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Bollettino U. M. 1.
(8) 9-B (2006), 619-643

On the Tits Building of Paramodular Groups.

ERIC SCHELLHAMMER

Sunto. — Investighiamo 1 buildings di Tits dei gruppi paramodulari con o senza strut-
tura di livello canonica, rispettivamente. Questi danno importanti informazioni
combinatoriche sul bordo della compattificazione toroidale dello spazio dei moduli
delle varieta abeliane non principalmente polarizzate.

Diamo una classificazione completa delle rette isotropiche per tutti questi gruppi.
Inoltre, per le polarizzazioni square-free, coprime e senza struttura di livello, mo-
striamo che c¢’é solo un sottospazio isotropico di dimensione massima.

In un lavoro successivo a questo, useremo queste informazioni per dare un risultato
di tipo generale per lo spazio dei moduli delle varieta abeliane non principalmente
polarizzate con struttura di livello completa.

Summary. - We investigate the Tits buildings of the paramodular groups with or without
canonical level structure, respectively. These give important combinatorical in-
Sformation about the boundary of the toroidal compactification of the moduli spaces of
non-principally polarised Abelian varieties.

We give a full classification of the isotropic lines for all of these groups. Furthermore,
for square-free, coprime polarisations without level structure we show that there is
only one top-dimensional isotropic subspace.

In a sequel to this paper we will use this information to establish a general type result
for the moduli space of non-principally polarised Abelian varieties with full level
structure.

1. — Introduction.

We fix (e1, ..., ¢y) with ¢;|e;.; foralli =1,...,9 — 1. Let 4 := diag(es, . .., ¢),
A:=(" Ag ). Let & := 7% < (Y and let £" be the lattice dual to ¢ with respect to
the bilinear form (x,y) := xA%, namely

i={yel®QVrel : (vy)eZ}
Recall that the paramodular group, respectively the paramodular group with a
canonical level structure can be defined as follows:

Tyo == {M € SL(2g, Z)|MA'M = A} and

fll)%vl ={M € fp()l’M‘QV/Q =id[gv /e }-
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Their action on the Siegel upper half space &, is given by

AB 1

<CD> T AT+ BAHCTt+DA) 4.

The quotient spaces Apo := S/ ot and .Aifovl =&, /T %)QOV] are the moduli spaces
of Abelian varieties with fixed polarisation of the given type without or with
canonical level structure, respectively. It is well known (*) that these groups
are conjugate to subgroups of Sp(2g,(), namely I := RI'\qR and
r }fovl =R7II" i)%‘l’R where R := (' ). The action of these groups on &, is the
one induced from Sp (2¢, ), namely

(‘g g) 1 (At + B)Ct+ D),
and the respective quotient spaces are isomorphic to .A,, and 193’1, respectively.
All of these groups also act on Q% by matrix multiplication from the right.

A subspace V ¢ Q% is called isotropic if for all u,v € V we have (u,v) = 0.
The Tits building describes the configurations of the conjugacy classes of these
isotropic spaces with respect to the action of the different groups defined above.
It provides useful information about the combinatorical structure of the
boundary components of toroidal compactifications (?). Instead of considering
the whole building we focus on the one- and g-dimensional spaces only.

The main results of this paper are the classification of isotropic lines in
Corollary 4.2 and Corollary 4.6, and Theorem 5.3, which says that under some
conditions there is only one top-dimensional isotropic space.

2. — Divisors of vectors.

Let us begin the analysis of the Tits building by the one-dimensional isotropic
subspaces of Q%. Given a polarisation type (ei, ... ,€g), we may chose e; =1
without changing the group I7,1.

NorATION 2.1.

Let d; :=e;,1/e; fori=1,...,9 — 1 and define

6j+1 7 . .
-~ = H d, fori< j
d” = €; i .

1 fori> j

) see eg. [HKW, p. 111.
() see [AMRTY.
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Then all d; are positive integers and the polarisation type is given by
(1,d1,dy2, ..., d1g—1). Let T(s) be a function depending on some integer variable s.
Then we define

gcd(T(s))j;:i = ged(T@),...,T(G) and T(si|se) := ged(T(s1), T(s2)).

DEFINITION 2.2. — Special polarisation types.

We call a polarisation type (1,ds,...,d1,g—1) square-free if all d; are square-
free. If a polarisation type satisfies ged(d;, d;) = 1 for all © # j we call it a coprime
polarisation type.

First of all, we define the divisors D;(v) of avector v € 7% fori=1,... ,g— 1.
To keep the notation easier, we shall drop the vector v where possible and write
Di = Di(v).

DEFINITION 2.3. — Divisors.
Define the divisors D; := D;(v) of a primitive vector v € 7% recursively:

Vilgwi \ !
D; := ged (dhgccl(%)jw) € Nyg.
)= -

Here, D;;; is defined as a product, analogously to d;;.

DEFINITION 2.4. — Ideal of lattice and vector.
For a vector v € 7% let (v, Q) := {(v,1) |l € ¥} which is an ideal in 7, namely

(va 2) = (vlv dl'UQ, d1:2v35 s 7d1:g—1'Ug7 vg+1; dlvg-&-Z; R dl:g—l'UZg) C 7.

LEMMA 2.5. - For 1 <k <1i<g and m such that Do €7 the following
equivalence holds:

m (0, %) dig-1 m (,4%)
1 € (d;, = d;, .
@ Dy.iy ( ’ Dl:i—1> D11 Dyia ( ' Dl:i—l)

PrOOF. — The implication “=-" is trivial; the other direction can be proved by
induction, substituting m’ = dj_1m. |

LEMMA 2.6. — The ideal (D;) can also be given by

, %) )

(Di) = (dia Dliz—l

PRrOOF. — Let A; := (di, g’l—%)l) We know from the definitions that
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111945\ 9
A <di,gcd( IJDll.ﬂfH )j1>
i =

_ dij-10jg+5 ' i-1is15-10)g45 \ ¢
- (dl’ng(ﬁ)jfdlng( Dy )J':”l

(4 di;j—1 Vjgij \'
@) - <d“ng(D1:j1Dj;i1)j—l

Since now all terms in (2) are multiples of terms in the definition of D;, we
obviously have A; C (D;). For the other inclusion we apply Lemma 2.5 to every
element in (2) to obtain that all terms in the definition of D; are contained
in Ai. |

COROLLARY 2.7. — Invariance.
The divisors D; of a vector v are invariant under the action of I’y on 72,

PROOF. — Consider the invariance of (v, &) under the action of M € I pol:
(vM, Q) = {vMAtl|l c Zzg} = {vA(tM)’”l]l c Zzg} = {v/ltl|l IS ZQQ} =, ).

This holds because (tM)’1 is an integer matrix due to det(M)=1, and
MA = ACM)! by the definition of I pol- The invariance of D; follows from
Lemma 2.6. [ |

REMARK 2.8. — Let us point out that the divisors D; are not independent and
therefore not every possible combination of divisors of the d; given by the po-
larisation type can actually occur. E. g. take g = 3 and d; = 4, d2 = 6 so that we
have a polarisation type (1,4,24). Now, there is no vector with the divisors
D1 = Dy = 2 because that would mean that

(3) D, = ged(4,v1,v4) =2 and
vV
(4) DQZng(6,§1,§4,/I}27U5) :27

where equation (4) clearly shows that 4 divides both v; and v4, which is a con-
tradiction to (3). The additional restriction on the divisors D; is the following:

THEOREM 2.9. — Restrictions on D; .
Forl<i<j<g-—1we have

(5) ged (g_pj> Y



ON THE TITS BUILDING OF PARAMODULAR GROUPS 623

Moreover, any ordered set of positive integers {D;} := {Dx,...,D,_1} satisfying
D;|d; and condition (5) does occur as set of divisors of a vector v € 72,

ProOF. — Necessity: : Restrictions on D; For1 <7< j < g —1we have
(6) ng(diDi,Dj) =1.

Moreover, any ordered set of positive integers {D;} := {D1,,D,_1} satisfying
D;|d; and condition (6) does occur as set of divisors of a vector v € 72,

Necessity: Take 7 < j and assume n := gcd(%,Dj) # 1. Let p be a prime
i

dividing 7 and denote by exp (p;n) the maximal integer such that p&®®"|p,
Obviously, exp (p;n) > 1. Since D;|d; we have exp (p; D;) < exp (p; d).

If exp (p; D;) = exp (p; d;) then exp (p; d;D;) = 0 in contradiction to p|n. So we
have the strict inequality exp (p; D;) < exp (p; d;).

Since by definition

D; = ged <di, ged (gck‘“}; );_ ) the strict inquality implies
= -

D ) Vklg+k \
exp (p; D;) = exp <p, gcd(Dh_1 )k1> and hence

. Vklg+k "\ _
exp(p,gcd( Di )k_1> =0.

Since 7 > ¢ we have

Vklgk \J Vklg+k \*
D] = ng (dj, ng(Dk‘itl )k—l) | ng( D‘i; )k:l'

This leads to

Vilgik \
0 < exp(p; D)) gexp(p;gcd(%)k 1) =0
i) =

which is a contradiction to p|n. So, n = 1.

Sufficiency: Choose integers D; satisfying the conditions stated in the lem-
ma. Consider the vector

V= (Dl:gfl7D2:g717 aDgfL 170770) € 729

It is easy to calculate that the divisors D;(v) are exactly the chosen D;.
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This lemma has an interesting consequence:

COROLLARY 2.10. — Characterising property of Di.4_1 .
For a given polarisation type (1,dy, . . ., di.g—1), the value Dy.4_1(v) determines
all the values D;(v) uniquely.

Proor. - Let dy, . ..,dy—1 and D14 be given. Then Theorem 2.9 leads to the
following:

d d d
gcd(D—ll,D2> =...=gced <1711,Dg1> =1=gcd <1711,D2:g1> =1

=ged(dy, Dyy1) = Dy

so that we can determine D; from d; and D1,_;. Divide D141 by D; to obtain
Ds.;_1 and apply the same lemma. By iterating this method all values D; are
obtained. ]

3. — Properties of symplectic matrices.

We now want to investigate divisibility properties of the matrix entries of
M e I for the different groups I” we defined.

DEFINITION 3.1. — Triangular polarisation matrices.
Define the sets of matrices

D) := {(sp) € Z79)j < i=>dj1|sy}  and
SD() := DU NSLg, 7) = {S € DA|det(S) = 1}.

LEMMA 3.2. — The set 1D(A) with the normal matrix operations is a ring with
unity. Its subset SD(A) is a multiplicative group.

PRrROOF. — It is a straightforward computation to check that D(4) is indeed a
ring with unity.

Since SD(A) C SL(g, 7) per definition, it is obvious that for any S € SD(4) the
inverse T := S~ exists, is an integer matrix and has determinant 1. It remains to
show that T = (t;) € D(4). By Cramer’s rule we know t; = g |S%"| = [SU7)|
where SU+ is the minor of S constructed by removing the jth row and ith column.

For j>1 there is no additional condition. Now let j<i and fix
n € {j,...,i—1}. We have to show that d,, divides det(SY?). This is the state-
ment of Lemma 6.1 where we let d =d, and k =n. Using this for all
J <n <i—1we obtain d;;_i|t;; which completes the proof that 7' € SD(4). W
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LeEMMA 3.3. - We have the following congruence conditions:
Tpol C D(A®
where DAP® == {(45)|A,B,C,D € D()}.
PRrOOF. — Let M = (m; ;) € fpol and chose k € {1,...,9 — 1}. Denote the in-
dex set
Iy ={k+1,...,9,.9+k+1,...,29}.

Now chose any ¢ € I}, and let v :=¢; € 72 be the ith unit vector. The invariance
under the action of /7, and some easy computation shows that

m~ .
dy, = Dyp(v) = Di(wM) = ng(dk’D - ’D.li+i)'
J: J:k—

This reasoning for all valid combinations of values leads exactly to the divisibility
condition for M € D(A)**. [ ]

LEMMA 3.4. — For the conjugate group we have

e 0 DU DU
ol = ’ )N :
bl = SPISY ADW) A DU

Proor. — This follows from Lemma 3.3 by conjugating with E. ]
For the groups with canonical level structure we obtain additional conditions:

LEMMA 3.5.

[lev th
rii= et (()w) 0% +1)

where d := (1,dy,...,d1g-1) and 135 :=(1,...,1) € 7%, The tensor denotes that
each matrix entry of the rank 1 matrixz in brackets may be multiplied by an
integer z;;.

PrOOF. — Denote the obvious basis of ¥ C 7 by {ey, ..., ez, }. Then a basis of

the dual lattice " can be given by {- T el g+itiz1,. g BY definition, a matrix

.....

M € I isin IS pol if and only if it satisfies Mg o = 1d>~v s¢- This is satisfied if and

onlyif foralli=1,...,¢9 we have

1
d ei‘ﬁi(M —-De 7%
1ii—

1 1
L\gHM =L 7 d ez\gﬂ — m
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This means that d;.;_; divides every entry in the ith and g + ith row of the matrix
M — 1 which is exactly the condition we wanted to prove. ]

LEMMA 3.6.

tb ‘

where again d = (1,dy, ..., d1g1) and 15 :=(1,...,1) € Z¥.
Proor. — This follows directly from Lemma 3.5 by conjugating with 2. W

One important result from this lemma is the following observation: Although
I', may have rational non-integer entries, this is no longer possible for its
subgroup I’ i)e(}i:

COROLLARY 3.7.
r;egl C Sp2g, 7).

ProoF. - With Lemma 3.4 we know I’ }fg’l C I'pot C Sp(2g,Q), and since the
condition given in Lemma 3.6 implies that all matrix entries must be integers the

claim follows immediately. ]

4. — Orbits of isotropic lines.

In this section we construct two sets of vectors that are in one-to-one cor-

respondence to the orbits of the group actions of I ol and I }l)‘f)vl, respectively.

4.1. — Orbits of isotropic lines under I ;)‘f)‘{

lev

LEMMA 4.1. — Orbits of isotropic lines under I pol

() Under the action of I’ IIJ%‘I', every vector v € 7% can be transformed into

V= (Dlzgfl(lv)a yeeny *,Oa ey *)
where the given 0 is at the g + 1st place. )
(i) Two vectors v,w € 7% are conjugate under I Il)%vl if and only if

D1y 1) =Dyy1(w) and Ve=1,...,29:v; =w; mod Dy 1.

Proor. -- Part (i):
Since v is primitive, not all entries v; are zero. Hence we can assume (if
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necessary after a suitable transformation with a matrix in I’ ;)%Vl) that v; # 0.
By definition of D; we know that % € 7 for j <k < g and so it makes sense

to say

Vg \' o di) e Vgt di
ged (gcd( Diys )j:l’ Di) divides ged (gcd( Dy )j_l’Di)

where the second ged is equal to 1, again by definition of D;. Hence, we also have

Vjgi \' i\ _
(7 ged (gcd(Dj:g1 >j—17Di) =1
Now define
Vigr1 dyi V2jgi2 dy dag10gp2
(8) IZ: (D—‘g+ ,D—D—‘g+ ,...,D——Dg glg).
1g-1 D1Dgg1 1 Doy
Using (7) fort =1,...,9g — 1, we may drop the factors %’; successively to obtain
Vijg+1  V2lg+2 Vg—-12g-1
[ = ; gee ey ,1) 3
(Dlzgfl Da.yq Dy, g‘zg)
and since ged(vy, . .., vs) = 1 we have I = (1). With 6.2 we can now find 4; such
that

g 9
V1 Vgl , 110 dl:i—lvgﬂ') )
, + Ai + Agei ———>— ) = (1) or equivalentl
(Dlzgfl D1y 22:2: " Dyg 2212: T Diga a y

(v1,vg+1 + Z (Aidy1:i-1v; +)»g+id1:i—1vg+i)) = (D14-1).

1=2,....9
The matrix
1 —Jgy2 ... —Jgy 0 lo .. Ay
1 di/2
1 | dig-14
Mo g—14g
1
d1)‘9+2 1
d1.g-1424 1

isin I" 11)?1 according to Lemma 3.5. The entries of the vector v/ := vM satisfy the
relation ged(v], v’g +1) = D141 by definition of 4;. Therefore, there exist t1,t2 € Z
with 9] + tgv’g +1 = D11, and the matrix N that differs from the unit matrix
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only in the entries

n1,1 N1,g+1 t IS%H
, 9+ -
) ( =

Ng+11 Ngilgl g

Dy

transforms v’ into a vector of the form ¥ = v'N = (Dy,g_1,%,...,%,0,%,...,%).

Part (ii) - Necessity: Since the divisors are invariant under the action of I” %)%Vl,
we must have D;(v) = D;(w) for conjugate vectors v and w which obviously im-
plies Dl:gfl(?)) = D};g,l(w).

Now, let M € Fllj‘f)vl such that w =vM and let k € {1,...,2¢}. To keep the
notation easier we only consider the case k < g, the other case g < k < 2¢g can be
treated similarly. By definition we know that D;,, ; divides v; and vy,;. From
Lemma 3.5 we obtain

i=1, i=
ik

g g
Wy = E M V; + E Mg+i e Vg+i + Mgt Vg
-1

g g
= Z (Dy.i-1miDig1v;) + Z (Dri-1my, ;1 Dig-1v,,) + (dig1n + Dy
o i
v .
=0+ 0+ dyp1nDpy D—k + v, mod Dy, and since
k:g—1

V) ,
k ez
Dk:gfl

=wv, modDy,y_1.
Sufficiency: Due to part (i) we can assume v and w to be given in the form
V= D1,g-1(0),v2,...,74,0,V542,...,02) and
W= D1g—1(w), w2, ..., Wy, 0,Wy12, . .., W),

where v; = wi. Let D; := D;(v) = D;(w). Since v; = w; mod D141, let n; be de-
fined by
w; Z’}’LZ‘DLQ,1 +v; for 1=2,...,9,0+2,...,2¢.

The matrix M defined as

1 ng - my 0 Ngy2 -+ MNgg
1 diangie

1| dig-1m9

1
—di1ne 1

rlev
€ Fpol

—dlzgflﬂg 1
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transforms v into vM = (Dy.g_1, w2, . .., Wy, Vg1, Wy2, - - . , Way) Where
Vg1 = d1aNgi2ve + ... 4 dig_1M2gV + 0 — d1.aMeVgie — ... — dig_17402y.

Since D;,,_; divides v; and v, ; by definition, we know that Dy,,_; divides every
term of 7,1 and thus ged(D1,y—1,7y+1) = D1,y—1. This implies that we can find a
matrix N as in (9) which transforms vM into w and thus v and w are conjugate

7 lev
under I7. [

COROLLARY 4.2. — Set of representatives
A set of representatives for the orbits of I Ilﬁ)vl s given by the vectors

V= D1g-1,D24-102,D3.4_103, . ..,04,0, D2y 10442, D3,y 10413, ... ,02g)

where {D;} runs through the set of all possible divisors as given in Theorem 2.9
and
0<a; <Dyi1, 0<ayy<Dyiq fore=2,...9.

PrOOF. — This follows easily from the above Lemma 4.1 considering that by
definition D;,;_1|v;y4, and using Theorem 2.9 for the restrictions on {D;}. |

4.2. — Orbits of isotropic lines under I’ ol -

DEFINITION 4.3. — Representative vectors for I’ ol -
Forv=(v1,...,v9) € 7% andi=1,...,g,let

V; = ged(®yjgy1s - - - Vijgti> AiVigajgisats - - - Dig-1Vg2y)  and
NP N 2
V= (01,...,0,0,...,0) € Z¥.

In this form, adjacent entries are related in the following ways:

LEMMA 4.4. - Properties of v;.
For all primitive v € 7% the ¥; satisfy the following relations:
(1) ’lA)l = Dlzgfl(?)) and f)g =1
@ vi=1,...,9—1 : ¥|di®ip1
(i) Vi=2,...,9 : %]
(iV) Vi = 2, RN 1: QA)Z = ng(?AJifl, Vilg+is dif)iJrl)-

Proor. — Part (i):
By definition we already know that D;.,_1[0;. The definition of ¥; immediately
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gives ( ij ) = I with I defined as in equation (8) on page 9. We have already
proved that I = (1) and hence we have 9; = Dy, as claimed.

Since v is primitive, we have ¥, = ged(vy, ... ,v9) = 1.

-1

Part (ii) and (iii):
These follow immediately from comparing the elements of the greatest
common divisors in the definitions of ¥; and ?;,; or ¥;_1, respectively.

Part (iv):

Define v} := ged(;_1,vjg44, di¥i11). From the definition of 9; and parts
(iii) and (i) we see that v; divides ged(¥;_1,vjg4i,diV;is1) = ;. On the other
hand, from the definition of v; we see that v; divides ged(vig4q,...,
Vi1lg+i-1s Vilg+i> BiVis1jg4is1s - - - Dig—1Vgi2g) = ;. Since both are positive in-
tegers, this proves equality. ]

We now show that there is a unique 9 in each orbit.

LEMMA 4.5. — Orbits of isotropic lines under I pol )
Let ~ denote congruence with respect to the action of I'yo. Then
i v~
() v ~w <= v =w (here we have equality, not only congruence)

Proor. - Part (i)

We prove congruence by giving matrices that transform v into ¥ iteratively.
In the ith step the ith component of the vector will become ?; whereas the
(g9 + 7)th component will become zero. The existence of such matrices is shown by
induction.

For the first step we refer to Lemma 4.1 where it has already been done using
amatrix M € I’ II)%VI C Iy For the other steps we shall now construet matrices in
a similar way. Assume that we have completed the first ¢ — 1 steps and hence
have a vector of the form

V= (vl,...,1)1;,1,1)1-,...,vg,O,...,O,ng,...,vgg).

Lemma 6.2 tells us that we can find 4; such that

ged <7)g+i;'vi+ > idiavi+ Y 7»g+jdi;jlvg+j>
J

=1,..9 j=lg
J#L J#L

= ged(Vijge1, - - 5 Vilgris AiVistjgairts - - - Dig—1Vgj2g) = Vi

Since vy41 = ... = Vg1 = 0 we may obviously choose g1 = ... = 44451 =0.
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Now we can define the matrix

1 il *
1 Aic1 *
1 0
didis1 1 0
M dig—12g 1 0
0 1
0
0 ... 0 0 Agrivt --- Ao |k ..o ox 1 ox o0 %
di/lg+i+1 1
di:gfliZg 1
Where the # in the upper right quadrant are /; dl;#, e hi dl;# and those
in the lower right quadrant are —dy.;_141,..., —d;_14;-1,1, —=Ai1, ..., —A¢ so that
M € I'y. Define w := vM. Then
V) for1< j<t
V£ Ay fori< j< g
wj = 0 forg< j< g+1

Vgti forj=g+1
vjiikvg-o—i forg+i< j< 2

for the appropriate indices k. Furthermore, the definition of 4; guarantees that
we have ged(w;, wy;) = ;. This shows that w = v.

We complete the induction step using a matrix N as in (9).

Part (ii):

<: Using (i), we immediately obtain v ~ v = w ~ w.

= Since we know from part (i) that v is conjugate to v, we may assume v and
w to be of the form v and w, respectively. Since v ~ w there exists a matrix
M € Iy such that w = vM. We will show that 9; divides 4, for all j =1,...,g.

Fixje{l,...,g9}. We have

f)j = ng(Ul, -0 dj/vj+17 c.. ,dj:gfl’l)g) and

w; = ged(wy, . .., wj, djwjiq, . .., djg_1wy)

g g9 9 g9
Zng( E M1V - E m; jv;, d; E My j11V5, - - - > Qg1 E mi,gvi)-
=1 i=1 i=1 i=1
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Consider a single entry in this ged and denote it by

g
Zmikvi for1< k< j

Wk _ =1 ,
djj—1 Zmikvi forj< k< g

i=1

Lemma 3.3 tells us that m;; = dj.;_1m), if k < ¢ and hence we can rewrite this as
follows: For 1 < k <j we have

K j g
Wi =Y myvi+ Y (dpiomi)vi + Y (drjoadyiamiy)v;.

i=1 1=k+1 1=j+1

The summands in the first two sums each contain the factor v; with 7 < j; the
summands of the last sum the factors d;;_1v; with 7 > j. A similar reasoning
holds for j <k <g. We therefore obtain that each Wj is a multiple of

ged(vy, ..., v}, djVj41, - - -, djg-109) = ¥; and therefore v;{uw;.
On the other hand, since M1 € Iy and v = wM ! we now also know that
divides v; for allj =1,..., g, thus v = .

COROLLARY 4.6. — Set of representatives 3
A set of representatives for the orbits of I'yg is given by the vectors

. 2
¥ = (D1g-1,D2y_102,D3y_103, ..., Dy_104_1,1,0,...,0) € Z*

where {D;} runs through the set of possible divisors as given in Theorem 2.9 and
a; > 0 with

d; .
(10) a/i|g0d(Di—la’i—l717a’i+l) for ¢ = 27 -9 — 1
13

where we let a; = a, = 1.

ProoF. — The vectors ¥ defined in Definition 4.3 can indeed be given in the
form stated above: The factors D;,,_; must be present because of the divisibility

conditions implied by the definition. Define a; := #;4 The values for a; and a,

follow from Lemma 4.4 part (i). Then Lemma 4.4 part (iv) shows that for
1=2,...,9 — 1the condition on a; is required.

The fact that this is indeed a set of representatives follows from the just
established Lemma 4.5. |

COROLLARY 4.7. — Coprime polarisation types.
If the polarisation type is coprime then a; =1 for all 1 =1,...,9. In parti-
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cular, the orbits can be represented by the vectors
¥ = (D1,9-1,0,...,0,1,0,...,0)

where all D; dividing d; occur without further restriction.

ProoF. — By induction over ¢ one can use (10) and the coprimality of the po-
larisation type to prove that for: =2,...,¢g — 1 we have a;|ged(D1;_1,a;,1). Now
we can use the fact that a, = 1 which implies recursively that indeed a; = 1 for all
1=¢—1,...,2. The claim follows from the fact that, according to Corollary 2.10,
the value Dy,;_1(v) determines all D;(v) uniquely.

It is obvious that Theorem 2.9 does not imply any restrictions on the D; in the
coprime case. ]

5. — Orbits of isotropic g-spaces under I pol

In this section we only consider types of polarisations that are square-free
and coprime. For these polarisation types we prove that I’ ol acts transitively on
the g-dimensional isotropic subspaces of Q%.

In order to do this we consider primitive integer vectors v!,...,7Y that
generate an isotropic subspace k=o' A...Av C Q¥. We may restrict the
discussion to those sets of vectors that form a 7Z-basis of h, := kN 7%, in other
words hy, = @ Z4'. In this case primitivity with respect to &, implies primitivity
with respect to Z%.

The main point of the proof is that any %, of rank g has a basis satisfying the
following property:

(11) D1y (@) =dy;, foralli=1,...,g.

To construct such a basis we use two basic transformations:

e The operation of y € I'po on all of the v'. Let &' := y’) for all i = 1,...,g.
Since the D; are invariant under the operation of I pol, We can find a basis of
satisfying property 11 if and only if we can find such a basis of .

e A linear combination of basis vectors of h given as multiplication by a uni-
modular matrix A. Since A~! exists and is an integer matrix, the vectors v; are
linear combinations of the v; := v;A and hence the lattice 7, remains un-
changed by this transformation. Additionally, Lemma 6.3 gives the following
property: assume that the basis transformation only involves the vectors
i1,...,%s. Then

ged(Dp@™), ..., Dp(@™)) = ged(D(w™), ..., Dr(™))

forany 1 <k <g-1.
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During the proofs, we shall denote the vectors after any transformation by v;
but then, by abuse of notation, relabel them as v;.

In the case g = 2, this problem was treated by Friedland and Sankaran in
[F'S]. The following lemmata are generalizations of the corresponding steps to
arbitrary genus.

LEMMA 5.1. — Fix a square-free, coprime polarisation. Let h ¢ Q% be an
isotropic subspace and v',...,vY a 7Z-basis of hy. Let 2<nm<g and
1<1y,...,1, < g aset of n distinct indices. Then

ged(Dy™),..., D) =1 forallk> g—n+1.

PrOOF. — Since the order of the vectors is irrelevant for the ged, we may as-

sume ¢; = j forallj = 1,...,n. The claim of the lemma is obviously implied by the
statement
(12) My, = gcd(Dk(vl), . ,Dk(v")) =1 fork=g-—-mn+1

since higher values for k¥ mean smaller values for » and hence we have that a set of
fewer Dy, is already coprime.

Now, the basic idea of the proof is to show that we can construct a basis vector
w with the property that my, divides every entry. Since basis vectors are pri-
mitive, this implies that m;, = 1 as claimed.

We shall write the basis vectors as row vectors of a matrix, where x is to stand
for any value in 7, o, € my,Z and x € Z\my 7.

Part I:
We first bring the basis into a standard form which is given by the following
description.

Claim 1: Letg € Nandn =2,...,9. Let ¢ := |%}] andj = 1,...,q. Then we
can transform the basis v',...,v" into the following form:
for1< i< j—1:0"=(x...,%0,...,0,1,0,...,0;%, ... % e,...,0,,0,...,0)
S—_—— e S S Y Y——
9-J J—i i-1 g9-j j—i i
fori=7:v =(0,...,0,1,0,...,0:0,...,0)
—— =\ =
g-j-1 Jj-1 9
forj+1< i< n—j:v' =(%...,%0,...,0;0,%,...,%0,...,0)
—_— = Y= =

9-J J g-j-1 J
forn—j+1< i< n—1:0"=(%...,%0,...,0;0,%,...,%0,...,0,0,... 0)
——— e — e —— —— —
g—J J g—j—1 n—1i j—n+i
fori=m:v"=(%...,%0,...,0;%, ... % 0, ... 0).
————— e e —

9= J 9-J J
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We fix g and prove claim 1 by considering the values n = 2, ..., g separately,
using induction over j. Forj = 1, the first and fourth condition are empty and the
second one is implied by Corollary 4.7. We transform the basis such that v has
the given form. To fulfil conditions three (if » > 3) and five we proceed as follows:

For i=2,...,n replace v' by ¥':=v' —vo' such that ¥, =0. Since
v! A ... Av" is an isotropic space, we know that for i =2....,n

dl:g—l 7

1 In i . ;o
(13) 0= (v,v) = D1y 1w )’U;Jrl + dl:gflv;g g /U;+1 = _mvzg.

If all vég =0 we already have a basis satisfying conditions three and five.
Otherwise we may assume that vy, # 0. Foralli =2,...,n — 1 where vy, # 0 we
fulfil condition three iteratively the following way: there exist integers A, u such
that Jvj, + uvy, = ged(vh,, v4 ). By replacing

" i)
R Y2y i Y2y n

= = vt — = and 9" := W'+ "
ged(vy,, vy) ged(vy,, v3))

we obtain a new basis where f)ég = 0 and due to (13) also 17; +1 = 0. Hence, we have
achieved that ¥’ satisfies condition three. Note that Vg, = gcd(v;g, v3,) # 0 and so
we may proceed with the next 7. For condition five we use the isotropy

(14) 0= ("0") = D1y 1@ W),y + dry-10}, = dry_1v}, mod (my.)’.

From the facts that ged(d,,m;) =1 for r # k and ged( i—kk,mk) =1 since the
polarisation type is coprime and square-free, we obtain 7 |vy,. This completes
the proof of condition five for j = 1.

Now we continue the induction over 7 by assuming that claim 1 is true for
some j =1,...,9 — 1 and establish it for j 4+ 1. This is done by essentially the
same methods we have used for j = 1. Here, we use Corollary 4.7 for genus g — j
to find a matrix that transforms »/*! as desired but leaves the entries

g—7+1,...,9,29 —7+1,...,2¢g of all vectors unchanged.

Part II:

We are now in a position to try and transform the basis such that we obtain a
basis vector w having the property that m;, divides every entry of w. Recall that
this proves the lemma since basis vectors are primitive and hence m;, must be
equal to 1.

Because of the entry 1 in the vectors !, ..., 1% where all other vectors have
zeroes, it does not make sense to use them in the construction of w. The other
vectors are such that my divides all but the critical entries v’ where
k<r<g—q+1lorg+k<r<29—q+1 either by definition of my or by
construction of v'. These are exactly 26, entries in each of the J, + 1 vectors
Vil 0", where 6, = %] — 1.
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For g < 3 we have n < 3 which gives J,, = 0. Hence, for this case the proof is
complete. To treat higher g we give an explicit construction for w. The methods
used are basically the ones described before in Part I, but in order to make the
proof more accessible we have developed the following short hand notation: First
of all, notice that neither the number of critical entries nor that of useful vectors
depends on g but only on J,; we can therefore work independently of g. We use
the following methods to transform the basis or to gain information:

% We use amatrix N € I ol @s in (9) changing the entries in the xth column

of both halves of each vector. This is done in such a way that v =0 and
~g+ v 0t

v = ged@?, o).

@1 We replace the vectors ¢ and j by a linear combination — this is done by
multiplication with a unimodular matrix. After the transformation we have 77 = 0
and @f = ged(vf, v]?”). It is important to note that if v} or vf is x, then so is ?3;”

O3 We use the fact that the ith basis vector is primitive to gain x at some entry.

"4 We use the isotropy (v;,v;) = 0 as in 14 to gain e at some entry.

%> We use Lemma 6.4 on v;. This transformation involves all columns x where
v} is not divisible by 7. Since the vector remains primitive, the ged thus con-
structed can be written as x. (All its multiples can only be given as x.)

For some steps to be possible we need certain entries of the basis vectors to
be non-zero. We assume this to be the case where needed. If these entries would
vanish, we could either alter the order of the basis vectors, skip the step in
question of even arrive directly at a contradiction proving our claim.

The transformations in the following construction are given in full generality.
To illustrate the procedure, we complement it with the matrices for the case
On = 5.

%k ok ok k| k% % ok ok 00 0 0 | % * * x
x ok ok & k| kK k% ok * k% % k| K K ok %k
k ok ok ok k| ok ok ok ok ok |1 1Lg-1| * ok ok ok k| ok ok ok ox ok
* ok % ok k| ok ok ok ok % Yo k% ok ox k| k% k% ok
x ok k& k| kK k% ok £k x ok k| Kk ok k%
x ok kK k| ok ok k% ok * ok x ok k| Kk ok k%

0 0 0 0 =*|x*x x % % x

0 0 0 0 =|=* * % % =

@g+1:1) Bg+1:1)  @3yg-1) 0 0 0 * *|[* x x *x x*

W) RO 0 0 % * x| % % % %

0 * * sk k| % *x x *x *

x ok kK k| x ok k% ok
00 0 0 |0 % * * =x 00 0 0 0[]0 % % = =
00 0 0 *|x * x % x 0 0 0 0 =*|* * % * x
1.2,9+1) 0 0 0 % x|=*x x x x x [[|Lg 0 0 0 *x x|%x *x % % =x
i 0 0 % % =% % % =| 7 0 0 % % | % % % x
0 % % % x|% *x % * x 0 x % *x *|% x % * x
* 0k x ok k| Kk ok k% * k% ok x| % k% k%
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* X K K K K e * X % * % *
X © % % % *
* % % % % % ¥ X X X X %
FREEEEE ¥ * * ¥ X %
o ¥ ¥ ¥ ¥ ox OFFFEE ¥ ¥ ¥ * % %
* X X X ¥ ¥
co o ¥ ¥ ¥ o &% * x % —
S % ¥ ¥ ¥ ¥
SO OO ¥ ¥ oo % % % % X OO % % *
—_
N~
coocoo ¥ O e e F Fo¥ XS % ¥ % ¥ % XO
S OO * ¥ ¥
O Kk K K K X OO D ¥ ¥ ¥ S —— cooc o % % * X %k % X * * ¥ *
i
X O % % % %
~ @@ oo o xx | ©oooo *x x % x x x x FFF
3 © * % ¥ % % K KX K X X X 3 ok oK X X X e e e
Lr ~ — - - 13 o 2 2% oy ox e o e
S 9U.Vm o % % % % x» & 7 A ¢ 0
= X = .
N ) N o ¥ ¥ x S oo
: = (=N ﬂF S e
P — .
™ = oS oo
= Ay * % ¥
+w X % % % % % co o % ¥ % M H e
> o oo
>
W ¥ X X X X ¥ Scooo x x n“ Hm SO OO ¥ *
a s
a = ~ _
,m * K X X X * cocooco o w SO O O * =
> =
) * K K K X F oS o ox % % % L& X © % ¥ ¥ ¥ N ,7”,\
— —~ = S
X % % ¥ % % O ¥ %k ¥ % % a0 * X % x ¥ % 1% \mum
= = = S
¥ % ¥ % ¥ % O & o ¥ * x Qm m * Kk X K X * Y
* K X K K X OO O % * % e T :
= 1t s
= S
¥ KK X X ¥ OO % % nm S ¥ ¥ ¥ ¥ ¥ = Ts
7t
O F K K X K OO % m S & e * ¥ % ©
=
O K F X X X O % X X X % o OO % x % %
<
S KX xR X - WOO****
W
s
S % ¥ ¥ ¥ ¥ =3 W S o ¥ ¥ % %
cocoocococo o
Z 2
x

0 0 0 0

*

X
*

o
o
o

®k

i
0 0 0 0 0

0 0 0 O

o

o
o
o
L7
L7
L7
L7

o
o
®;
®;
®;
o
o
®;
®;
®;
®
®
®;
®;

o
o
o)
o)
®;
o
o
®
®
®
o
o

o, o
;O
;O
;O
o o

o, e e

o, o
o, o
o, o
o e
o o
o e

|

N

(g+1.9:9+1)

(Lg+1)
.o

o

Ay

o 9
(9.9 ;1><r/fl-g +1)
(g+1.120)(g+1,2:29-1)
oy Ed .

o

After the repetition we obtain a matrix of the following form:
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Now, all entries of the last row vector are divisible by n; while it is supposed to
be a primitive vector, giving the contradiction. ]

LEMMA 5.2. - Fix a square-free, coprime polarisation. In any rank-n-sub-
lattice hy, C hy with 2 < n < g we find a vector v satisfying Dy_,11(v) = 1.

ProOOF. - Let k:=g —n+1 and denote a basis of hy by @!,...,u". Let
m = min{Dk(u)\u IS 70/4}. Now, let @l e 70/, be a primitive vector with
D.(#Y) = m. We can obviously always find such a vector. Our aim is to show that
m = 1. Since 4! is primitive, [OR, Kapitel 3, Satz 10] tells us that we can find
@2, ..., @™ such that @}, ..., @" is a basis of k. According to Corollary 4.7 we can
find a transformation y such that in the basis u’ := yi' of yh, the kth entry of u! is
u} = Dyg—1(u?) = mDy. 1,41 (u'). Note that due to the invariance of the divisors
we have the equality m = min{Dk(u)|u IS yﬁy,}.

We modify the basis as follows: Let i = 2, ..., n. If the kth entry of «’ is equal
to zero, we leave u* unchanged. Otherwise, we use the transformation previously
denoted by LB 4o obtain u: =0 and u} = ged(u},ul). After repeating this
procedure for ¢ = 2, ..., n we modify the basis one more time by letting ' := @'
and v’ := %' + %! for i > 2, so that now the kth entries of all vectors o', ..., v" are
equal to ).

Since for all i =1,...,n we know that Dy(v') divides v} = ged(u}, ..., u}
and d; by definition, we may conclude that D,(»") divides ged(dy, u,lc) =
ged(dy,, mDy14-1(u!)) = m which implies Dy(0") < m.

On the other hand, from the definition of m we know Dj(v') > m since

Ve yﬁy, and m is minimal. Therefore, D;(v') = m for all i = 1, ..., n. This shows
that, using Lemma 5.1, m = ged(D(v"),...,Dp(@")) =1 which shows that
Dy(u!) = m =1 as claimed. [ ]

THEOREM 5.3. — Fix a square-free, coprime polarisation. Then I pol acts
transitively on the g-dimensional isotropic subspaces of Q%

PrOOF. — Let ¢;, be the kth unit vector. We want to show that, given any g-
dimensional isotropic subspace i C Q% we can find a basis u!, ..., u¢ of h, such
that there exists a transformation y € I satisfying yu’ = ¢’ fori = 1,...,g. The
proof is by induction.

More precisely, we want to show the following for any k € {0,...,9}:

Claim 1: We can transform the basis «!, ..., % of h, such that
u'=¢e fori=1,... kand
(15)  wf=(0,...,0,%,...,%,0,...,0,%,...,%x) fori=k+1,...,g.
—— e~ Y Y——

k gk k g—k
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For k = 0 this is trivially true and hence we may use this as start for the
induction. Assume that claim 1 is true for some k € {0,...,g — 2}. Denote the
isotropic subspace generated by «**1,... %9 by h. Note that we may apply
Lemma 5.2 for this subspace without losing property (15): of the basic trans-
formations mentioned at the beginning of this section only the operation of
yel vol could cause problems since it affects all basis vectors simultaneously.
However, we may restrict ourselves to using transformations of the form

(16) y=

and these leave the property (15) valid. Hence, Lemma 5.2 tells us that we may
assume (if necessary after suitable transformations) that the basis «**1, ... u9 of
h is such that D;(u’) = 1fori=k+1,...,9 — 1.
If k=g—2, the vector v:=uf"! already has the property that
Dyi1.4-1(w) = 1. Otherwise, we let
g-1

- (n)
V= Z diy. g ",
n=k+1
where d(”}, = dg.c_1dei1.4. Since gcd(dg“ff; 10e d,(fﬂlg 1) =1 we see that v is

primitive and hence we can find a basis v**1,... 19 of k., where v"+1 = y. We

want to show that Dy 1, 1(v) =1 for 0 <k < g — 1. Again, we use induction to
prove

Claim 2: Forj =k,...,9 — 1 we have Dj1,;(v) = 1.
Again, for j = k the claim is trivially true and we have a start for the induc-

tion. Assume now that claim 2 is true for some j € {k,...,g — 2}. Then
Vs|g+s 1 .
D;1(v) = ged <d]+1,gcd( sj(v))s 1) and since vy g41 = ... = Vg g = 0,
. ) Vs|g+s J+1
= ged (df“’ ged ( D) )s:k-H

By assumption Dj.1,j(v) = 1, which implies D,;(v) = 1 since s > k + 1. Hence

= gcd 41, ged (”s\g+s)7s+k+1)

d d d(n) u AR
=8¢ J+lvgc ket 1ig—1%slg+s ).

> leaving out multiples of d; 1
n= k+1

=k+1

1
.

(7+1) j+1
( ]+1’ng dk+1g 1u{‘|g+9

7+1 J
( dji1, ged (v \g+s)s k+1>

) and coprimality of the d; gives
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and since the polarisation is coprime we have ged(d; 1,D1,;(w*1) =1 and
therefore

J+1 )
w J+1 . .
. ) slg+s . +1 VD S
= ged (d]+l’g0d(D78:]~(w+1))sk+1> and since @571‘ 1= = “]k| ik =0,
J+1

w J+1 _
= ng (dj+17 ng(ﬁ%Jﬁl))Lgl) — Dj+1(uj+1) - 1.

This shows that claim 2 is true for j + 1, completing the proof that Dy, 1(v) = 1
for any k € {0,...,9 — 1}.

Hence, we can find y € I’ pol Of the form (16) such that yv = e;.,1. Under this
operation the basis v**1,... 19 of R, is transformed into a basis of yfay, which

we shall, by abuse of notation, again denote by ¥ ... 19, Note that now
vF*+1 = ¢; 4. Since ph is again an isotropic subspace, we have forj =k +2,...,g:
(17) 0= @) =dig-1-v) ., = v} =0

Thus, we obtain a basis @1 := "1 4! := v’ — o] 0¥ satisfying claim 1 for

k + 1. This completes the induction.

Now that we have reached (15) for k = g — 1 it is easy to see that we only need
one more transformation of the form (16) (where the matrices A to D are just
integers) to prove claim 1 for k = g.

Since we have now shown that for any g-dimensional isotropic subspace & we

can find a basis of &7, that can be transformed into ey, ..., e, by the action of an
element in I7,,, we have proved the transitivity of the group action. Note that
this basis indeed satisfies property (11). |

6. — Appendix: Technical lemmata

LEMMA 6.1. - Let g,d € N and A = (ay;) € 799, If theve exists k € {1,...,g}
such that for all i, j satisfying 1 <j <k <11 < g we have d|a;;, then d|det(A).

ProOF. - For g =1 the claim is trivial. The induction follows easily by de-
veloping along the kth column, since either d|a;; or the assumption gives
d|det(AR), [ |

LEMMA 6.2. — Let x1,22 and y1,...,Y; be integers with x1 #0 and
ged(ey, @2, Y1, - - -, Yi) = d € N. Then there exist integers ay, . .., a; € 7. such that
ng(%l,xg +a1y1 +...+ a7y7) =d.
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Proor. — This is a fairly straightforward generalisation of [HKW, Part I,
Lemma 3.35]. |

LEMMA 6.3. — Assume we are given a coprime polarisation type, vectors
vt e 7% and o unimodular integer matriz A. Comsider the basis
transformation U := AV where u; and v; are the row vectors of U and V, re-
spectively. Then

ged (D), ... D) = ged (Dy@), ..., Dy@"))

1

forany1<k<g-1

PrOOF. — Assume the notation A = (a;;). The jth entry of the ith vector is
given by u; = Y7/ ; a;v} and hence ged(v))_, divides ] for all i. Since the po-
larisation type is coprime we have ged(dy,D,(u")) =1 for r # k which implies
Dy () = ged(dy, ged(u! ) ) and so

Jlg+i77=1

n P n
ged(Dg(v")),_; =ged (dk» ged (gcd (?{§|g+j)f:1) . 1)

1=
—ged ( di. ged (ged (v )k which divides
=g k, ECA{ & do+i)i=1) ;)
. n . n
ged (dk, ged (gcd (u;‘g +j)f:1>i:1) = ged(Di(u%)),_,-

Since A1 is also a unimodular integer matrix we also obtain divisibility in the
other direction, and since both numbers are positive integers this implies

equality. |

LEMMA 64. - Assume g >2 with any polarisation type and
v=(1,...,9,0,...,0) € 7%, Then there exists a matriz M € Iyo1 such that
Jor w=(u,...,uzy) :==vM € 7% we have ug = ged(vy, . .., vy). Furthermore,

M can be chosen such that it is an automorphism of the sublattices
79 x {0} C 77 and {0} x 79 C 7.

If we choose a set of indices 1 <13 < ... <1, < g then there exists M € T pol
such that w;, = ged(v;,,...,v;,) and M is an automorphism of the sublattices
D, e;, 7 and B, eg1i, 7 where e;, is the ijth unit vector.

Proor. — Claim 1:

Assume a,b,d € 7. given. Let 4 = diag(1,d). Then there exists a matrix
G € SD(4) such that (a, b)G = (u,v) with v = ged(a, b).

We prove this as follows: denote x := ged(a,b). Then there exist integers
a, p € 7 such that aa + /b = 2. Chose t to be the product of all primes dividing d
but not dividing 8. Then it can easily be seen that ged(f — t%,d(a +t2)) = 1.
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Hence there exist integers A,u € Z with A(f —1t%) — ud(a + t%) =1 and the

matrix
oo Aooa+tk
du p—1tg

satisfies the properties claimed.

Claim 2:
Assume g > 2, let (1,dy,...,d1,4—1) be any polarisation type and 4 the diag-
onal matrix corresponding to it. For any v = (vy,...,v,) € Z¢ we can find a

matrix G € SID(4) such that u := vG satisfies u, = ged(vy, ..., vy).
The proof is by induction and shows that G can be chosen to be of the form

ﬁl 0 “ee O a1

0 Be 0 as,

(18) G=| S E
0 0 .. By ap

dl:g—lyl dZ:g—lj/z e dg—l y971 ag

For g = 2 this is exactly Claim 1. For the induction, fix any g > 2 and assume we
g
can find G, of the form (18) satisfying detG, =1 and ) a;v; = ged(vy, . .., vy).

=1
Now let the polarisation type for g +1 be given by (1,dy,do.1, ..., dog—1) and
v = (v9,v1,...,Y). g-1
We use Claim 1 with a = vy, b = ged(vy, ..., vy) and d = do,y—1 [] f; to obtain

=1
a matrix G/ =t % satisfying detG' =1 and }vovo—kﬂqgcld(vl,...,v ) =
g

dpy A
ged(vo, . . ., v,). Define the matrix G,.1 to be
Lo 0 0 ... 0 Ao
0 /))1 0 0 ;ulal
0 0 Po 0 A1az
Gy41 = ; . :
0 0 - 0 ﬁ971 ilag,1
dO:gfl,ul d1zg71V1 e dgfzzgfﬁg_z dgflyg—l ;blag

Some simple calculation shows that G, is as claimed.

Now we can conclude the proof of the lemma. Use Claim 2 to obtain a matrix
G € SD(4) satisfying u; = ged(vy, ..., vy) for w' := (v1,...,v,)G. Since SD(4) is a
multiplicative group, G~ € SD(A). Now, M = ((0; qu) satisfies the properties
claimed.

This last step goes through the same if we restrict everything to the sub-
lattice EB]- (€, 7. @ g1, 7). [ |
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