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Bollettino U. M. 1.
(8) 9-B (2006), 583-610

Hypoellipticity and Local Solvability of Anisotropic PDEs with

Gevrey Nonlinearity.

GIUSEPPE DE DONNO - ALESSANDRO OLIARO

Sunto. — In questo articolo viene proposto un approccio unificato, che si basa sulle

tecniche dell’analist microlocale, per caratterizzare sia Uipoellitticita sia la risolu-
bilita locale, in C™ e nelle classi di Gevrey G%, di operatori alle derivate parziali
anisotropi, in dimensione n > 3, i quali, vengono perturbati con non linearita di tipo
Gevrey. Per ottenere questi risultati sono state imposte alcune condizioni sul segno
dei termint di ordine inferiore della parte lineare dell’ operatore, vedere Teorema 1.1 e
Teorema 1.3.

Summary. — We propose a unified approach, based on methods from microlocal ana-

lysis, for characterizing the hypoellipticity and the local solvability in C* and Gevrey
G’ classes of semilinear anisotropic partial differential operators with Gevrey non-
linear perturbations, in dimension n > 3. The conditions for our results are imposed
on the sign of the lower order terms of the linear part of the operator, see Theorem 1.1
and Theorem 1.3 below.

1. — Introduction.

We consider a class of semilinear anisotropic equations with multiple char-
acteristics in n variables x = (&', x,) = (%1, ...,%,_1,%y), ® > 3, belonging to the

set Q := {|x| < J}, J small, of the form:

(1.1) P @y, Doy, Dy, Y + G/ 0,3 00,07, )| 2 = uf (@),

+i<k
where the linear part is given by:

(12) P(x/?x%?Dx'7D93n) = DZ: o Z ba’(x)D;I’ + Z (lﬁ’ﬂ%')Dﬁl,D;Cﬂ,

a
o

=m k<

5] i<

with m,j € 7, d',f,y € 771, 0 < k* <m, u small constant,

a
y
P

n—1
=>a
i=1

1=
P =0, py_y) With 0 <p, <1 for i=1,...,% —1; we shall also say that

1
ip;?
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g—,, ‘ + 7 is the anisotropic order of DﬁiDia”, so the nonlinearity involves derivatives
of anisotropic order less than k*. We give for (1.1) and (1.2) results of hy-
poellipticity and local solvability at the origin. For related results in the case
n = 2 see De Donno-Oliaro [5], in which C* and Gevrey local solvability have
been obtained by considering respectively C* nonlinearity G and analytic non-
linearity G in (1.1); hypoellipticity in C* and Gevrey classes was also proved for
C* nonlinearity G.

In this paper in Theorem 1.1 we extend to the multidimensional case n > 3
the results in [5], while the main result is contained in Theorem 1.3, where a new
approach allows us to admit Gevrey nonlinearity G in the study of Gevrey local
solvability of the equation (1.1), see Section 3.3. About this frame see also [29], in
which the composition in Gevrey classes is treated, and see [1] that requires a bit
more than the Gevrey regularity on the perturbation G but it deals with ex-
ponential Gevrey norms which are suitable for the machinary of p.d.o. calculus.
We observe also that nonlinear composition estimates for Gevrey functions for
different scales of Banach-spaces (using norms based on infinite sums) have been
proved in [2], [12] [22].

The arguments in our proofs are based mainly on microlocal tools, allowing
relevant simplifications in the study: pseudo-differential operators, wave front
sets and S7; techniques.

We list some papers devoted to this kind of problems, using the same tech-
niques: Hounie-Santiago [14] and Gramchev-Popivanov [10] on the local solva-
bility of semilinear partial differential equations with simple characteristics,
Gramchev-Rodino [12] about Gevrey solvability for semilinear equations with
multiple characteristics, Garello [7] regarding the inhomogeneous elliptic case,
see also Sananin [31] on the C* local solvability of linear equations of quasi
principal type and Lorenz [21] regarding linear anisotropic operators with
characteristics of constant multiplicity.

We start by considering here C* nonlinearity Gz, namely, writing G(x;v) as
F(x; Rv, Sv), we assume F' € C(Q x RY). We also assume C® coefficients in
(1.2) and in the following we always suppose that

(1.3) R Y b0 #0 for & #0,

o

7 =m

(1.4) G, x,;0) = 0.

We recall that the nonzero hypothesis on £ > baff’a/ is a nondegeneracy

o

7
condition with invariant meaning, usually required in the study of the local sol-

vability and hypoellipticity of the linear operator (1.2) in C* and G, ¢ > -, see

m—1’

for example Liess-Rodino [20], De Donno-Rodino [6], concerning Gevrey hy-

=m
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poelhptlclty for 2 yariables PDEs with high multiplicity. Let us also observe that

SEDY ba/(O)é’a # 0 then the operator is quasi-elliptic; the results of hy-
poell|i/pticity and local solvability are well known in this case. Starting point for
our discussion is the result of Marcolongo-Oliaro [23], where the G° local sol-
vability is proved under hypotheses on the quasi principal symbol; in the present
paper we admit a larger class of data f(x) with respect to the case studied in [23],
but we add hypotheses on the lower order terms. In the following it will be
convenient to use the Sobolev anisotropic space Hj, where as before
p=(py,...,p,_1), defined by

n—1 s %
11z, = ( f (HD@-F@ + |5n|2> I(fx—»éf)(é)zdé> < o0
j=1

n—1
1+Z%i
Fou—e¢ | being the Fourier transform of f(x). For s > —3—, the space H), is an
algebra, cf. the inhomogeneous Schauder estimates in Garello [7, Proposition

2.5]. Moreover we define the anisotropic characteristic manifold

=m

(1.5) Si={@,de@x R"\0): &' - > by ()" = 0}

d|_
Vi | =m

We may regard the next results as an extension of De Donno-Oliaro [5] in which
local solvability and hypoellipticity are proved in the case of 2-variables equa-
tions with analytic nonlinearity. Let us state the main results, starting from C*>
frame.

THEOREM 1.1. — Letus fixk* in (1.1), m —1 < k* < m, in suchaway that there

exists at least one n-uple (B”,j*) € 7/ . We suppose
ag ](ac) by (x) € C*(Q), and assume that for (x,&) € 2 the following conditions
hold:

DS N ap@” A0 for & #0820

i S z ay @’ E S z ap @ >0

i) S 2 ba,(x)f/“’-s 5 aﬁuf(x)f’”*fgj <0.

/ )+ .
g|=m ’ﬁp—f‘ﬂ*:’ﬁ*

Assume moreover that (1.3) holds and the nonlinear function G € C*
satisfies (1.4). Then the operator P in (1.2) is C*°-hypoelliptic and hypoelliptic
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with gain of k* derivatives, i.e.: if f € Hy, then all the solutions u of Pu = f,
belong to H3™.
Mm'eover (1.1) is C™ solvable in Q = {|x| < J} for o suﬁ’zcwntly small. More

precisely, if f € Hj, with compact support in Q for s > 5 (1 + Z ) then the
equation (1.1) admzts a local solution u € Hs”“

As examples of operators satisfying Theorem 1.1 we consider in R?:
(16) D§§p+l _ (1 . ?:|96'|2l)(D2a +D2b)p + ,L(D2a +D2b)p le37

where p,a,be N, p>3, 1<a<b; we have p; = 2bp+1, Py = 2§£+1’ k=

20p +1 -1, (87,5 = Qa(p — 1 — k), 2bk,2b) for k=0,...,p — 1. As example

P
of operator of even order

(L) D — (1 — ifa" D% + D2y +i(D% + D2y 2D,

1

Where pabeN p>4b+2, 1<a<b; we have p, = b;:D’ py =1

ke =2bp — 2y, (7,5%) = @alp — 2 — k), 20k, 20) for k=0,...,p —2. We may
add in (1.6)-(1.7) arbitrary nonlinear C* perturbation of lower anisotropic order
satisfying the hypotheses of Theorem 1.1, and we obtain that (1.6)-(1.7) are C*
locally solvable and C* hypoelliptie.

We want to study now the case when the hypothesis 7) in Theorem 1.1 is not
satisfied: the basic idea is to refer to the Gevrey classes and transform the op-
erator P in (1.2) into another operator that satisfies it. To this aim, we introduce
the Gevrey-Sobolev anisotropic spaces H*", (R" 1 x (- 0,0)), defined as the set
of all L? functions for which

7,0 r

(1.8) Hf”k"[i:ﬁu- = ||6w/(me )f”H;, < 400,

where ¢ := (}11 e ,/}1 ) is the Gevrey order, s > 0 the Sobolev index, and we

take r € (0 1), 7 > 0; w = w(x,, &) is a weight function of order (r, ), i.e.: a non-
negative function satisfying the following estimates:

/
7

_ |8
(1.9) sup |D), D l//(wn,if)l < Cip(@),

2, €(—0,0)

where (& > = Z (1+4&]"). The “Gevrey-Sobolev” spaces 2", (R"~ L (=46,0)

‘[0'7‘

have been 1ntr0duced in the isotropic case in Gramchev-Rodino [12], and they are
studied, in this anisotropic form, in Marcolongo-Oliaro [23]. We refer to the quoted
papers for a detailed exposition.
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As standard, the Gevrey anisotropic space G*(Q), A = (1, ..., Ay), is defined
by the estimates:

(1.10) sup |9 f(@)] < CI G - (7, )", for every K cC @,
K

where 2; >1 for i=1,...,n. Let us observe that G* C H}},  for % <L,
1=1,...,n—1

REMARK 1.2. — Taking analytic coefficients in The(wem 1.1 we obtain G*-
hypoellipticity of the operator P in (1.2) for A; > m, ¢f. De Donno-
Rodino [6] regarding the isotropic case.

Before stating the result of solvability in Gevrey classes we observe that for a
suitable ¢ > 0 we can write G in (1.1) as G(x/, mn,ﬁ 8]90nu)||7,|Jr <oy . About

estimates regarding the composition in Gevrey classes see for example
Bourdaud-Reissig-Sickel [1].

THEOREM 1.3. — Let us fwc A=Caso dm1,dn) with 1< 7; <o for
i=1,....n—1 A, >1 r e( ,1). In the equation (1.1), (1.2) let the datumf
and the coefficients of P be in G’l(Q), and k* — g+ <m —1+r. Assume that
for (x,¢) € X, beside (1.3), (1.4), the following conditions hold:

-3 z ag @& >0 (< 0);

k*<

Iy ba/<x>é""éz’“l <0(>0).

!
=m
»

We rewrite G/, x,,; 8} %nu) as F(x', x,; 8%(8} %Nu) 0(8} ajwu)) and asswme
that F' satisfies the followmg conditions:

— F(x;90) € GXQ) for every yo € RY;
- Fpyp) e U G"(RY), for every xy € Q where py,y = max _ p;.

1 i=1,...n—1
7./
< TPmax

Then the semilinear equation (1.1) admits a classical solution in Q. More
precisely, for a suitably ficed y and taking s large, iff € 1}V, , o' = (% . 171 ),
Hs+m 1- 1)1// '

T, O' Na

1s compactly supported in Q, we obtain a local solution u €

Multiplying (D% + D20Y’"'D? and (D2* + D2)""*D? by [x*" in (1.6) and (1.7)
respectively (and possibly adding a Gevrey nonlinear perturbation involving
lower order derivatives and satisfying the conditions requested in Theorem 1.3)
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we obtain examples of operators satisfying Theorem 1.3: more precisely, easy

computation show that (1.6) is G“1%%) locally solvable for A; < %‘E?ﬁ%,
Cbp+1)myy ‘

Ao < 5 p DB A3 > 1, where my; is the lowest common multiple between a and

b; the operator (1.7) is G%1%2%) Jocally solvable for 1; < m(l;p_l), lo < sy 73 > 1,
where
1/2 ifa=1, p=4b+2
ap—a—2ab—1 otherwise
a(p—1)

in the next section 2 we give a preliminary result on S™ s estimates; Theorem 1.1
is proved in Section 2, Theorem 1.3 in Section 3.

2. — Hypoellipticity for a class of differential polynomials.

In this Section we begin to prove S’"; estimates study for a pseudo-differ-
ential model in » variables, n > 3 (for related results in the case n = 2 see De
Donno-Oliaro [5]). We recall that an operator P is said to be hypoelliptic at (a
neighorhood Q of) a point x when sing supp Pu = sing supp u for all u € £ (Q).
We take m € Z., m > 4 and the anisotropic weight p = (py,...,p,_1,1),
0<p; <1, i=1,...,n— 1. Let the function in Q x R"

@1  pwd =& - Y @+ Y ay@’E + 0@,

!
;—m k<|%

be the symbol of the pseudo-differential operator P, where (¢&,¢&,) =
(&1, &) ERY, by,ag; 1 Q@ — C, are in C(Q), o = (d},....d),_) €7, f =
By By ) € 7M7Y j€Zy. We define the following sets for ke O,

0< k< m:
ri-i)

and let k* such that (m —1) < k* < m. We use the notation k= for all k < k*
and kT for all & > k*.
The symbol a(x, &) in C*(R" x R") is such that

I = {(ﬁ’,j) VAR f)i

k-1
DDLote, O < Caple)y ™7,

where k < k*; (¢ ), = Z (1 + &)%) is the anisotropic norm. Let A be a neigh-

borhood of the amsotroplc characteristic manifold 2, (see 1.5), and let I" the set
Q x A, we state the following:
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THEOREM 2.1. — Assume I} is not empty, and moreover for (x,&) € I':

DS Y ap@’E £0, 40,8 £0

ﬁ/]’_f}+j*:k*

WS Y ey @ 58 > ay@lT g >
1% / .
2| =k 2| j=t+

(2.2) for every k.,
i) S Y ap @’ IS Y b <0,

/% j
L= :

Ll=m
Vi

W) R be@E £0, E£0

U
Ll=m
P

Then for all a,p € 71, for all K CC Q we have positive constants L
and B such that:

BT
DeDip@ o), " 7

IpCa, O
with y = k* — (m —1),0 = m — k*. Observe that 6 < u since we have assumed
k* > (m—1)

(2.3) < L.s ,xe€K,|¢|>B,¢eR",

PRrOOF OF THEOREM 2.1. — We limit ourselves for simplicity to prove the es-
timate (2.3) for |a| + |f| = a1 + ... + @y + 1 + ... + B,, = 1. The case |a| + |] > 1
does not involve actual complications; cf. Wakabayashi ([32], Theorem 2.6),
Kajitani-Wakabayashi ([17], Theorem 1.9) for the analytic frame.

We estimate first the numerator of (2.3) and then we give some lemmas to
estimate the denominator.

If |a] =1, we get

D, 140, ™ < L ()5 + ()14 @, + (& ™)
where [ =1,...,n —1,m < m —j and k < k*; moreover

1D, p@,91(8),° < La (€0 + () 1al!)(),” + (21 )

for suitable constants Ly, Ls.
If [l =1,

1D, e, T < Ly ((<<’>ZT”% (& TIEP) @+ <é>f%ﬂ”)>7
IDe, p@, O () < La( ({160 +18," ) (s + (@)

with suitable constants Lg, Lj.



590 GIUSEPPE DE DONNO - ALESSANDRO OLIARO

Therefore,_we obs_erve that k— (1 —p) >k — (1 —w, 1=1,. —1 and
k—-Q—p=k—90>k— m 15 since p+6=1.To prove (2.3), 1twﬂl be then suf-
ficient to show the boundedness in R", for |¢| > B, of the functions

(& + Epiar) @,

A = PG, O] ’
o - (@l +1am )@
2 I, &)l ’
(<f’>}7‘ﬁ|@, it <é'>Z?‘W) @
Q0 = X ,
<é>lz 1+u
WO =P

First we introduce three regions:
R1: C<é/>p’ < ‘é’ﬂ| < C<€l>p’

2.4) Ber el > 06, ,
Rs: |én| < C<é/>p’

for suitable constants ¢,C to be determined precisely later, satisfying
0<e mi]f(l Gx), Gx) = |, and C>> mz}? F(x), F(x)=
xe rd i xE

max{|by (x)|} |ﬂ
Yd
The following inequalities then hold:

COlE™ , EeR (D
(2.5) @, <&l , ¢eR D

@), . feRy; D

a

. We understand the neiéhborhood A to be the region R;.

and,
Cil&l , CeRr
@n < ¢ Gl eR
C3(¢), , &€ Rs;

note that (IT) and (III) in (2.5) hold for all ¢ € R", but for our aim we may limit
ourselves to consider them respectively in Ry and in R3. By abuse of notation, in
the following we shall also denote by Ry, Rz, R3 the sets Q x Ry, Q2 x Ry, 2 x Rg;
recall that I' = Q x A.
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LEMMA 2.2. — Let p(x, &) be the function (2.1) and assume that 1), 1), 11) in
(2.2) hold. Then there are positive constants K1 < 1, B, such that:

26) @ =K |s Y ap@’E| @O el nR, |d>B.

B
ra

=k
Proor. — We have that
27)  |p, o

—la-n Y be@ R Y ap@E’E + Ro@,d)

=m k*§|/;—,’|+j<m

j/* g
s Y e’ E

L=
2
+9 Z a/y]-(x)f’ﬂ g -9 Z by (@) + Sa(x, &)
<[] i<m #]=m

By removing the terms rising from the real part of p(x, &), we can write

2
I 4
p@dF > [S Y ap@e” |+ Wi, o)
where
2
28) Wi@d=|3% Y ap@’d-3 Y @ + S0 |
k*<’ﬂi:+j<m ;—,’}:m

(2.9) Wal, &) = 28 ap @ &S ay @&,
B

|/';—7 +jr =kt k< %: +j<m
(2.10) Wa@,d) = 23 Y ap @ dS Y be@e”,
|7 4ge=tr | =m
(211) Wi, &) =230@, 9 Y ap@’ &l

e
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The function (2.8) is non-negative, (2.9) and (2.10) are also non-negative by hy-
potheses (ii), (iii) for all (x,¢) € R;.
Concerning (2.11), it holds

2 2

S Y g | Mm@ >a-a[s Y g’ e

i
15

e A
+j* =k 7 |+] =k

In fact, for |¢| sufficiently large

ki . %
Wiz, 9| < eonst S Ial (€,
-\ T
(% Y ap @ 55;) ne
B | =k
_ ‘én'k*ik .
< const —5-—< ¢, [{]>B;
n
since k < k*.
Then
B
p@, 9| > Ky |S ap @ & @8 € Ry, ¢ >B,
pJ
5l it
for a suitable positive constant Kj. ]

LEMMA 2.3. — Let p(x, &) be the function (2.1). Then there are positive con-
stants Ky < 1, B, such that:

(2.12) Ip(, &) > K |&,|", (x,8) € Ro, |&| > B.

Proor. — We write |p(x, &) \2 asin (2.7); by removing the terms arising from the
imaginary part of p(x, &), we get

2
213) Ip@,OF > [ & R Y ba@E” | + Wi, O+ Wax, &)+ Ws(e, &)
where
2
(2.14) Wi@o = [® Y ap@’E + @0 | |
k< |G| +i<m




HYPOELLIPTICITY AND LOCAL SOLVABILITY OF ANISOTROPIC PDES ETC. 593

@215) We=2r Y ay@’

ke <|f
2R Y b@E R Y ap@i’y
;7 =m k*§|%:’+j<m
(2.16) Ws = 28" Ro(@,&) — 2R Y bu(@)&" Rote, &),
@l —m

Observe first that for 4 > 0 sufficiently small

&l — R Z bo@E” | > A&

=m

v
In fact,

2

- RN b | > &M 28R > be@)iE”

o £
and using (2.4) in Ry, we have
|éZL R Z ba’(x)fla |
|y max F(x)(¢) max F(x)
— < const “K__~ < const 2K
fﬂml |én | Cm

and

max F'(x)
2m _ 25’”% Z ba (x)f/a > <1 — const xEKC )fim > /Iéqzzmv

!
Ll=m

Vi

since C >> ma%F(x)
(2.14) is non-negative. We denote (2.15) by Yi(x, &) — Ya(x, &) and (2.16) by
Y3, &) — Yy(x, ). Then

IpGae, OF > A& 4 Y1(x, &) — Yalx, &) + Ys(@, &) — Yy, 0).

Arguing on Y1, X', Y3, Y4 in the same way as we have done in Lemma 2.2, it is
possible to show that for all e > 0
A—8 om

_€2m + 11(3’; é) - YZ(QC é) > 2 é'y[ ) (xvé) S R27 |é| > Ba
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and

G dan @0 e R l>B.

Len @ - @ >

Thus

p, O] > K2 &', (@, € Ry, [¢]>B.
]

LEMMA 2.4. — Let p(x, &) be the function (2.1), such that iv) in (2.2) holds. Then
there are positive constants Kg < 1, B, such that:

(2.17) Ip@e, O] > K3 (&), (@,0) € R, [¢] > B.

Proor. — We apply again (2.13), (2.14), (2.15), (2.16) to |p(x, é)\z. Observe that in
R3, arguing as above, since ¢ << milrg G(x), we obtain for a suitable constant ¢ > 0
xre

2

g R Y be@ | > e

!
d|_,
o|=m

About the terms in (2.14), (2.15) and (2.16), the remarks we have done in Lemma
2.3 hold by replacing A" with u <§’>/2,,m. Then we have

n

p@, O > Kz (&), (@9 € Ry, |¢>B.
]

REMARK 2.5. — In the previous lemmas we have estimated the symbol func-
tion |p(x, &)| in (2.1), separately in the three regions (2.4). It is possible to obtain
the following global result on |p(x, &)|: there exists m' € R, a > 0, B > 0, such that

(2.18) p(e, )| > a(&)l in I for |¢] > B.

In fact, by remembering that under assumptions i),1ii), iii), iv) in theorem 2.1 the
estimates (2.6), (2.12), (2.17) hold, we obtain that |p(9c, &)| > const éﬁ“; mn Ry and Rs.
Since inkzﬁhese regions & = %éﬁ + %fﬁ > c<f/>ll§{ + %fﬁ ~ const ((&') gt &) =
const (&), so

p@, &) > a (&)
In the same way we get

Ip(, Q)| > a (&),

n Rs. Because k* < m, we have m' = k* in (2.18).
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We first consider Q1(¢) separately in the regions Ri, Rg, R3, to prove
boundedness.
In Ry by (2.5), (2.6) we get easily:

m—+j—o m—o
|é’ﬂ| —:;*‘577,| S L ,|é| > B
[

since 0 > m — k*. We recall that m +j < m.

In the region Ry we have that [p(x, &)| > |&,|" > |fn|kx. In R3, by using (2.5),
(2.17), we have for a constant ¢ > 0 which we may take as small as we want by
fixing B sufficiently large:

@1(&) < const

<f/>/}7'_/1+j*(; + <é/>:,17§
&)y

We have therefore proved that @ (&) is bounded. Let us estimate Q2(&) and Q3(&).

In the region Ry we argue as before; in the regions Ry, R3 we obtain respectively

Q1(&) < const

<e,|¢|>B

|éql|ﬁfpl[+j+u/}7 + |fn|n17%+/‘%

Q2(¢) < const NG <e,
n
in Ry for || > B,sinceu < k*—(m—1),m <m—7j,
Nt N
Y + J
Q2(6) < const —2 0y <e
&)y ’
P
in R3 for |£] > B.
For Q3 we obtain that
|£ |m+j71+/4 + ‘é |m71+ﬂ
(2.19) Q3(8) < const =~ z = & <L,|¢|>B
n
since 4 < k* —m +1in Ry and
nm+j—14p nm—1+u
+ /
(2.20) Q3(&) < const 0y <e,

(¥
in R3 for |£] > B.

ForQ4,Weget|C”‘ ‘1 <einRysincek < k', u < 1.In R

Now Lemma 2.2, Lemma 2.3, Lemma 2.4 and the estimate (2. 18) complete the
proof. ]

>k A-p)

<&l¢|>B

We shall use also the following variant of Theorem 2.3, where the role of Ij-
terms is taken by the pseudo-differential term o(x, £). Namely, we fix now ¢ with
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0 <t <1 and assume that Sa(x,&)| > (f)f where m — 1 < k < m —t, consider-
ing a symbol of the form:

@21) p@d =& — 3 b@ + Y ap@’E + a0,

o 4 :
= m—t< ra +j<m

THEOREM 2.6. — Let p(x, &) be the function (2.21) such that for (x,&) € I'
i) [So, o] > (&),
i) So@, O Y ay@E’E >0, for every ky >m —t,

iti) o, Y @ <0,

o
7

(2.22)

=m

) R be@E” £0, & A£0

!
a
Ll=m

Then for all a,p € 71}, for all K CC Q we have for positive constants Lqp
and B that:

, WY A0 uik
DD p, (@), O
I, O

with u = k—(@m—1), § = m—k. Observe that is 0 < u since we have as-
sumed k > (m —1).

(2.23)

< L., xeK,|l > B, e R,

PROOF. — We have k in the role of k* in the proof of Theorem 2.1, by observing
that in Ry

2

224) Pp@oPf> s Y ap@’d -3 Y bu@” +Sow, 0

m7t<}{f—:

. !
+j<m };‘7 =m

> (Solw, )*> (&% > &F

since 1), 717) and 7) hold; then arguing like in the proof of Theogem 2.1 we obtain
our result. Of course the power m’ in Remark 2.5 is given by k:

(2.25) @, = al&)k, ¢ > B. m

P’

The Theorem 2.6 allows us to prove the C*-local solvability for semilinear
equations. We need a definiton and some remarks:
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DEFINITION  2.7. — Let  p:=(py,...,p, 1,1), with p; <1 for every
J=1,....,n—1 We say that px,&) € S)'(Q x R*), Q C R" open, if p(x,&) €
C>*(Q x R™) and for all multi-indices a,p € 7! there exists a constant Cyg
such that

m—o-—... P
IDED!p(e, &)| < CuglE)y " S

for (x,&) € Q x R".
As usual we can also consider the microlocal class S;”(F ), where I' > (x, &) is
conical with respect to the E-variables.

The class of the pseudo-differential operators with symbol in S7(Q2 x R™) has
been studied in Hunt-Piriou [16], [15]: the basic results that hold in the standard
isotropic class regarding composition, adjoint, change of variables can be adap-
ted for the symbols in S;”/(Q x R™), ef. also [23, Proposition 3.1]. In particular the
estimates (2.3), (2.18) imply the existence of a microlocal parametrix, localized in
a neighbourhood of the anisotropic characteristic manifold. Then by a con-
struction as in [12] we get a global parametrix for P in the spaces H ; This fact,
combined with the results in [7], [8], [9] and [10], yields the solvability part of
Theorem 1.1.

3. — Local solvability in Gevrey classes.

Till now we have studied equations of the form (1.1)-(1.2) in which we have
supposed that, for a certain k*,

(3.1) 5 Y ap @’ o

B
-

- =k

For purposes below we rewrite the equation (1.1) in the form
(32) P20, Dy, Do, 0+ J (u) = puf (20),
where P(x', x,, Dy, D,,) is as in (1.2) and

(3.3) J(w) = F(x', 0 ROLS, ), SEL, w)| |
7

In this section we deal with the local solvability of the equation (3.2) in the case in
which the hypothesis (3.1) is not satisfied, and prove Theorem 1.3. The basic idea
is to transform the operator P(x, D) into another operator P(x, D) (see Section 3.2
below) that §atisﬁ§s (3.1); by applying Theorem 2.1 to ﬁ(oc,D) we shall figd a
parametrix £ for P(x, D) in the Sobolev anisotropic spaces. Starting from £ we
shall finally construct a parametrix £ for P(x, D) in a suitable functional setting
that we are now going to describe.
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3.1 — The functional setting.

We shall use the notation (F .« f)(wy, &) for the partial Fourier transform of
f(x) with respect to &/, i.e. (Fo_e )y, &)= fe*” 5f(oc) d«’. In this section we
limit ourselves to the analysis of the algebra property of Hfjﬁ,ﬁ introduced in
section 1 formula (1.8), since the result that we need in this frame in order to
treat the Gevrey nonlinearity (cf. Section 3.3 below) is more general than the one

proved in [23].

THEOREM 3.1. — Let the weight function w(x,, ') in (1.8) of ovder (v, p') satisfy
the following condition:

(34) l//(-')cn, é/) - l//(xny é, - ’7,) - l//(x’ﬂv 7]/) S _b mln{<€/ - ;7,>p’7 <’7I>p’}7.7

with b > 0 independent of &,y € R" ' and x, € (— 0, 0). Assume pj is rational
and let sy be an integer such that p;so is an integer for all j = 1,. — 1. Then
for every s > sy the space | Tf"a’, (R™ 1 x (=0, (5)) zs an algebm (md there exists

a constant C(s) of the form C(s) = C(s)([ e 2 by df) such that
(3.5) ||7’WH',[‘['::Z,1 < C(S)HMH:[:@:Z,T||”H1:[jjg,_r~

ProOF. — We prove this theorem for s > s, satisfying the same assumptions
as so; the result will extend by interpolation to all s > s¢ in view of the fact that
HY, . are isometric to H,. Let now k(x,, <) := ef'/’@nvf’)@’);*an_ Under the as-

sumptions that we have made on s we know that ||uv|s» is equivalent to
o

> eV @ PIDE )| e, p = (¢, 1); now, writing w(w,, &) = Fp_auli,, &)
Eﬂ al<s
j=1"7pj =

and 0(xy, &) = Fp_ov(x,, &) we get easily from Leibnitz rule and the basic

properties of the Fourier trasform that, for Z % L < g
j=

le P Dt )7 < Cr Y { f ‘ (D?;,ﬂ)(xn, & =)
jt+h=ay,

2

: (Dﬁwf))(xn, 77,) d’7/ kz(xn» fl) dé/ da;,

2

[l [ WL, — DL D, df

k(e &) de dﬂcn}

(i =&) >y
=Ci(s) Y {1V + 1}
j+h:an

&)y

@, m, =1 and

Let us now estimate I ﬁ“), observe that, due to the inequality
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to (3.4) we get % < e~ tomin{(&—1),.01) s} Qo we obtain:

19 < | [ 10, @, & — oG, & — e

| DL D)@, 7 e, 1) dn

L2(R" e (— 55))
by Young and Holder estimates it follows that
19 < )|k, D! D)@y, )2 k@, ENDL @), e |2,

< O], [Hean, EXDL, D, | [0 a

S02(8)2||u||?1w ||”||%I“” E

where Ca(s) = Cs(s)([ e —2{E)) g ) and the norms are in R" ! x (— 4, 6).
I g’) can be treated in the same way. ]

3.2 — Analysis of the “conjugate operator”

Let us consider now the linear operator P(x, D), cf. (1.2). Since we want to
analyze the local solvability at the origin, it is not restrictive to suppose that the

coefficients are in the space Ggm(R”_1 x (—9,9), with ¢ = (\",...,a"),
1< a“) < ;%T for j=1,....,n—1, ¢ >1. Since Ggm(R"_1 x(—9,0) C
J

H[s"’ (R"*1 x (—6,0)), ef. [23, Lemma 2.1], using Theorem 3.1 we have that

P(x D) : HY, (R™ x (— 3,0)) — HE"V(R" ! x (- 4,5)). Now let us consider

7,0.r 7,0.r

the following operator (that we shall call the “conjugate operator”):
(3.6) P(z,D) := e"“?)P(x, D)e~ D",

It is easy to see that P(x,D) = e~ @D P(x, D)e@D); moreover the con-
jugate operator acts in the following way: P(v,D): H/S],(R”’1 x(—=6,0) —
H5™(R"™ % (= 3,0)).

Our purpose is now to analyze P(x, D), in order to write it explicitly modulo a
remainder of order sufficiently small. We first introduce the following class of
symbols.

DEFINITION 3.2. — Let us fix p = (p', 1) = (py, ..., py_1, D with p; < 1 for every
J=1,...,n—1 For u,m € R the symbol space Siy™(Q x R") is defined to be the
set of all the functions p(x, &) € C(Q x R™) such that

S WS W
n

IDDEp(e, &) < Copl&)i(ey, ™

for all multi-indices a,f € 7.
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Let us fix now the weight function y(x,, &) of order (v, p’) in the following way:
Ln

(3.7) W@, &) = (1+35) (&)

The following result can be obtained by applying the general calculus in [23,
Theorem 3.1].

PROPOSITION 3.3. — Let P(x, D) and the weight function w(x,, &) be given by
1.2) and (3 7 Tespectively, we suppose that the coeﬁ”icients of P(x, D) are in the

class G7"(Q), 1 < aj(’”) <L for every j =1,. —1, 6" > 1. Then the symbol
pla, &) of the conjugate opemtor P(x,D) 1s gwen by

(38) p(x, f) = p(% é) + pm,f(lfr)(x» é) + pmf(lfr)fu(x; é)v

where:

- pla, &) is the symbol of P(x, D);
- Pm—a-n@,&) € S;"ﬁ‘(l"")(Q x R™); it is given by

n—1

im (@ e (14 35) Z 2 Dabel@y (€)'

o

- pm,—(l—r)—v(% b e Sl?;n.—(l—v‘)—u(g X Rﬂ)y v>0.

REMARK 3.4. — If in the previous proposition the weight function w(x,, &)
keeps the form
L

(3.9) W@, &) = (1=,

we obtain the same result as befm‘e where in (3.8) we have Py, _q_n(x, &) =

imE (&)t —t(1-8) ¥ ZDxlba/<x>a<,(<é>p,)<é>“.

(1/
i

m
3.3 — The nonlinearity: composition in Gevrey-Sobolev spaces.

We want to analyze the case in which the nonlinearity F'(x; y) in (3.3) is Gevrey
in all the variables: to this aim we are going to study in this section the com-
position F'(x; u(x)), where F(x;y) is supposed to be Gevrey both in x and y and
u € 7Y, . We shall follow in our discussion the lines of Bourdaud-Reissig-Sickel
[1], where this kind of composition is discussed in the frame of spaces that are
similar to H*Y,

7,0 r

First of all let us introduce the set

Pp={¢ecR":|§ <R, j=1,....n-1}
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for R > 0; moreover let ¢ = (e1,...,&,-1), ¢ € {0,1} for j=1,...,n —1, and
define

Prle):={& e R" ' signé& = (-1, j=1,....,n— 1} \ Pg.
We shall use in the following the notation

(3.10) Pin = MINp;, ppg = max p;
J=L..n—1 J M

REMARK 3.5. — Let us suppose that all the hypotheses of Theorem 3.1 are sa-
tisfied; let in addition supp(F, _ou)(@,, &) C Pr(e) and supp(F . v)@,, &) C
Pr(e) for a certain & = (e, . .., &,-1) and for all x, € (— 9,0); then we have that
Supp(F o, & (u)) (@, &) C Pr(e); moreover by the proof of Theorem 3.1 the con-
stant C(s) in (3.5) can be estimated by

+00

~ , !
(3.11) C@ < CE( [ eyt dy)" = Cals),
R/’

n—1
where k, ==Y a;, 0; = /% and

o Rmin R >1
(3.12) R, = .

R 0<R<1

Observe that we can choose 6’(3) sufficiently large in such a way that Cy(s) > 1;
moreover Cg(s) — 0 for R — +oc.

In the following part of this section we shall write for simplicity of notation
|+ |ls in way of || - ||‘[:[j:g,_r-

ProPOSITION 3.6. — Let us suppose that s > sy, cf. Theorem 3.1; we take the
weight function w(x,, &) satisfying (3.4). Then there exist ¢ and a such that

"Pmax max// 'min .
(3.13) Hei“('”) L, < ¢ el (log [|u] )max/» if fJull, > 1
T el if f|ufly <1

for every real-valued function u € Hf ﬁ, (R" 1 x (- 0,0)); the constants ¢ and a
depend only on n and s.

Proor. — We shall prove the proposition in three steps.

First step. Let supp((F_su)@,,&)) C Pre) for all x, € (— J,0) and some
&= (e,...,&,1). By Remark 3.5 we have:
i (iw)!

=1

-1 l
%@IMle(&Mm_u

(3.14) -1, = I = Cg(s)

s =1
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Second step. Now we suppose that supp((F,_ou)@,,&)) C P for
:)cn e(-6, 5) Observe that for every heN we can write e™® —1=

Z (”‘(_x)) + Z (”‘(x)) = u1 () + uz(x); by the standard properties of the Fourier

I=h+1
transform and of the convolution product we get supp ((]—' e U1) (X, 5’)) C Pgy.
So, since |f]|, is equivalent to > eV @-DIDf ||, cf. [23], writing

n—1 4 <
E ie1 a]/;"ran )

k(w,, &) = ef'/’(‘"”wf')(é’)j;f“” we obtain:

. o0 1.7:/_, D(lﬂu L,
(315) fle™ 1], < {Hk(xn’f)z e (D)@, &)
1 I=h+1 L2(PRp(e)x(—0,0))
;“‘./‘p—jﬁé
1 F e D = D), e, é’>||Lz<pW<5.a»}
o AT+ T}
Za,l<§

Let us analyze separately 77 and Ts.

Regarding T we proceed in different ways depending on a,.
Suppose first that a,, # 0: by definition of weight function, in the set Pg;, we have:
k(x,, &) < eCEy <f,>;/ < @CUHRM™™ (1 o Rp)m; 50 using Faa di Bruno formula
and the fact that u is real-valued we get:

(3.16) Ty < CHHEI™ (1 4 RpyPma §° ST e uw) - 0 @)

T’L
0<k<an o@Dy +a¥=q,

where the norm is in L2(R" ! x ( — 8, 6)); by Young estimate it follows that:
o) ® 2
[0 w(@) - - Ot W@ Z2rr1 1 (_s.09)

< C||Fo_g (85‘3 )u(x)) *o Foe (8;')('?)%(90) e 8;?%(90)) HiZ(JR”’lx(—é,é))
(1)

2 e 2
< Clex’% (6 " u(x)) ||L1(P,fx(75,5))”]:x’% (8 " u(x) ” u(x))HL27

where 2 stands for the convolution in the & variables; repeating this procedure
k times we get:

Hazg)u(ac) o 'a.%f u(x)HLZ(][{” 1x(=6,0) = < CH H}—%’Hq (8037 u(m)) Hil’
j=1

where the norm in the right-hand side is in L' (Pgr x (— 8, 9)). Since ag) < s for
every j we obtain that ||.7-"x,_‘g»/(8$” u(m))H Lipax—soy < Kllulls (as it is easy to
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deduce by Hoélder’s inequality); then we can estimate T in the case a,, # 0:

(3.17) Ty < eCORN™ (1 L RysPma Z ||u||’§.
0<k<s

Now let us analyze T: when a,=0. By (3.15) we have T;<

eCUHER™™ (1 RR)Pmss || F (€@ — 1) 120 x50y Since  the function
g(t) =€ —1 is Lipschitz continuous and’ 9(0) =0 we obtain that Ty <

COHEI (1 R ]| ot g g9y < eC(HRh) (1 + Rh)”=|lull,. So the
estimate (3.17) holds for every a, = 0,.

Let us now estimate T4, cf. (3.15): by Theorem 3.1 we get:

1 C
T, < Z i L@, < <5 Z( (S)lH'uH )

I=h+1 I=h+1

Consider first C(s)||u||; > 1, and choose £ in (3.15) in such a way that

(3.18) 3Cs)||ully < h < 3C(s)||u||, + 1.

By Stirling’s formula we have that 3 M Si and so we have
I=h+1

(3.19) T, <C.

Assume now C(s)||u||, < 1, and choose i = 0 (that means T = 0); we obtain:

CElully) 1

So we have that, in the case supp((F )@y, &) € Pg, (3.15), (3.17), (3.19) and
(3.20), together with (3.18), imply:

s—1 .
(3:21) o™ — 11|, < clfull, 3 (1 + 1),

k=

Third step. Now we want to estimate ||¢™@ — 1|, for a generic function
w e H*Y 1”(R”_1 x (—3,0)). Let y,(&") and yz(&') be the characteristic functions of

7,07,

the sets PR(g) and Pr, respectively. Setting u,(x) := ;L@ (1 ENF )iy, &)
and ug(x) := F oL [ RENF o) (@, &)] we have:

(3.22) u(@) = uo@) + H_ uy);

observe moreover that for every ¢ we obtain:
(3.23) [uolly < lleelly, [l < ol

It’s not difficult to prove, by induction on N, that for every tuple of complex
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numbers (a4, ..., ay) the following identity holds:
N
(3.24) al"'aN*1:Z Z (ajlfl)"’(ajlfl).

=1 0<ji<..<j;<N

Since the set {¢=(e1,...,&-1), ¢ € {0,1} for j=1,...,m — 1} contains on-1
elements, using (3.22), (3.24) and Theorem 3.1 we get:

2141
(3.25) ”em(x) _ 1”8 < Z Z C(S)Fl”emh(.ﬁf) _ 1”@ . ”emj](w) _ ng

=1 0§j1<.“<_]-]§2"’1 +1

We can estimate Hei“-ft(”) —1J|; in (3.25) using (3.14) in the case j; # 0, and ap-
plying (3.21) if j; = 0; we may now choose R in a convenient way.
Let us consider first u such that ||u||, > 1, and fix consequently R by imposing

(3.26) Cr(s) = [[uf| "

observe that R is well defined by (3.26) since HuH?’“‘w‘_l < 1 and we have choosen
Co(s) > 1, cf. Remark 3.5. o

Let us fix now a >0, ¢t > 0 and define f(t) := [ e ¥y !dy; then putting
g(w) := f~1(w) we obtain by de I'Hospital’s rule: !

gw)

(327) w0 log (L/w)

The conitant Cg(s), cf. (3.11), can be written with a change of variables as
Cr(s) = C) (L ()7 "f(2tbR?))"*, where R, is given by (3.12). Using (3.26) we
can write, with the previous notation, E, in the following form:

R, = (21h) (g(’i"(Z‘L’b)z/ T(NJ(S)*Z||u\|§(r”“‘a“1)))l/ " then (3.27) gives us:

(3.28) R < C(2(1 - )log [ul, + log d),

for suitable constants C and d with d sufficiently large. Now (3.13), in the case
llu]ls > 1, follows from (3.25), (3.26), (3.28) and (3.23).

Let us suppose now that ||u||, < 1. As for the case ||u||, > 1 we obtain (3.25);
we choose in this case R = 1. By (3.14), (3.21) and (3.23) we easily obtain that
€@ —1||, < ¢|lu|l;, and so the proof is complete.

Now we analyze the behaviour of the composition F'(x; u(x)) between a Gevrey
function F and elements in the space H®Y, (R"™! x (- d,9).

7,0,

THEOREM 3.7. — Let us consider a function F(x;y) satisfying:
- F;y0) € "R x (= 0,0), 1<a” <% j=1,....n—1, 07 >1,
for every y, € RY. ‘
- Flxo;y) e U GT/(RN), for every xy € R" 1 x (— 0,0), where pp.. 18

r<—L

TPmax
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given by (3.10);
- F(x;0)=0.

Moreover we consider B C 1le - (R" 1 x (- 0,0)), bounded with respect to
|- 1ls, and we take ui(x),.. uN(ac) € B, where we suppose that the weight
Sfunction w(x,, ) satisfies (3.4) and s > sg, cf. Theorem 3.1; u;(x) are supposed
to be real-valued for all j =1,...,N. Then, writing u(x) := (ui(x), ..., un@)),
we have that F(x;w(x)) € I[Tj “J’ (R" Y x (=6,0), and the following estimate
holds:

(3.29) 1FGes u@)ly < Plwalls, - unlly),

where ¥ is a continuous function satisfying ¥(y) — 0 for y — 0. Taking
v1(x), ..., vn(x) € B we also have:

N
(3.30) |1F (a5 () — Fae; v@))| < Cr Y g — vl
=1

where the constant C depends on the bounded set B.

PROOF. — Observe first that 1%, (R"™! x (=6, 9)—L*(R"! x (- 4,9)):

TJ Na
||| 1 < sUP ||.7-'T,Hg/u(acn,f)\|Ll(Rn y<C sup |7 @D

L, L

Then B is bounded in L®(R"! x (—=0,0). So we can fix a function
ey e U GS'(RN ) such that F(x;u(x)) = (pF)(x;u(x)). This means that

1
»
TPmax

we can suppose without loss of generality that, for every xy € (—9,0),
Fagpe U Gy®RM.

/<’/’ma\ C g . 3 =
Since F(x;0) =0 we have F(u;y) = [e“< (¥ — 1)(F, o F)(xy, & m) de dn,
and so o

uHLZ(]R?;l) < Cl”““s
x

[ (a5 u(e))] |, < CZ]H@’“(@“”““ 1| sup [D], (F v ng)(xnf/;ﬂ)Wf'Czﬂ-

=0 L,

As in the standard isotropic case we can deduce for every x, € (— J,0) and
j=1,...,s that:

n—1

) —szmmw 1
331) D] (Fo F)an&im] <Ce 7T e,

Moreover it follows by the definition of || - ||, that e f@)]|, < Cew || f1l; now
by (3.31) and taking into account the condition p7 o > rp; forj=1,. -1, we



606 GIUSEPPE DE DONNO - ALESSANDRO OLIARO

have:

n—1 v,
L S )
(3.32) | F (s u(x))Hs < Cfe<€ e M ae f ”emu(x) _ 1Hse—z:wwdn

. 1
- C/f €@ — 1| =" d.
Now (3.24) and Theorem 3.1 imply:
(333) [l -1, <CY > Y [ 1|l — 1]
I=1 0<j1<...<ji<N

recall that % > 1poax: then, using Proposition 3.6, we can deduce by (3.32) and
(3.33) that ||F(x;u@)|, <P(|uills,---, lunlly). Observe that in the case
|luj|l, <1 for everyj=1,...,N, (3.33), (3.13) and (3.32) imply:

N

=1 0<ji<..<i<N

so if |lu;l|y — O for every j=1,...,N, Y(|uill,,-- ., ||lun|;) — 0. This proves
(3.29).
In order to verify (3.30) we write:

N 1
Fasy) — F;2) = 3 @5 — 2) [ (0 D)a;y +12) — 0, F)w; 0) dt
J=1 0

N
+ 37 @ — 2@, F); 0).

=1

So we have that

N
IFGsut@) — Fe; v@)ll, < Y [luy — ],
j=1

1
[fm%mmmm+wmrw%mmmmﬁ+m%mmmq;
0

since G(x;y) := (%F)(ac; Y) — (8%F)(x; 0) satisfies all the hypotheses of the the-
orem, we can apply (3.29) to G(x; u + tv) and we get

17 () — F(a; v(@))

N 1
<€l = ull,| [ o+ o) dt-+ 1@, P o, |
J=1 0
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now (3.30) follows fron the fact that u;(x) and v;(x) are in B and the function ¥ is
continuous. [}

COROLLARY 3.8. — Let us consider now a function u(x) € B C TT[?Z,J(R”_I X
(—9,0)), B being a bounded set as before, and define J(u) as in (3.3). Suppose
that F(x;y) satisfies the hypotheses of the previous theorem; then there exists a

continuous non-decreasing function @ such that
[Tl < Dl g,
@ : [0, +00) — [0, +00), (0) = 0; moreover for u,v, € B by (3.30) we get:

1) = J@)||s < Crllee =0l 4. -

3.4 — Gevrey-local solvability for semilinear equations.

In this section we deal with the local solvability of the semilinear equation (3.2) in
the frame of the spaces Hj:g,m(R"*l x (—0,0)); in particular we want to prove
Theorem 1.3. Regarding the linear part we shall apply the results of Section 2 in
order to find a (micro)-parametrix for the conjugate operator P(x, D), cf. (3.6); re-
garding the nonlinear term we shall use the arguments of Section 3.3.

We begin by proving the existence of a parametrix for the linear operator
P(x, D), cf. (1.2), in the frame of the Gevrey-Sobolev spaces H’”, . First of all, for

0 r
t > 0 we define ¢ as follows:

& is the largest real number such that
(0D el |G| +j<ty =A@ DeZi: |5 +j<t—a}

/

5/

i
/

P

THEOREM 3.9. — Let us consider the operator P(x, D), given by (1.2); we sup-
pose that k* > m — L and we fixr € (0,1) such that r > max{}, 1+ k* —m — & }.
Moreover we require that for every point (xo,&y) € 2, cf- (1.5), there exists a
netghbourhood I of (xy,&y), quasi-conical with respect to the E-variables, in
which (1.3) and one of the following conditions holds (the same condition in a
neighbourhood of every point (xy, &) € 2):

@S Y ay@EM >0 and § Y be@)E ET <0

k*g}%|—hj<nz =m
B S Y ap@EdMT <0 and 3 Y b@E T >0

i }a’

4 i

k<

+i<m =m
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Then there ewists a linear map E: Y (R"' x(=48,0)—
HEA VR x (= 3,0)) such that Ple, D)Eu = (@ + Ru, 1(x) € G”M(Q)
where 1 < o(” <Zforj=1,....n—1 ¢ > 1; moreover R is regularizing, in
the sense that R = ‘/’,(]R”’1 x (—=9,0) — Ht"’ (R x (=4,0)) Jor every

7,077 7,01
t>0.

ProOF. - Let us consider the conjugate operator P(ac,D), defined by (3.6),
where the weight function w(x,, &) is fixed as in (3.7) or (3.9) depending on the
conditions (a) or (b). By Proposition 3.3 and Remark 3.4 we have that the symbol
p(x, &) of the conjugate operator P(x, D) is given by

]5(.’)0, &= ]0(-70, H+ pm,f(lf’r)(x» O+ pm,f(lfr)fv(x; o).

Observe that taking J sufficiently small we have that, at least microlocally,
1S Pin—a—n@, O] > (7, and 50 |3 (Pu-a-n@, O + Pu—a-n-o(®,&)| >
<é);"7(lf’") for (¢), > 0. Applying Theorem 2.6 with k=m—(1—7) and
0(x,&) = Pm—a- ,)(.oc &) + Pm,—a-—p—o(®, &), by the same technique used in [12]
we can find an operator E such that PE — @)+ R, R:H, (R" 1 x
(=6,0) —>Ht (R" 1% (—90,0) for every t>0. We then obtaln PE =

“”(”"D);((x)eW“”D) +R. Taking a function y,(x)€ G”( () such that
)(O(ac) =1 for x € suppy and replacing E with E,, Where Eu = E(u) we
have:

P(W,D)Exu — efrl//(ﬂ%:7D’>X0(x)eﬂ//(ﬂtn,.,D’)X(x)u + Eu
— X(x)u _ 87‘“//(-70)1sD’)If\éSeTW(WmDI) + Eu.

Since Ry = (1 — Zo@))e @Dy ()~ W@ D) is regularizing on H3,(R™ 1% (=6,6))
we have that the operator £, is a parametrix for P(x, D). [ |

ProoF oF THEOREM 1.3. — The Gevrey local solvability of the semilinear
equation (3.2), cf. Theorem 1.3, can be proved in a standard way using Theorem
3.9 and Corollary 3.8, see the proof of Theorem 1.1. |

REMARK 3.10. - Since G§" C H%, 1<o’<% for j=1,...,n-1,
aﬁl’") > 1, cf. [23], and taking into account the obmous mclusions of the ani-
sotropic Gevrey spaces into the isotropic ones, under the hypotheses of the
Theorem 1.3 we obtain the G* local solvability of the equation (3.2) for

min aj
j=1,..n-1

8§ < max{3,1+k* —m—ge}
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