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Bollettino U. M. 1.
(8) 9-B (2006), 545-566

Asymptotic Stability of a Semigroup Generated by Randomly
Connected Poisson Driven Differential Equations.

KATARZYNA HORBACZ

Sunto. — St considera l'equazione differenziale stocastica del tipo

(1 dX(t) = aX (@), E@)dt +fb(X(t), ONp(dt, do) per t>0
e

con condizione iziale X(0) = xo. Diamo condizioni sufficienti per la stabilita delle
soluzioni che generano il semigruppo degli operatori di Markov.

Summary. - We consider the stochastic differential equation

1) dX(t) = a(X(t), E@)dt + f bX (1), )N (dt,d6)  for >0
[C]

with the mitial condition X(0) = xy. We give sufficient conditions for the asymptotic
stability of the semigroup {P'},. generated by the stochastic differential equation (1).

0. - Introduction.
We will consider the stochastic differential equation

0.1) dX(@) = aX @), E@))dt +fb(X(t), ON p(dt, db) for t>0
)

with the initial condition
0.2) X(0) = xy,

where {X()},., is a stochastic process with values in the d- dimensional real
space R? and {&(t)},~, is a stochastic process with values in I = {1,...,N}, de-
scribes random switching at random moments t,. The precise assumptions
concerning coefficients @ : R? x I — R% and b: R x ® — R? and the Poisson
random measure N, will be formulated in Section 2.

In the case when the coefficient a : R? x I — R? does not depend on the
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second variable,that is, the differential equations do not randomly switch at jump
random moments, we obtain stochastic equation considered by J. Traple [17].

The main aim of our paper is to give sufficient conditions for the asymptotic
stability of a semigroup generated by (0.1), (0.2).

This is a problem of great importance in the theory of stochastic processes. It
has been considered by many authors (see [1], [2], [3], [16] and references
therein). The model under consideration is a particular case for so called pie-
cewise- deterministic Markov processes introduced by M. Davis [2].

However, the technical assumptions in [3] and [16] are difficult to check in our
case since they need the limit of the sum of iterations of a kernel of a transition
operator and the realization some ergodic properties on compact sets.

It is worth pointing out that in our approach we used purely analitical
methods- lower bound technique developed by A. Lasota and J. Yorke [15]. They
introduced the class of so called concentrating Markov operators and showed
that every operator from this class admits an invariant measure. Further, if a
concentrating Markov operator do not increase some distance between two
measures, this operator must be asymptotically stable. We develop the method,
which allows to verify these assumptions.

Our theorems imply the weak convergence, but the stationary measure may
be singular and in this case the convergence can not be strong.

The result of this paper is related to our former papers (see [8], [9]).Recall
that in [9] the values of the process {X(?)},., have been considered only at the
«switching» point t,. In such special case it was proved that the corresponding
stochastic process generates a semigroup of Markov operators and that this
semigroup has an invariant probability measure.

It was shown in [8] that, under some technical assumptions, there is one-to-
one mapping between the invariant probability measures for {(X(t), ()}, and
the invariant probability measures of the Markov chain given by postjump lo-
cations {(xy, ()}, cn. However this result is not satisfactory for the ex-
amination of asymptotic stability of a semigroup generated by randomly con-
nected Poisson driven differential equations. A Markov operator generated by
the chain {(x,,, £(t,))},,cn may be asymptotic stability but a semigroup generated
by the Markov processes {(X(?), £(t))},., may not. It is important to stress that
the semigroup with continuous time generated by the system of randomly con-
nected Poisson driven differential equations can not be explicitly calculated.

In [11] K. Horbacz, J. Myjak and T. Szarek considered a continuous-time
case, but they did not choose jumps (b = 0 in (0.1)).

Finally note that the system considered in this paper have been used to de-
scription some physical phenomena as wave propagation in random media and
turbulence. For instance in [6, 12] there are many examples of problems which
generate such equations. Recently equations of type (0.1) have appeared in a
model of the growth of a size - structured populations of cells [4].
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The organization of the paper is as follows: Section 1 contains notation and
definitions. Moreover, for the convenience of the reader, we recall here some
known facts concerning asymptotic stability of Markov operators which are
crucial in our considerations. In Section 2 we reformulate above problem in more
convenient form and we state all necessary hypotheses. Section 3 contains rather
technical observations used in proving main results. However, some of them
(Proposision 3.1 and Lemma 3.2) seems to be interested in themselves. The main
results are contained in last Section.

1. - Preliminaries.

Let (Y, p) be a locally compact metric space. Throughout this paper we as-
sume that B(x, r) stands for the closed ball in Y with a center at x and radius 7.

By B(Y) we denote the g—algebra of Borel subsets of Y and M(Y) the family
of all finite Borel measures (nonnegative, s—additive) on Y. By M;(Y) we denote
the subset of M(Y) such that x(Y) =1 for u € M;(Y). The elements of M;(Y)
will be called distributions. Further

Miig(¥) = {py — 1o = g, 112 € MY}

is the space of finite signed measures.

As usually by B(Y) we denote the space of all bounded Borel measurable
functions f : Y — R and by C(Y) the subspace of all bounded continuous func-
tions with the supremum norm || - ||. By Co(Y) we denote the subspace of C(Y)
which contains functions with compact support.

For an f € B(Y) and u € M, (Y) we write

(fn) = [ F@pd)
Y

We say that a sequence {4, },cn i, € Mi(Y) , converges weakly to a mea-
sure u € My(Y) if

Jim (f, ) = (fo)  for feCX).
In the space My;,(Y) we introduce the Fortet—Mourier norm [5] , [15] by setting
lull, = sup{(f, 1) : f € F,}
where
Fp=A{feC®): [f@|<1 and [f@)-fO)|<ply) for wx,yec¥}
The space M;(Y) with the distance [|x; — p5]|, is a complete metric space and the
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convergence

7}2130 et —ull, =0 for p,,ue Mi(Y)

is equivalent to the condition

lim <f; ﬂn) = (f 1) for f e C).

N—00

A linear mapping P : M (Y) — M, (Y) is called a Markov operator if
P(M;(Y)) € My(Y). Thus, for every distribution u the measure Pu is also a
distribution.

A Markov operator P is called a Feller operator, if there is an operator
U :B(Y)— B(Y) (dual to P), such that

1.1) (Uf, 1) = (f, Pw) for feB(Y), upeMgyX)
and
1.2) Uf € C(Y) for feC(Y).

Setting 1 = o, in (1.1) we obtain
1.3) Uf(x) = (f, Pdy) for feBY) x€Y

where J, € M;(Y) is a point (Dirac) measure supported at x.
A Markov operator P : M;,(Y) — M, (Y) is called nonexpansive if

(1.9 [Py — Proll, < [lpy — sell, for g, sy € My(Y).

A Markov operator is called asymptotically stable if there exists a stationary
distribution x, such that Pu, = pu, and

1.5) Tim [|P"— ]|, =0 for peMyY),

We say that a Markov operator P has the Prohorov property if for every ¢ > 0
there is a compact set ' C Y such that

(1.6) lminf P'uF) >1—¢  for ue My(Y)
n—o0

A family of Markov operators {P'},., is called a semigroup if P'™* = P! o P* for
t,s € R, and P° = I is the identify operator on M;(Y). If operators P, t > 0, are
Fellerean , we say that {P'},., is a Feller semigroup. {7"},., denotes the
semigroup dual to {P'},.,, i.e. -

(T'f, )y = (f,P'py  for feC¥)ueM®).

The Markov semigroup {P'},., is called nonexpansive if every Markov operator
P!t > 0 is nonexpansive.
A measure p € Mg, (Y) is called stationary for the Markov semigroup
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{P'}~¢ if P'p = pu for t > 0. The Markov semigroup {P'},., is called asympto-
tically stable if there exists a stationary distribution g, such that

lim [Pu—pl, =0 pe M.

A continuous function V : Y — [0, 4+00) is called a Lyapunov function if

lim V(@) =400 forsome x,c?Y.
pla,acg)——+00

ProposITION 1.1. — ([15]) let P be a Feller operator and U its dual. Assume
that there s a Lyapunow function V such that

UV) <pV®)+p, for xe€Y

where B, fs are nonegative constants and f; < 1. Then P admits an invariant
distribution and satisfies the Prohorov condition.

ProposiTION 1.2. — ([15]) Let P be a nonexpansive Markov operator. If P
satisfies a lower bound condition, that is, for every e > 0 there is a number 4 > 0
such that for every uy, us € My(Y) there exists a Borel measurable set A with
diam,(A) < & and an integer ng for which

.7 Pu,(A) >4 for 1=1,2.
Then P satisfies
Tim [Py = PYpp]|, = 0 for  py, g1 € My(Y).

ProposiTION 1.3. — ([15]) If Y is a locally compact metric space, then the
Sfollowing three properties of an Markov operator P

(1) P is nonexpansive,
(11) P has the Prohorov property,
(i11) P satisfies a lower bound condition
imply the asymptotic stability of P.

Finally, following [15] we introduce the class @ of functions ¢ : R, — R,
satisfying the following conditions:

(1) ¢ is continuous and ¢(0) = 0;

(1) ¢ is nondecreasing and concave, i.e.,

(1 8) n n n
: > app(ty) < go(z aktk), where a; >0, > a; =1

=1 le=1 =1

(122) p(x) > 0,2 > 0 and lim p(x) = oco.
Xr—00
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By @, we denote the family of all functions satisfying conditions (i) and (ii).
Observe that for every ¢ € @ the function p, = ¢ o p is again a metric on Y.
Moreover p, is equivalent to p. For notational convenience we write 7, and || - [,
in the place of 7, and || - || oy respectively.

PRrROPOSITION 1.4. — ([15]) Assume that a function y € @y satisfies the Dini
condition

1.9 f @dt < oo for some &>0.
0

Let c € [0,1). Then the equation
w(t) + p(ct) < o)

admits a solution in the class @.

2. Randomly connected Poison driven differential equations.

We consider the differential equation with Poisson type perturbations
2.1) dX(t) = a(X (@), E@))dt + f bX(t), ON p(dt,do) for t>0
)

with the initial condition

In our study of solutions of (2.1), (2.2) we make the following assumptions:
(i) The coefficient @ : R? x I — R%is Lipschitzian with respect to the variable
in RY

late,3) — ay, || < Lqlx —y|| for (i), (y,9) e R xI

where || - || denotes the Euclidesian norm in R%.

(ii) There are given a probability space (2, F,P) and a sequence of random
variables {t,},c~. The variables s, =t, —t,_1({p = 0) are nonnegative, in-
dependent and equally distributed with the density distribution function
g(t) = de " for t > 0.

(iii) Let (O, G, v) be a compact measure space with o(@) = 1. Let {7, },,.. be a
sequence of random elements with values in @. The elements #,, are independent,
equally distributed with the distribution v. The sequences {¢,},.~ and {7, }, o
are independent.



ASYMPTOTIC STABILITY OF A SEMIGROUP ETC. 551

(iv) Moreover, suppose we are given a probability matrix [pij(ac)]%:l such that
N
pi@) >0, > pjw)y=1 for wxeR’and ijel
=1

and a probability vector (p1(x), ..., pn(x)) such that

N
pi(x) >0, ij(ac):l for xeR%and i€l

J=1

For every i € I, denote by v;(t) = I1;(t, x) the solution of the unperturbed Cauchy
problem

@2.4) Vi) = a(;(®),?)  and v;(0) =2,  xeR%
Set
qc,0) =2 +b(x,0) for xeR? 0Oeoeo.

We consider a sequence of random variables {x,}, .\, @y : Q — R? and a sto-
chastic process {f(t)}tgo’ &) : 2 — 1. We assume that they are related by

(2.5) @) = &ty for t,<t<t,; for n=0,1,...,

Ly = Q(Hg“(tn,l)(tn - t’ﬂ,717 9(/'71/,1), nn)
and

P{&0) = klxg =} = pr(x),

P{ER,) =slen =y and  EEy-1) =1} = pis(y),

forn=1,....
(v) Let a function ¢:R? x ® — R? be a continuous function such that
q(x,-) € L'(v) and the inequality

2.6) lg@, ) — ¢@, My < Lol —yl|  forall aye R’

holds for some constant L, > 0 and

@7 ¢ :fllq(o,e)llu(de) < o0.
2]

Conditions (iii) and (iv) imply that for every measurable set Z C (0, 4+00) x @
the variable

Np(Z) = #{i - (imy) € Z}

is Poisson distributed. It is called the Poisson random counting measure.
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By a solution of (2.1), (2.2) we mean a process {X(¢)},-., with values in R? such
that with probability one the following two conditions are satisfied:

a) The sample paths is a right hand continuous function such that for ¢ > 0 the
limit X(t — ) = JEE X(s) exists and

t t
b) X(t) = a0 + [aX(s),Es)ds + [ [ bX(s —), N (ds,dl) for ¢t > 0.
0 06

Observe that the solution X (¢) on each interval [t;,t:1), k = 0,1, ... satisfies
one of the ordinary differential equations

V(1) = alvy(?), s) teRy,sel

and the initial condition
Vs(ty) = .

We give an explicite formula for the solution of (2.1), (2.2). Hence the stochastic
process {X (t)}tzo’ Xt :Q — RY given by

2.8) X = H{(tn,l)(t — 1, %5-1) for t,.1<t<ty

and
X (tn) = ¥n

is the solution of (2.1), (2.2).
Let x € R By X(t),, denote the solution of problem (2.1), (2.2) with xq = .
We are interested in the evolution of distributions coresponding to the sto-
chastic process {X(#)},.,- Namely, let 4 be the distribution of the initial vector .
For ¢t > 0 we denote b37 Q'u the distribution of X(¢), i.e.

2.9) Qtﬂ(A) =PX@®) A= f PX®), € Au(dx) for Ae B(Rd).
R?

Simple consideration shows that the process {X (t)}t>0 is not Markovian. In order
to use the handy machinary of Markov operators we must widen the space R?
and the process {X(#)}., in such a way that new process become Markovian. In
this purpose consider the space R? x I endowed with the metric p given by

P, 1), @y, ) = |le — yll + po(d,5) for x,yeR? and ijel
where

S for i#£j
pO(laj)— {0 fOI' 7«:]

with the constant ¢ suitably choosen.
Now we consider a stochastic process {(X(t), &) }50, X (@), E@?)) : 2 — R x I
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We choose an initial point (x,?) € R? x I and define
X@®),E@) = (I, x),1) for te[0,t)
and
X®, ) = X, &) for t>t

where X(t), &(t) are given by (2.5), (2.8).
It is obvious that (X (¢), Z(t))tzo constitutes a Markov process on R? x I. This
process generates a semigroup {7"},., defined by

T'f (x,9) = B(f (X(t),E®)ws))  for f e CR? x D),

where E(f(X (t),z(t))(m,i))) denotes the mean value of f((X (t),z(t))(x,i)).
It is well known that {7"},., is a semigroup of operators from C(R? x I) into
itself and for every ¢ > 0 the operator 7" is a contraction, i.e. || T%||c < || fllc-
Now we define semigroup operators {Pt}t20 JPU MR x T) — MR x 1)
by

@10 (Plu.f) = (u,T) for feCRxD, pe M(RYxI) and t>0.
Setting
Gyt A) = prob{(X®), E®) s € A}

we obtain

Plu(A) = f Gat, Adu(e, i) for ue My(R? xI),A € BRY xI) and t > 0.
R %1

The semigroup {P'},., is called the Markov semigroup generated by the pro-
blem 2.1), 2.2).
Moreover using (2.10) the semigroup {P' }1=0 can be easily extended to the
vector space M S19(R"l x I).
To study the asymptotic stability of the semigroup {P'},., we assume that the
solutions 17, : R+ x R? = R? of the equations (2.4) and the transition prob-
abilities p;; : RY = [0,1] satisfy the following conditions:

N
@1) > |py@ —py@)| < (e —yl) for x,yeR?, icl
j=1

and

N
2.12) Zpii(y)HHj(t, x) — It )| < Le®|jx —y| for x,y¢€ R? iel,
=1
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where L > 1, a is a real constant and y : R, — R, is nondecreasing and con-
cave function satisfying condition (1.9). Finally, we assume that

2.13) o =inf {p;() : i,j €I, x € R} > 0.

3. — Auxillary results.

In this section we give rather technical observations used in proving main
results. However, some of them (Proposition 3.1 and Lemma 3.2) seems to be of
interest in themselves. Let I7; : R, x R > Rd, 1 € I be the solutions of the
equations (2.4). We start with some notation useful in the sequel. For n € N
consider the funetion 17, : R? x I" x R x @ — RY defined by the reccurent
formula

IIy(x,,81,01) = q(11(s1,%),01);

ﬁn(xaiailv .- '7in717813 s 7S7L7017 e 7071)
3.1 — . )
= q(Hin,l(Sannfl(xvlv Uyeo oy W—2,81,- -+ 737;717017 cee 797271))79n)~

Next consider the multiple transition probabilities P, : R? x I"*1 x R” x
0" — [0,1] given by
P, 2,01, -« s, 815 -y Sn, 015+, On)
B2 s M i,51,00) . i i, TGy 1s81, s S0 Ors 2 0,)
with 7y = 7 and the functions ¢, : R? x @ — R? given by
qo@) =x, qiw,01) = qlx,01)

3.3
qn(xv 017 AR 7077,717 0%) - Q(anl(x, 61, ceey 9%71)7 Hn)

REMARK 3.1. — Observe that for every melN, si,....8, € R ,x¢€ Rd,

101,y ipy1 €L and O,...,0,,1 € O we have
Pn+1(90,l',i1, - ,l'n+1781, vy S, 91, ceey 9n+1)
(3.4) = P«n(ﬁl(%, 7:, S1, 01), il, A ,7:n+1, 82, ...y Sptl, 02, A ,0n+1)
iy I (3, 51, 01))
and
(3 5) ﬁn+1(96,7:, 7:1, A ,in,sl, ey Spa, 91, ey 6n+1)
. = ﬁn(ﬁl(x, ’i, S1, 91),i1, .. .,in,Sg, . ,8714_1,92, . 70n+1)-

Finally, given a function f : RYxI— R we consider the function
fu i RTX T x R™™ — R given by
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Ju@, 8,81, ..., Spa1)
N e . . . .
:f Z f(Hin(8n+17Hn(x7Z7ll7"-77%717817"'78127917"‘797%))7@7[)
(3.6) ) ) il«n--‘i'n:l
N——

n

'P’Il(xaiv il, cee ;i’i’l/ash <oy Sn, 01; ) 977/)U(d01) o U(den)

By Remark 3.1 we have

fn+1(90,i781, ce 78n+2)

3.7 N — . - . ;
= [ 52 i (\aGes i s1,00) - Fu (T 51, 00), 5, s 0.
) i1:1

For the convenience of the reader sometimes we will write f,,(x, 7, s) instead of
fule, 1,81, ...,s,) and analogously IT,(x,,s, 0) instead of IT,,(x, 11, . .. , iy, S1, . . . , Sn,
01,...,0,) wheres = (s1,...,8,),0 =(O1,...,0,) andi = (i1,...,1,).

LEMMA 3.1. — Assume that conditions (2.6), (2.11) - (2.13) are satisfied. Let
pe® and f€ fw(Rd xI). Then for every meN, 1€l xyc R?  and
S1,---,8,11 € Ry we have

|f;7,(9(7, i,Sl, ... 78’1’L+1) 7.fn(ya i7 817 . 7STZ+1)|
3.8) L+l n (L L)k
a(s1+..+5p41) q als1+..+sp)
S ) +;w<ae g~y ).

ProoOF. — The proof of Lemma 3.1 is by induction on % and follows from
Remark 3.1. ]

We are going to show that the semigroup {P'},., given by (2.10) is asymp-
totically stable. The proof will be long and technical. First, we show that the
semigroup {P'},., is nonexpansive. Second, we prove that for some ¢, > 0 the
Markov operator P* has the Prohorov property. Next, we show that the operator
P! satisfies a lower bound condition. Finally, from the above three facts we draw
a conclusion that the semigroup {P'},., is asymptotically stable.

PROPOSITION 3.1. — Assume that the solutions II; of the unperturbed system
(2.4) satisfy (2.12) . Assume, moreover that the conditions (2.6), (2.11), (2.13) are
satisfied. If in addition the constants o, L, Ly and A satisfy the inequality

3.9) LLy+5 <1

Then there exists t, > 0 such that for every t > t, the operators P given by (2.10)
are nonexpansive with respect to a metric p,.
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ProoF. — By virtue of (3.9), we can choose ¢, > 0 such that

L _,
ro = _e—(/v—a—)LLq)t*
ag

<1

Moreover, let 7 : R, — R be defined by

oy (LLq emLLq)t%t) if a<0
o
it*y/((jeat*t) if a>0.

Since 7 € &y and satisfies the hypotheses of Proposition 1.4, then there is ¢ € @
such that

w(t) + p(rot) < p(t) for t>0.

Now choose ¢ > 0 such that ¢(¢) > 2 and consider the metrie p, with such c.
Denote by || - ||, the Fortet—Mourier norm in Mi(R? x I given by

lea — pall, = sup{|(f, 11 — )| = f € Fy}
where F, is the set of functions such that || < 1 and

|f @, ) —f(y. )| < p,((, ), (7)) = p(p((e, D), (.))

for x,yeR% ijel
We will prove that 7% is a nonexpansive operator with respect to the norm Py
For n € N U {0} we set

(3.10) Q,=0,t)={weQ:t,(w) <t. and t,1(w)>t.}.

Obviously P( U;if) Q,(t)=1. Let f: R?x I — R be a bounded continuous
function and let « € R? and i € I be given. Since

Sy =1ty —t,1 for mn=1,...,
setting s,, = (sq, ..., s,) simple calculations shows that
B1D) Ef (X, E)p)=¢ " FUT(t,, D+ [fule,i,0(0), £~ (@) P(do)
n=1 Q
Fix an f € F,. Evidently |T"f| < 1, so we have to prove that
B.12) |T"f(,i) — T"f(y.j)| < p,((,9),(y.)  for wxye€ R? and i,j €I

Since by assumption p(t,7) = ¢ for ¢ # j and p(¢) > 2, then for ¢ # j the condition
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(3.12) is satisfied. However for ¢ = j, we have
T f (e, 1) — T (y,9)| < E(|f(X (&), EEws) — FIX @), EE0))
< e M| fUT (s, @), 1) — FUTi(E, y), D)

+Zl flﬁz(x 1, $p(), b — tp(@)) — fn(yﬂ sy(w), L. tn(w))u)(dw)
n=1 g

From this and (3.8) we obtain
T f(x, 1) — T"f(y,9)| < e~ (|| (¢, ) — Hi(t, p)|)

n n+1
S I/ H e o — ?/II>+ZW( el — )

n=1 @,

Pldw).

In the case when a < 0 without loss of generality we can assume that LL, > 1.
Then we obtain

T f(,3) — TUf(y,3)| < e ™ [q) <§eat* [l — yll)

it LyL! Y
+Z( A ( ( e o — yll>+2w<( oL —?/”)ﬂ
n=1
) at. L,L)"
< (0< U= Mgl | gy y|>+e‘” Z(( )) l//<( qa) ||90_?/||>

n=1

< g(rolle — yl)) + ¥l — y|D.

Suppose now that a > 0, then LL, < 1 and we have

(T f i) — Tf ] < plralle — gl + e 3P (€ 1y
y (AN} 1)! pn

=i
< orolle =yl + w([lx — yID.
From the last inequalities and the choice of ¢ it follows that
|T%f (@, 3) — Ty, )| < (|| —yl)-
Consequently, for every f € F, (,,(Rd x I) and ¢t > t, we have
T (x,9) = T'f (y, D] < gl =y,

which implies that operator P! is nonexpansive in the norm || - [|,-This completes
the proof. |

Denote by v” the measure on @" generated by v (l.e. V" =v® -+ Q).
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LEMMA 3.2. — Assume that there exists y > 0 such that
(3.13 It x) —x|| <yt for i€l,t>0 and «x¢€ RY

and in addition the function q satisfies the conditions (2.6)-(2.7) then for every
n €N

3.14) f||ﬁn(0,i,sl, e 8, OV(A0) < Tiys1 + ..+ 50) +ncl
e"

forsi,...,s, € Ry,i € I" and Ly = max{1, Ly}.

ProOF. — The technical proof is left to the reader. |

4. - Invariant measure and stability.

The remainder of this section is devoted to the proof of the weakly convergence
of the family {Q'},., generated by the stochastic differential equation (2.1) (2.2).

First, we show that the semigroup {P'},., given by (2.10) is asymptotically
stable.

THEOREM 4.1. — Let the assumptions of Proposition 3.1 hold. Assume,
moreover that the conditions (2.7) and (3.13) are satisfied. Lett, > 0 be such that

L —U—a—ILLy)t.
g

<1

Then the Markov operator P given by (2.10) admits an invariant measure and
satisfies the Prohorov condition.

PROOF. —- Denote P = P and T = T*. Set
V(e,i) = |lx]| for xzeR? and iel.

To finish the proof it is enough to show that there exist constants f;, s € R,
f1 < 1such that

TV(x,i) < B V(e i)+ p, for xzeR? iel
According to (3.11) we have
+00
TV, ) = e Vit ), )+ [ Vile,i,s0(),t. — @) P(do)
n=1l @,

where V,, is the function corresponding to f =V according to formula (3.6),
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sy =1t, —t,_1and s, = (sq,...,S,). Thus

TV (,3) < e ||[L;(t., ) — It 0)]| + e

11;(¢., 0)||
+00

+ Z ff Z HHz,l(t* - tn(a));ﬁn(x»iviasn(w), 0))
n=1 @, g iel"1i,el

—11;,(t. — t,(), 11,0, 4,1, 8,(w), 0))|| - Pyu(ac, 1,1, 1, 8,(), 0))0" (dO)P(de)
+00 o

[ - @), T, s5,(), 00)]

n=1 @ @ icl" el

'Pn(xa i» ia 7:71, sn(w)a 0)))Un(d0)]p(dw)

By an argument similar to that of proving Proposition 3.1, using (2.6), (2.12) and
(2.13) one can show that

Z ||HL”(t* - tn(w)ﬁn(xa i, i7 Sn(w)v 0))
0,0" iel"14,¢el

@.D) _Hi,, (t* - tn(w)aﬁn(oa iv l.,Sn(a)), 0)), ”
n
: Pn(xv ia iv ina sn(w), 0)))Un(d0)P(dw) < @eak ||9(/'H
By (2.7), (3.13), (4.1) and Lemma 3.2 we have
o0 n
TV(x,i) < eVt I; || + eyt + Z f(LLi) Le”t*||x||p(da))
n=1 @,

37 [ (1~ 1) + 5L ) + neLy P,
Q,

n=1
n

Thus
= N L Goaini —MA-Lyt
TV(x,1) < —e 0 ||| + te” T (y 4 Ae).

Setting f; = Le~U—eALaldte and f, = t,e~*A~L% () 4 jc) finishes the proof.
]

Having this we may formulate the main result of this paper.

THEOREM 4.2. — Assume that the conditions (2.6)-(2.7) and (2.11)-(2.13) are
satisfied. Assume, moreover that the solutions I1; of the unterpurbed system (2.4)
satisfy (3.13). If in addition the constants a,L, Ly and A satisfy (3.9) then the
semigroup {P'},-, given by (2.10) is asymptotically stable.



560 KATARZYNA HORBACZ

Proor. — By assumption (3.9) we may choose ¢, > 0 such that

4.2) L Ga-ir,Ly
ag

<L

By Proposition 3.1 and Theorem 4.1, the operator P! is nonexpansive with respect
to the metric p, and has the Prohorov property. Now we show that Pt satisfies a
lower bound condition. Set P = P and T = T*.

By the Prohorov property there exists a compact set F ¢ R? x I such that for
every u € Ml(Rd x I) there exists an integer n; = n;(u) for which

1
Z_Jﬂ,u(F) > 5 for n > ny.
Define

Fy:{xeRd:(x,i)eF for some i€ l}.

We consider two cases : ¢ < 0 and a > 0.

Case 1. Suppose first that a < 0. We may choose ¢. such that (4.2) is satisfied
and

2L,L
4.3) ry = —4 "¢ < 1.
g
Fix & > 0. We can find ¢ > 0 such that ¢(e) < &. Let m > 2 be such that
(4.4) vt diam,, F < g

Fix d1,...,0n €1, set i=(i,...,in-1) €™ and t.=(,...,t.) € RT\
N———

Define m—1
0y ={0 € 0O : |qUI;t,x),0) — qUI;Et,y),0)|| < 2L4|| 11, x) — I1;E, y)||
for (), y) € Ry x R? and jely,

by assumption (2.6) it is evident that
1
> —.
(@) > 5

Since O is compact and the functions ¢ and /7; are continuous there is 6, € 6,
and a neighbourhood B(0; ) of 6, such that @, = B(0;,)) N Oy # 0, v(O;) > 0 and

+ . - . €
4.6) |11, (@, (g, 01),8, L, 0)) — 1T, (be, 11—1(q(, 01,), 8, 8., 0,))]| < 9

forxeFy, 0, €0,,0€ 6" and 0, =(0,,...,0,).
N’

m—1
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Since F? is a compact set, there is a finite covering
@) (0Ga,j1) x 01, k) U ... U (0Gq,5y) % Olyq, k) > F
where (21,71, (Y1, k;) € F and
OG1,j) = { : 1T, (¢, T 1(qCe,0,), 0., 60,)

4.8) _ . e .
—II; (., I —1(q(z,0,,),1.¢..6,))| < 9 } x4}

forl=1,...,q. Let uj,us € Mi(R? x I) be given. By the Prohorov condition
there is an integer 7 = n(u;, 1s) such that

P"ﬂk(F)z% for n>m, k=12

Set 11, = Fﬁﬂk. Then (77, x fip)(F?) > % and according to (4.7) there is an integer
r = r(i4, 1t5) such that

. 1 _ 1
110Gy, jr) = i’ (O, kr)) = i

Write for simplicity z;, = zr,2;, = Yr,J1 =Jr,Jo = ky and O; = O(z;,J1), 02 =
O(zy,,J2)- B

Moreover, from the definition of I7,, and conditions (2.6), (2.12), (2.13) and
(4.5) it follows that

115, (¢, T 1(qCz, , 00,8, 8., 0)) — I, (T 1 (q(2, 01,1, ., 0,)|
(4.9) <2LqL

<

aty . &
e ¢ ) 2, — 2z, || < rp'diam, F < 3
Now define A = A; U As where
7 . e .
A, =B (17 (t, Tn1(q(z,, 00,1, L., 0,), §) «{in).

Namely
diam/,w(A) = diam,.,(4) < p(diam,(4)) < pe) < &.
By continuity /7;, g and (3.5) there exists # > 0 such that

T3, Omr, e, 4,8, 6, 01, 0)) = 1T, (b, -1 (q(e, 1), 8, L., 0))]|

(4.10) _ L _ L e
= ||Him(5m+1,nm(9€7l,l,6, 0170)) - Him(t*7n7n(x7z7l707t*;0170))” S §

for arbitrary (x,7) € F,0 = (01,...,0m),01 € (0,1),02,...,0ms1 € E& — 1,8 + 1)
and 0; € 0,.,0 ¢ @ZFI.
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Set
Q. ={weQ:s1(w) <ns20),...,50(0)
S (t* - %;t*)ysl(w) +...+ strl(a)) > Mt*}

where s;(w) = t;(w) — t;_1(w).
Let ng = +m and s,, = (s1,...,Sy). We have

P ) = [T 14, Mo, > [ B0La,Xnt.), Eomt) ) e, )
RéxTI RExT
> [ [ [ 14,5, ot — (@), T, i, 1,50, 0, i)
O Q. "

P, Ji, i, Smlw), O™ (dO)P(dw)d, (2, ©)

(4.11)

> o [ [ [ 1ats, ot — (@), T, i 1,50, 00, i)
O 2. o'

"™(dO)P(dw)dg, (e, ).
By (4.6), (4.8) and (4.10) we obtain
Hi”L(Mt* - tm(a)); ﬁm(xajka i, sm(w); 0))7 Zm) S Alc

for arbitrary w € Q.,(x,7) € Oy and 0 € 6;". Thus
P (A) > j—q/u@l* YP(Q.).

As a consequence the operator P is asymptotically stable in the metric space
(R x I,pop).

Case I1.

Suppose now that a > 0. In this case condition (3.9) implies that L, < 1. Let
m € N be such that
&

4.12) Ly - diam,,F < 3

By continuity and compactness conditions there exists J € (O,ﬁ) such that

— . &
(413) ||Hm(ﬂ’/',l,s, 0) - (Im(%v 0)” < @

for everyi € I",s € 0,81",0 € O™, x € Fy.
Given 0 € @™ we define

@14 V@) = {9 € 0" : || gu(@, 0) — g, 0]| < é for every « ¢ FY}.
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Clearly V(0) is an open neighborhood of . Since @ is compact, there exists a

finite family V; = V(0)), j = 1,...,m such that 0" = U}ZIVj. Set
J={je{l,....m}:v"(V;) >0}

and

(4.15) J =minv™(V)).
jed ’

Clearly & > 0. Given x € R? define

&

_ Rd . N . ;
416 OW;{ZGR.MM%@)qM@@H<%1M]EJ}
Clearly O(x) is an open neighborhood of x. Let zi,...,2,, € Fy be such that
F C G where G is given

mo

G =|JO@) x D).
=1

Let py, 15 € Mi(RY x I) be arbitrary. Analogously as in Case I there exist
=0y, o), l1,le € {1,...,mo},51,J2 € I such that

P 14,0y, x {jich) > T

From condition (2.6) it follows that there exists a subset @y of " such that
V"™(@p) > 0 and

4.17) gm 1y, ) — @21, O] < L' ||z1, — 23,]|  for every 0 € 6.

Since 0 is of positive measure, there exists j, € J such that @, NV # 0, where
Vo= V(Hjo). Choose 0y € Oy NV, 1, € I and define

A= B(qule 00,5 ) x {in} for k=12

and A = A; UAs.

From (4.12) and (4.17) it follows that diam(/,ﬂA <e.

For 0 € Vy,i € I, s €[0,5]" and x € O(z;,) by virtue of (4.13) - (4.16) we
have

||ﬁ?ﬂ(x7jk7ias7 0) - (Im(zlky 00)” S HﬁWL(xajkaias7 0) - Q7n(907 0)”

&

+||q7’n(zlk7 Hjo) - qm(zlk7 00)” < 8
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and by (3.14) we obtain for every ¢ > 0
4.19) |11, ¢, T (2, j, 1,8, 0)) — gz, 00)|

< g+ T i d.8,0) = GG, 00)] < 7t + 5.
Fix ¢ such that

- &
0 O+ —
mo < mt < m +16y

and set
Q. ={weQ:sw)<d for i=1,....m and s1(@)+...+ Sp1(w) >mt}

where s;(w) = t;(@) — t;i_1(w). _
Letng=7+mand @, = P . Fix iy, ... iy €1 ,seti=(iy, ..., ip_1)and
Sy = (51,...,5,). We have

P @) = [ T"1ate, g, ) > [ B0, CX0mD), Emb) )7,
RIxI RIxT

> [ [ [ 1adn, o0t — @), TG0 0,50, 00, 6n)

Oy )xji 2« Vo

P, 1,1, 8 (), H)Um(da)p(dw)d/_lk(x; 1)

(4.20)

>a" f f flAk(Him(mi — ty(@), Iy (2, 1,1, 8,(), ), )
Oy )% £+ Vo

V" (dO)P(dw)dg, (x, 7).
By (4.19) we obtain

1 (mi - tm(w)7 ﬁm(xyjka ia Sm(w)7 0)), ) € Ay

i’/ﬂ,
for arbitrary w € Q.,x € O(z;,) and 0 € V,,. Thus

m

g
2moqN

1o

P 1 (A) >

IP(Q,).
The proof in Case II is completed.
Now, let u, be the invariant distribution of P**. Then for ¢ € R, we have
Ph(P'u,) = P'(P"u,) = Plu,.

Since u, is unique, it follows that P'u, = u,. On the other hand using non-
expansiveness of {P'},., we obtain

. . . n
Jim ([P, = lim ([P'u =P, < T ([P = p]l, =0
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for u e Mi(R? x I). However the metries p and ¢ o p define the same space of
continuous functions C(R? x I) and the weak convergence of a sequence of
measures in the space R x I, p) and (R% x I, @ o p) is the same. This proves that
{P'},-, generated by the equation (2.1), (2.2) is also asymptotically stable in
R x I, p). u

Now we turn to the family {Q'},., of distributions generated by the stochastic
differential equation (2.1), (2.2) on the starting space (Rd, Il 1D

Since weak convergence of a joint distribution implies weak convergence of
the marginals, by Theorem 4.2 we obtain

THEOREM 4.3. — Let the assumptions of Theorem 4.2 hold. Then there exists a
distribution i, € My(R?) such that the family of operators {Q"} = given by (2.9)
1s weakly convergent to [i,.

REMARK 4.1. — Under assumptions (2.6), (2.7) and (2.11) - (2.13) the condition
(3.9) is optimal. Consider the following example. Let a(x,?) = 0 and b(x, 7)) = —2x
for © € R? and k € I = {1}. Then L = 1,Ly; =1 and a =0, so the equality in
condition (3.9) holds. For arbitrary initial xy we obtain x, = —x,_1 for every
n € N. By (2.8) we obtain

X@t)=xy—1 for t,_1 <t<t,.

Thus this process is not asymptotically stable.
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