1 22.9 2

[192 22, 232 22[ 6.6 25.6 4

[232 22, 292 22[ 11 28.0 7

[292 22, 312 22[ 4 30 2

[312 22, 372 22[ 12.7 32.2 10

[372 22, 412 22[ 9.2 34 7

[412 22, 432 22[ 4.7 35.8 3

[432 22, 472 22[ 9.7 37.5 11
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[472 22, 532 22[ 15.3 39.2 12

[532 22, 592 22[ 16.5 40.7 11

[592 22, 612 22[ 5.7 42 5

[612 22, 672 22[ 17.6 43.6 19

[892 22, 972 22[ 29 51 21

[1512 22, 1572 22[ 21.9 84.2 20

[2832 22, 2932 22[ 54 106.5 68

[4212 22, 4312 22[ 71 119.8 90

[6612 22, 6732 22[ 115.5 138.6 108

[9532 22, 9672 22[ 175.7 153 201

[13612 22, 13672 22[ 97 168.8 111

[17092 22, 17212 22[ 228.7 179.9 239

[20272 22, 20292 22[ 43 187.8 42

[24112 22, 24172 22[ 147.3 196.6 156

[29032 22, 29092 22[ 169.3 206 175

[32032 22, 32092 22[ 182.8 210.5 217

[34492 22, 34572 22[ 258 214.2 279

[36592 22, 36712 22[ 403.9 217.7 438

[38032 22, 38212 22[ 624.2 219.8 667

[40932 22, 40992 22[ 219.6 223.8 212
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