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Bollettino U. M. 1.
(8) 9-B (2006), 645-656

Well-Posedness of Optimization Problems and
Hausdorff Metric on Partial Maps.

ALESSANDRO CATERINO - RITA CEPPITELLI - LUBICA HOLA

Sunto. - In questo lavoro st studiano alcune proprieta dello spazio (P,H,) delle mappe
parziali con dominio chiuso, munito della topologia della metrica di Hausdorff. St
prova un’equivalenza tra le definiziont di buona posizione secondo Tykhonov e
Hadamard di problemi di minimizzazione continui e vincolati, dove la dipendenza
continua e descritta dalla metrica di Hausdorff sulle mappe parziali. Lo studio della
completezza della metrica di Hausdorff nello spazio delle multifunzioni usco con
dominio variabile permette di individuare condizioni per la completa metrizzabilita
di (P,H,).

Summary. — The object of this paper is the Hausdorff metric topology on partial maps
with closed domains. This topological space is denoted by (P, H,). An equivalence of
well-posedness of constrained continuous problems is proved. By using the com-
pleteness of the Hausdorff metric on the space of usco maps with moving domains, the
complete metrizability of (P,H,) is investigated.

1. — Introduction.

Topologies and convergences on partial maps has been applied to different
fields of mathematics, including differential equations, optimizations, convex
analysis, mathematical economics, programming models, ete. ([1, 2, 4, 5, 9, 10, 11,
12, 13, 14, 15, 17, 18, 20, 24, 25, 27, 29, 32])

In our paper we study the Hausdorff metric topology on partial maps iden-
tified with their graphs. This topology seems to be particularly well-suited to the
well-posedness of continuous minimizations problems.

In fact the main result of our paper claims that the Tykhonov well-posedness
of a continuous minimization problem may be expressed as well-posedness of a
Hadamard type where the continuous dependence on the data of the problem is
described by the Hausdorff metric topology on graphs of constrained mini-
mization problems.

Perhaps the first mention of the Hausdorff metric topology on the space of
partial maps can be found in papers of Zaremba [38] and Kuratowski [28] who
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studied Hausdorff metric on partial maps with compact domains. Kuratowski in
his paper studied the complete metrizability of this space.

In our paper we are interested in complete metrizability of the Hausdorff
metric topology on partial maps with closed domains (which seems to be more
difficult than the compact case).

An auxiliary step in our investigation is to study completeness of the
Hausdorff metric on the space of usco maps with moving domains.

Some new characterizations of Atsuji spaces are also given in our paper.

2. — Well-posedness of minimization problems.

In what follows let (X, d) be a metric space. For basic notions and definitions
the reader is referred to recent Beer’s monograph [6]. Given two subsets A, B
of a metric space (X, d), the excess or Hausdorff semi-distance of A over B is
denoted by e4(4, B) = sup,c4 infyep d(a, b) with the convention eq(4,0) = +o00
if A+ andey(d B)=0.

It is well known that Hy(A,B)=max{e;(4,B),e (B,A)} defines the
Hausdorff distance between A and B.

Denote by CL(X) the family of all non-empty closed subsets of X and by
K(X) the family of all compact sets in CL(X).

The open (resp. closed) ball with center « and radius » > 0 will be de-
noted by S(x,r) (resp. B(x,r)). The open (resp. closed) r—enlargement of A is
the set SA4,r) ={x € X : dx,4) <r} (BA,r) ={x € X :d(x,A) <r}), where
by d(x,A) we mean inf{d(x,a): a € A}.

Let LC(X) be the family of all lower semicontinuous functions f:X
— RU{+0c0} from X into the extended real line which are proper. By a
proper function we mean, as usual, a function f : X — RU {+oo} for which
its domain domf :={x € X :f(x) < +o0} is non-empty. An equivalent
way to say that a function f is in LC(X) is that its epigraph
epif = {(x,a) € XxR: f(x) < a} is a non-empty closed subset in XxR con-
sidered with the product topology. For every f € LC(X) we denote by (X, f)
the unconstrained problem to minimize f over X, that is, to find xy € X such
that f(xg) =inf{f(x):2x € X} :=inf (X, f). By argmin (X, f) we mean the
solution set for the problem (X, f). If A C X, we denote by (A4, f) the con-
strained minimization problem (A4, f4).

A sequence (x,) C X is said to be a minimizing sequence for (X, f) if
f(x,) — inf (X, f). The minimization problem (X, f) is said to be Tykhonov well-
posed if there is exactly one point xy € X such that f(x¢) = inf (X, f) and every
minimizing sequence for (X, f) converges to x.

In dealing with a constrained minimization problem (A, f) one can also be
interested in minimizing sequences that are close to A but not in A. Now, if (X, d)
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is a metric space, we say that (x,) C X is a Levitin-Polyak generalized mini-
mizing sequence for (4, f) if d(x,,A) converges to 0 and f(x,) converges to
inf (A, f). Then, the minimization problem (A4, f) is said to be Levitin-Polyak
well-posed if it has a unique solution xy € A and every Levitin-Polyak minimizing
sequence for (4, f) converges to x.

A more general notion of a minimizing sequence for (A, f) is the following one.
A sequence (x,) C X is said to be a generalized minimizing sequence for (4, f) if
d(x,,A) — 0 and limsup f(x,) < inf (A4, f). So, we have the corresponding notion
of strongly well-posedness for (4, f). Of course, this last well-posedness is
stronger than the Levitin-Polyak one, and the Levitin-Polyak well-posedness is
stronger than the Tykhonov one.

Another notion of well-posedness is the Hadamard well-posedness. It is
based on the continuous dependence of the solution on the data of the problem.

Let 15, be the product topology on CL(X) x LC(X) induced by the Hausdorff
metric topology H; on CL(X) and the uniform convergence topology 7,, on LC(X).
A minimization problem (A4, f) € CL(X) x LC(X) is said to be Hadamard well-
posed if it has a unique solution xy € A and for every sequence (A,,f,)
C CL(X) x LC(X) that 7;,-converges to (4, f) and for every (x,) C X with
x, € argmin (4,, f,) one has x, — x.

The following result is proved in [33].

THEOREM 1. — Consider the following assertions for a minimaization problem
(A4, f) € CL(X) x LC(X):
1) (4, f) is Hadamard well-posed;
2) (A, f) is strongly well-posed;
3) (A, f) is Levitin-Polyak well-posed;
4) (A, f) is Tykhonov well-posed.
Then 1=—=2=—=3=—=4 and if f is uniformly continuous in domf then
4=1.

In [33] a characterization of such metric spaces is given in which Tykhonov
and Hadamard well-posedness (hence all four kinds) of continuous minimiza-
tion problems coincide. These metric spaces, called Atsuji spaces, are those in
which every continuous real valued function is uniformly continuous [3, 7].
This class of spaces has a number of beautiful characterizations [7]: (1) each
pair of disjoint closed subsets of X lie a positive distance apart; (2) each open
cover of X has a Lebesgue number; (3) every sequence (x,) in X with
lim,, ., « d(@,, {®,}) = 0 has a cluster point; (4) for each metric space Y the
Hausdorff metric on C(X,Y) induced by the box metric on X x Y yields the
topology of uniform convergence.

Now, we denote, as usual, by C(X) the set of all continuous real-valued
functions. The following lemma shows that to verify Hadamard well-posedness of
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the continuous minimization problem it is sufficient to control only the data with
continuous functions instead of lower semicontinuous ones.

LEMMA 1. — The minimization problem (A, f) € CL(X) x C(X) is Hadamard
well-posed in CL(X) x LC(X) if and only if it is Hadamard well-posed in
CL(X) x C(X).

Proor. - Let (4, f) € CL(X) x C(X) be a minimization problem with a
unique solution xy € A. Suppose that for every sequence (4,, f,) C CL(X)
x C(X), (A, fn) thu-converges to (A,f) and for every (x,) CX with
X, € argmin (A,, f,) then x, — ay. Let (A,, f,) C CL(X) x LC(X), (Ay, fu) Thu-
converges to (A4, f) and x,, € argmin (4,, f,) that is f,,(x,) = inf (4,,, f,).

We have f,(x,) — f(xg); for every n e Z*, let e, =|fu(x,) —f(xo) | and
N, =| fuley) — f(xy,) |; we put &, + #,, = a,. The continuity of f at x, implies that
there is an open neighbourhood U, of x,, such that f(2) € (f(x,) — ay, f(x,) + ay,)
for every z € U,. Now let g, : X — R be a continuous function defined by

f(xn) — Op if z = Ly
gn(2) = < f(2) ifzeX\ U,

Dugundji extension otherwise

and such that g¢,(U,) C [f(x,) — ay, f(x,) + a,]. So x, € argmin (4,,g,) and
(Ay, gn) Thy-converges to (A4, f), thus a, — xo. |

Lemma 1 and Theorem 1 together give us the following result:

THEOREM 2. — IfA € CL(X) andf is uniformly continuous, then the following
are equivalent:
1) (A, f) is Hadamard well-posed in CL(X) x LC(X);
2) (A, f) is Hadamard well-posed in CL(X) x C(X);
3) (A, f) s strongly well-posed;
4) (A, f) is Levitin-Polyak well-posed;
5) (A, f) is Tykhonov well-posed.

—~ o~ o~ —

REMARK 1. — Obviously, the equivalence of the five kinds of well-posedness for
continuous minimization problems characterizes the Atsuji spaces.

The main result of this part claims that Tykhonov well-posedness of a con-
tinuous minimization problem can be expressed as well-posedness of a
Hadamard type where the continuous dependence on the data of the problem is
described by the Hausdorff metric topology on graphs of constrained mini-
mization problems.
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Let (X,dx) and (Y,dy) be metric spaces and C(X,Y) be the space of all
continuous functions from X to Y. If A € CL(X) and f € C(A,Y), by [A, f] we
denote a partial map from A to Y. Put P = {[A, f1: A € CL(X),f € C(A,Y)} the
set of all partial maps from X to Y. Consider in X x Y the box metric p of dx and
dy and by H, we denote the Hausdorff distance on CL(X x Y). We can identify
every partial map [A, f] with its graph, which is of course a closed setin X x Y.
Under this identification we can consider P as a subset of CL(X x Y). Thus we
can induce the Hausdorff metric H, from CL(X x Y) to P. We denote the re-
sulting space by (P, H)).

THEOREM 3. — Let (A, f) € CL(X) x C(X). Then (A, f)1is Tykhonov well-posed
if and only if
i) (A, f) has a unique solution xy;
i) for any (A,, fu) € CL(X) x C(X) such that [Ay, fulAn] — [A, f|A] in
(P,H,) and (x,) C X with x, € argmin (A, f,) one has &, — .

PRrROOF. — <= Let f(xy) = inf,c4 f(x) and (x,,) be a minimizing sequence in A.
Define f;, : X — R by f,(x) = max{f(x),f(x,)}. Obviously f,(x,) = inf,ecaf ().
Moreover

sup | fu (@) — f )] < fwn) —f(2o).

xeA
Since f(x,) — f(xo), (f,]A) uniformly converges to f|A. Thus (4, f,|4) — (4, fl4)
in (P, H,). The sequence (4, f,,) satisfies our assumptions; i.e. x, — ¥ and (4, f)
is Tykhonov well-posed.

= Let f be continuous and (4, f) be Tykhonov well-posed with a unique
solution xy. Moreover, let (4,, f,) € CL(X) x C(X) such that [A,, f, |A]
H,-converges to [A,f|A] and (x,) C X with w, € argmin (4,,f,). Since
H,([A,, fu|A.]L[A, fIA]) — 0, for every n € 7% there is a, € A with

max{d(«%na ), lfn(xn) _f(a%)‘} < Hp([An7fn|An]; [A7f|A]) +%-

Thus d(xy,a,) — 0 and also |f,,(x,) — f(a,)| — 0. Since f(xg) = inf,ca f (), we
have f(a,) — f(xy), otherwise a contradiction with x,, € argmin (4,,, f,,). Since
(A, f) is Tykhonov well-posed, x,, — xy. ]

3. — Hausdorff metric topology on partial maps.

In this part we study the Hausdorff metric topology on the space of partial
maps. The main aim of this paragraph is to find some sufficient conditions for the
complete metrizability of (P, H,). Notice that (P, H,) need not be complete even
if X and Y are compact ([22]).
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We start with the following results:

PROPOSITION 1. — Let (X,dy) and (Y,dy) be metric spaces. Let [A,, f,.],
[A, f] € P and suppose [A,, f.] — [A, flin (P,H,). Then
a) A, — Ain (CLX),Hg,);
b) Forevery x € A and x,, — x, %, € Ay=>f,(x,) — f(x).
Moreover, if f is uniformly continuous then for every B € CL(X), with B C A
and B C A,, eventually, one has f,,,‘ g — fip uniformly.

Proor. - Let [Ay, fu] — [A, f1in (P, H,). It is immediate to prove the prop-
erty a). The property b) easily follows from Proposition 3.3 in [12].

Now suppose that f is uniformly continuous. Let B be a closed set of X with
B c An A, eventually. Without loss of generality we may assume that B C A,
for every n. Let ¢ > 0. Then there is 6 > 0 such that dy(f(x),f(y)) < & when
dx(x,y) < 0. Moreover, if 7 = min{e, 0}, let @ be such that

sup inf p((x, f,(x)), (y,f ) <n for n > 7.

ved, YEA
Since B C A,, for all n, then for every x € B there is ¥, € A such that
dx(x,y,) < nand dy(f,(x),f(y,) <n for every n > 7.

By the uniform continuity of f, we have

dy (fu (), f (@) < dy (@), fyn) + dy (f (), f (@) < 2¢

for every « € B and for every n > 7. ]

THEOREM 4. — Let (X, dx) and (Y, dy) be metric spaces. TFAE:
1) (X,dyx) is an Atsuji space;
ii) [Ay, fu] converges to [A, f1in (P, H),) if and only if
a) A, — Ain (CL(X),Hg,);
b) for every x € A and x, — x, X, € Ay=>f,(x,) — f(x);
¢) for every B € CL(X), with BC A and B C A,, eventually, one has

Juip — fip uniformly.

PROOF. - (2) = (i2) In view of Proposition 1 we only need to prove that if
a), b), ¢) hold, then [A4,, f,] — [A, f]in (P, H,). If it is not true, then there is an
infinite subset I of 7 and there exists ¢ > 0 such that

e([Ay,, ), [A, f1) > ¢ for every n € I
or

e([A, f1,[An, ful) > ¢ for every n € I.
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In the first case, for every n € I there is x,, € A, such that
(1) Uy, fu@n), (y,f(y) > & for all y € A.

The sequence (x,),c; cannot have a cluster point. Suppose there is a cluster point
x of the sequence (x,),cr. Then there is a subsequence (x,,) of (,),er such that
Xy, — « € A. We can extend (x,,) to a sequence (y,) convergent to « and such
that y,, € A,, for every n € Z*. Then f; (y,) converges to f(x). This is a contra-
diction to (1). Since X is Atsuji there is » > 0 such that S(x,,r) = {x,} for all
n € I with n > ng. From e(4,,,A) — 0 we have that there is n; > ng such that for
n € I with n > n; we have x,, € A. Hence (x,),c; is eventually contained in A.
Put B ={x, :n € l,n > n}. By similar argument, from e(4,A4,) — 0, one ob-
tain that there is ng such that B C A,, for every n > no. From c¢) we get fn| B —JiB
uniformly.

But (1) implies that for all n € I,we have dy(f, (x,),f(x,)) > & that is a con-
tradiction.

Now, we consider the case when

sup inf p((y,f(y)), (&, fr,(x) > ¢ for every n € I.
yeA xcA,

Then we can construct a sequence (x,),c; C A such that for all x € A, one has
(2) P, f(@,), (2, fo (@) > &

The sequence (x,),c; has no cluster point. Otherwise, there would be a sub-
sequence of (x,),c; that converges to a point & € A. W.l.o.g. we can suppose that
this subsequence is (). Since A, — A, there is a sequence (y,) with ¥, € A,
such that ¥, — x and so, from b), we have f, (y,) — f(x). Consider the sequence
(Yn)ner. Since lim dx (@, %,) = 0 from (2) dy(f(x,), £, () > ¢ for all n € I suf-
ficiently large. Contradiction, because

fl@y) — flx) and f,(y,) — f(x).

The proof is then similar to the one in the first part.

(12) = (1) Suppose (X, dyx) is not an Atsuji space. Then there are sequences
(), (y,) in X without cluster points and such that dx(x,,y,) — 0, and x, # y,
for every n. Put A = {x, : n € Z*}. Then A is a closed set. For every n € Z*
put A, =AU {y,}. Then of course (4,) — A in (CL(X),Hy,). Let a,b be two
different pointsin Y. Let f € C(A,Y) be defined as f(x) = a for every « € A. For
every n e Z*t let f,, € C(4,,Y) be defined as f,(x) = a for every x € A and
fulyn) = b. Tt is easy to verify that [A,, f,] fails to converge to [A, f]in (P, H,).
However all conditions (a), (b), (¢) are satisfied.
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PROPOSITION 2. — Let (X, dx) and (Y, dy) be metric spaces. If (X,dx) is an
Atsuji space then the map

n: (CLX) x CX,Y), tpy)—(P,H,)

defined by n(A, f) = [A, f] is continuous.

PRrOOF. - Suppose that (4,, f,) th,-converges to (4, f) in (CL(X) x C(X,Y)).
Then, of course, by Theorem 4 (a) and (c) of (ii) hold. Moreover, since f,, uniformly
converges to f, it also continuously converges to f ([26]) and thus also (b) of ii) of
Theorem 4 is satisfied. Hence [4,, f,,] H,-convergesto[A, f]and the continuity of
n follows. ]

Moreover, we have the following result:

PROPOSITION 3. — Let (X, dy) be a metric space. If the map
n: (CL(X) x C(X), 1) — (P, H))

1s continuous then (X, dy) is an Atsuji space.

ProOF. — To prove that (X, dx) is an Atsuji space we show that, for continuous
minimization problems, Tykhonov well-posedness implies Hadamard well-po-
sedness.

Let (A,f) be Tykhonov well-posed with f(xy) =inf,csf(x) and let
(Ay, fu) Thy-converges to (A, f) with x, € argmin (4,,, f,). Then continuity of #
implies [A,, fu] H,-converges to [A, f]. Of course f,(x,) — f(xo). There is a se-
quence (y,,) in A such that p((y,, f(y,)), (@, fr(2,)) — 0, i.e. dx(y,,x,) — 0 and
dy (fu(@n), fys)) — 0; ie. f(y,) — f(xo). Thus ¥, — o, i.e. &, — xo. Therefore
(A, f) is Hadamard well-posed. |

REMARK 2. - If (X, dy) is an Atsuji space and (Y, dy) is a Fréchet space then
we can prove (using the similiar idea as in [14]) that # is also onto and open. Thus
(P,H),) is completely metrizable, since a metrizable space which is a continuous
and open image of completely metrizable space is completely metrizable too.
However Atsujiness of X and Fréchetness of Y are strong requirements.

We will present weaker conditions on spaces to guarantee the complete
metrizability of (P, H,). To study the complete metrizability of (P, H,) we first
investigate the completeness of the Hausdorff metric of usco maps with moving
domains and then by using of Alexandroff theorem we obtain the complete
metrizability of (P, H,).

For every A € CL(X) we denote by U(A,Y) the space of all upper semi-
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continuous multifunctions from A to Y with non empty compact values (usco
maps) [16] and we set

W(X,Y)={[A,F]: A € CLX), F € UA,Y)}.

If [A,F]e W(X,Y) then the graph of [A,F] is a closed set in X x Y.
Therefore if we identify an element of W (X, Y) with its graph, we can consider
W(X,Y) as a subset of (CL(X x Y),H,), where H), is the Hausdorff distance in
CL(X x Y) induced by the box metric p of dx and dy on X x Y.

In the next Lemma we denote by px : X x Y — X and py : X x Y — Y the
projections.

LEMMA 2. — Let (X,dx) be a locally compact metric space and (Y,dy) be a
metric space. I[f B € W(X,Y) in (CL(X xY),H,) then
1) for every z € X there is a compact neighbourood O, of z such that

py((0: x Y)NB)

s compact;
2) px(B) is closed in X.

Proor. — Let z € X. Without loss of generality we may suppose that
z € px(B). The local compactness of X implies that there is 6 > 0 such that Bg;[z]
is a compact subset of X. Let ¢ > 0. Put # = min{e, 6}. Let [A,F] € W(X,Y) be
such that H,(B,[A,F]) < . Let (u,v) € ((Bs[z] x Y) N B). Thus there must exist
(x,y) € [A, F] such that dx(u,x) < nand dy(v,y) < n, i.e.

v € S)lyl C Sy[F ()] C S:[F(Baslz]NA)].

The upper semicontinuity of F' and compactness of values of F' imply that
F(Bgs[z]NA) = L, is a compact set in Y.

Thus we proved that for every ¢ >0 py((Bslz] x Y)NB) C S,[L.], i.e.
M, = py((Bs[z] x Y) N B) is a compact set in Y (since it is totally bounded closed
set in a complete metric space). Thus 1. holds.

Now we prove that px(B) is a closed set in X. Let z € px(B). Thus there is a
sequence z, in px(B) such that {z,} — 2. By 1. there is J > 0 such that
M, = py((Bs[z] x Y) N B) is compact in Y. Without loss of generality we can
suppose that z,, € By[z] for every n € Z*. Thus there is a sequence {y,} such
that (2,,%,) € B for every n € Z™, i.e. y, € M, for every n € Z". The com-
pactness of M, implies that {y,} has a cluster point [ € M., thus (z,0) € B, i.e.
z € px(B). [ |

THEOREM 5. — Let (X, dx) be a metric space. The following are equivalent:
1) X is a locally compact space;
2) For each complete metric space (Y,dy), W(X,Y) is a closed set in
(CLX xY),H,).
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PrOOF. - 1. = 2.

Let B be in the closure of W(X,Y) in (CL(X x Y),H,). By Lemma 2 p,(B) is
closed. Define now a multifunction Hp:px(B) — Y as follows: Hp(x)
={y e Y : (x,y) € B}. Using Lemma 2 we have that for every x € px(B) there is
a neighbourhood O, of & and a compact set K, in Y such that Hp(z) C K, for
every z € O,. Thus Hg is an upper semicontinuous compact-valued multi-
function; i.e. [px(B),Hp]l € W(X,Y) and B is the graph of [px(B),Hg]. Thus
BeWX,Y),ie. W(X,Y)is closed in (CL(X x Y),H,).

2.= 1.

Suppose that X is not locally compact. Let Y be an arbitrary non compact
complete metric space. By the proof of Theorem 1 in [21] there is a sequence
{F,} of upper semicontinuous compact-valued multifunctions such that ([X, F,])
H,-converges to a multifunction F' with a closed graph which is not upper
semicontinuous, i.e. [X,Fl¢ W(X,Y). [ |

The next theorem, concerning the complete metrizability of W(X,Y), is a
consequence of theorem 5. In fact, it is known that if X and Y are complete metric
spaces, then (CL(X x Y),H),) is complete. So, by theorem 5, if X is also locally
compact, then W(X,Y) is complete since it is closed in (CL(X x Y),H ).

THEOREM 6. — If (X, dy) and (Y, dy) are complete metric spaces and (X, dy) is
locally compact, then (W(X,Y),H,) is also complete.

We recall that a metric space (X, dy) is boundedly Atsuji [8, 22] if every closed
and bounded subspace of X is Atsuji.

Now we give a result concerning the complete metrizability of (P, H,). By an
easy modification of Theorem 4 in [21] we can prove the following result:

PROPOSITION 4. - Let (X, dx) be a boundedly Atsuji space and (Y, dy) be a
metric space. Then P is a Gs- subset of (W(X,Y), H,).

By using of Alexandroff theorem we have:

THEOREM 7. - If (X,dx) is a locally compact boundedly Atsuji space and
(Y, dy) s a complete metric space then (P,H,) is completely metrizable.
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