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Bollettino U. M. 1.
(8) 9-B (2006), 529-543

Cyclic Phenomena for Composition Operators on Weighted
Bergman Spaces.

ANNA GORI

Sunto. — In questo lavoro diamo una generalizzazione alla fomiglia di Spazi di
Bergman con peso G, A%, di alcuni risultati ottenuti in [4] per lo spazio di Hardy H?.
In particolare studiamo il comportamento ciclico e iperciclico, nello spazio A%, di
operatori di composizione ndotti da una funzione olomorfa ¢ del disco unitario
A4C Cin sé.

Summary. — In the present paper we give a generalization to the family of Bergman
Spaces with weight G, A2, of several results, obtained in [4] for the Hardy space H?,
concerning the cyclic and hypercyclic behaviowr of composition operators C, induced
by a holomorphic self map ¢ of the open unit disc 4 C C.

Introduction and preliminaries.

Let ¢ be a holomorphic self map of the open unit disc 4 in the complex plane
C. Consider a space X of holomorphic functions on 4. We want to investigate how
the “behavior” of the composition operator C,, acting on X, which associates to
each function f € X the function C,f := f o ¢ changes, according to the dyna-
mical properties of the inducing map ¢.

In the Hardy space H?, the link between function theory and theory of
composition operators is suggested by the Littlewood Subordination Principle,
which guarantees C, to be bounded. In that case it becomes natural to take up
the problem of relating properties of C;, with those of its inducing map ¢. We can
then investigate which conditions on ¢ determine whether C, is bounded, com-
pact or cyclic. Recall that an operator 7" on a linear topological space X is said to
be cyclic if there is a vector x in the space (called cyclic vector for T)) whose orbit
Orb(T,x) ={T"x : n=0,1,2...} has dense linear span. When, without addi-
tional help from the linear span, the orbit of « is dense in X, then T is called
hypercyclic and x is an hypercyclic vector.

The study of cyclicity is particularly interesting for composition operators
because the n-th power of C, is the composition operator induced by the n-th
iterate of ¢. This simple property suggests that the cyclic behavior of a
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composition operator should be strongly influenced by the dynamiecal prop-
erties of its inducing map, and that this behavior should be strictly related
with the kind of fixed points of ¢, according to the derivative of ¢ in the fixed
points, and after all with the type of convergence of the iterates of ¢ to the
Wolff point [4].

In the present paper, in particular, we show how the position of the fixed
points determine the cyclic behavior of the composition operator C,. In this
context we have found a generalization of several theorems proved for the Hardy
space [4], to a different family of spaces of functions called Bergman Spaces with
weight G, denoted by A%(A). We have easily extended to this family all the re-
sults which guarantee the cyclicity on H?, proving the density of H* in A%(4), and
established conditions on G that permit to extend also some “negative” results,
where “negative” means results in which one proves non cyclicity or non hy-
percyclicity of an operator.

In the first part of the work we recall known results, due to B. McCluer and T.
Kriete [8] concerning how the weight G and the map ¢ determine whether C, in
A%;(A) is bounded. In the second part we characterize the cyclic behavior of the
linear fractional composition operators in A%, according to the position of the
fixed points of its inducing linear fractional map (see for example Propositions 1.1
and 1.3). One can transfer the obtained results to a wider setting by using linear
fractional self map to represent more general maps through “linear fractional
models”(see [4]).

We here introduce some more notations. Let dA denote the area measure on
A and suppose G is a positive continuous function on (0,1) such that

1
Of G(r) rdr < co. The Weighted Bergman Space with weight G, A%(4), is defined

to be the collection of all holomorphic functions f* on 4 for which
M 171 = [ PG dA < o.
4

Afé(A) is an Hilbert space with norm | - ||, defined by (1).
1
It is easy to check that f, denoting with p,= [ G(r)r*"*1dr, can be expanded

0
as f(2) =300 fm)z" and ||f|% =222, [f@)*p,, since the functions

{—E—}>, are an orthonormal basis in A%(4).

\/ 2npn

The weights G(r) = 1 —7)*, a > —1, are one version of standard weights;
other examples, which give equivalent norms, will be described later (see also
[12]). The quantities p,, are called moments.

Recall that (see also [8]) a function G, continuous and positive on (0,1), is called
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fast weight if
G(r)

Tl{}r}m =0 Va > 0.

We will always assume that G(r) is non increasing on (0,1). However our results

can be applied to any weight comparable to a non increasing weight near r = 1.
Another well known property of the weighted Bergman space is that it admits

a reproducing kernel K,,(z) given by

o0 W’LZTL

1
2 K,(z) = —
( ) ‘ 27[11:0 DPn

where w,z € 4. Moreover the point evaluation functionals are continuous (for
more details see e.g. [12]).

When G(r) = (1 — )" a result similar to the Subordination Principle holds in
A%(A) [11], hence any composition operator C, is bounded on Aé(zl), with
|Gl < (K220

Unfortunately the procedure used for standard weights fails in the case of
fast weights; indeed it turns out that if ¢ is an automorphism of 4, other than a
rotation, then C, is unbounded on A%;(A) for any fast weight G [8]. In a positive
direction Kriete and McCluer have shown that if

. G(|z])
3 limsup ——~ < ©
®) \z\ﬂlqu(o(z)D
C, is bounded on A%(4).
T.L. Kriete [7] has proved that condition (3), together with further hy-
potheses on the regularity of G and on its way of decreasing for » — 1, is not only
sufficient but also necessary for the boundedness of the operator C, in AZG(A).

I thank Professor P. Bourdon for precious suggestions concerning the ex-
ample which appears in section 1.4.

1.1 — Preliminary results.

Relations between H* and A%(4).

Our aim here is the extension of some results which are valid for the com-
position operator C, in HZ, to the cases of the space A%(4). In order to give this
generalization we need to develop relations between these spaces. We will always
consider weights G depending only on the modulus of z, unless otherwise spe-
cified, (for a more general theory, where the weight function G can be any
function of z, we refer to Mergelyan [10]).
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In what follows || - ||, denotes the H* norm and || - || the norm in A%(4). In
order to simplify the notation we always denote the Bergman Space Wlth A2,
without specifying the domain, whenever it is not misleading.

We remark that, since p, = f Gry**ldr and r <1, we have:
Pn < f G(r)rdr; for the hypotheses on G this last integral is bounded by a con-
stant K . It then follows that

LFIE < I fIZK

and we can conclude that the space H? is contained in A%. As further con-
sequences we can also say that the convergence in || - ||, implies the convergence
in || - || and that the topology induced by | - ||, (denoted by 72) is finer than the
one induced by || - || (t@).

REMARK 1.1. — We claim that polynomials are dense in A2 Indeed, take f in
AZ, since f is holomorphlc in 4, it can be written as f(z) = _,", f(n)z and
IIf HG =30 [f(n)| Pn < 00. Therefore for all ¢ > 0 there exists 79 such that for
all n > ny, the series Y [f(n)| Py < & Let pz) =300 f (n)z" then

19— F@IF = |3 Fome" — S Foer

n=0 n=0
7 2 - 7 2
Yo farRMg= Y fwlp. <
n=ny+1 n=ny+1

Now, since the topology 2 is finer than 7 we can conclude that the space H?
is dense in A% in the topology t¢ of A%. This remark has two important con-
sequences.

THEOREM 1.1 (Generalized Walsh Theorem). - Suppose D C C s a simply
connected domain whose boundary is a Jordan curve. Let the holomorphic
function ¢ map A univalently onto D. Then polynomials in ¢ are dense in A%;
with the natural topology t¢.

PROOF. — The result holds in H? [4]; it follows that the polynomials in ¢, de-
noted by C,,(P), are dense in H? in the topology to. Then C,(P) C H? C A% and
C,(P) = H?in 1 which is finer than 7. It follows that C,(P) = H? also in 7g; using
the density of H? in A% the theorem is proved. [ ]

With a similar proof we obtain, whenever C,, is bounded on A%,
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THEOREM 1.2. — Ifthe operator C,, is cyclic (resp. hypercyclic) on H? it is also
cyclic (resp. hypercyclic) on A%.

The same argument can be applied to any linear operator 7' bounded on H?
and on A%. We can then always assert that the operators cyclic (or hypercyclic)
on H? are cyelic (or hypereyclic) also on A%.

Other versions of Standard Weights.

Here we recall that in [11] new versions of standard weights are given and
there is proven that they induce equivalent norms.

The two weights G(r) = %(logi)a where I’ is the Euler function and
G(r) = %(1 — )%, with a > —1 in both cases, are characterized by the property
that they give norms equivalent to the one given by G(r) = (1 — »)* with a > —1,
but they have, respectively, simpler moments p,, and reproducing kernel {l?;}

For example, for the weight G(r), we have p,, = — and if we consider the

1
~ 2n(n+1)
weight G(r) we can prove that the associated reproducing kernel has the simple

form
1

k@) =——
® (1 — w2

One can show the equivalence of the norms and some other useful relations
between the reproducing kernel associated to G , G and to G. For G as above, one
can easily prove that

(4) A== A
Moreover there exist positive constants ¢ and C such that:
(®) cllkully < llkulle < Clikwll;

where the same kind of relation holds for G and G.
Let f = f,, be a positive, non increasing sequence of real numbers, for which

asup{ﬁfkl ‘k20}<oo
+

We denote by H?(B) the weighted Hardy Space, which is the space of power
series such that the norm defined by

115 =" 1k PB,
k=0

is finite. The space AQG(A) corresponds to the particular case in which f, = 2zp,,.
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We finally recall that the norm of the Backward Shift B: f(z)=
S f(m)" =30 (f(n +1)z" in a weighted Hardy space H%(f) is given by
IB]| = sup, /-

As a consequence, from the equivalence of the norms induced by
G, G and by G and since (5) holds, we find an estimate of |[f(w)| for w € 4. Indeed

Fa)* < IF1EIRalG < CIAGIRG]E = C||f||?;(1|1|2)a+27
— |lw

where, in the last step, we have used the general fact that, for every G,
w17 = Feanaw).
We now want to find an estimate also for |f/(w)| with w € 4. We proceed in

three steps. We firstly prove that for w € 4, the function 2 =" 1’“;; piz"ll
belongs to A%. Indeed

nl

1>l

n=1

2m

(m + Dw™z" 5 > (m + 1)2|w|
- 3Ly _ S el
np’i’n ﬂp"n

m=0

_ Z (’WL + 1)(1+3|w|2m

m=0

(since p,, = W) The last series converges, and then the result holds.

We now prove that
fa) =< fo"" b >=<Bf . h> .
n=1

To this aim, thanks to the uniform convergence, we can differentiate the
series Y f(n)z" and hence we have:

NN W o= (m+ Da™z™
< Zf(m + 1)z7 s 2(7_ >a
m=0

= 21D,

— if—(m +D0m+1) f 2Ly Glr)dr
0

=0 Dy

= Zf(m + D(m + D™ = f'(w).

m=0
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Finally we get, applying the Cauchy-Schwartz inequality to f’(w)
@) < |IBfIZIIRN%-

Now since f, = 27p, it follows that ||B|| = sup% <291 Then

(6) IBf Il < 1BIIf Iz < 2**HIf Iz

Recall that there exists D > 0 such that ||Ew||2§ < DHEM% and hence the last
inequality can be written explicitly as

= D
Z (m+ 1)a+1|w|2m <

" Tt

Since [|1]|% = S (m + 1)*lw[*", by assuming y = a + 2 we obtain

D D
(M) IR|I% < 5= v
- a—pwp
and inequalities (6) and (7) yield:
. vD
(8) If'(w)| <2 +1HfHa P
(11— |w|*)*

Note that the same inequality holds for f € H?.

We have already observed that the Bergman space can be viewed as a par-
ticular case of a weighted Hardy space H?(f) with 8, = 2np,,, and similarly H?,
with 8, = 1. We introduce here a particular sequence a**! with a > —1, where a
denotes the harmonic sequence #.We denote the Hardy space associated to
a**! with H?(a**1). Note that for a = —1 this space coincides with H? and for
a > —1 with AZ = A%, where G is the standard weight. The space H*(a**!) is an
Hilbert space. In the sequel we will prove our results in H?(a“*!). Note that, with
this notation, if a composition operator C,, is eyclic in H%(a*™1) for ¢ = —1 then it
is cyclic for every a > —1.

Holomorphic self maps of the open unit dise.

In a certain sense, every holomorphic self map of 4 has an attractive fixed
point: if there is not a fixed point in 4, then there is a unique boundary point that
serves the purpose. This is the content of the famous Denjoy-Wolff theorem. We
call a point p € 04 a boundary fixed point of ¢ if ¢ has non tangential limit p in p.
The fixed point p, to which the iterates of ¢ converge is called Denjoy-Wolff point
of ¢. For a proof of the Wolff-Denjoy theorem, see [11]. Motivated by the clas-
sification of linear fractional self maps of 4, and encouraged by the restrictions
given by the Wolff-Denjoy theorem on the values the derivative of an arbitrary
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holomorphic self map of 4 can take at its Denjoy-Wolff point, we introduce the
following general classification: a holomorphie self map ¢ of 4is of dilation type if
it has a fixed point in 4; hyperbolic type if it has no fixed point in 4 and has
derivative strictly smaller than 1 at its Denjoy-Wolff point, and of parabolic type
if it has no fixed point in 4 and it has derivative equal to 1 at its Denjoy-Wolff
point. The maps of parabolic type fall in two subclasses: automorphic type, those
having an orbit that is hyperbolically separated (meaning that, for each z € 4, the
hyperbolic distance, [11], between subsequent points of the orbit ¢, (z) stay
bounded away from zero) and non automorphic type, those for which no orbit is
hyperbolically separated.

In the following proposition, one can find a simple illustration of how dyna-
mical properties of an inducing map, as those determined in this case by the fixed
point position, can influence the hypercyclic behaviour of the induced composi-
tion operator. We omit the proof in A§ since it is quite similar to the one given for
the Hardy space (Prop. 0.1 in [4]); here one have to use the continuity of point
evaluation functionals on A%.

ProPOSITION 1.1. — Let G be a standard weight function and let ¢ be a
holomorphic self map of Athat fixes a point zy in A. Then C, s not hypercyclic in
AZ. Moreover, if ¢ is not an elliptic automorphism, then for each f € AZ the
only limit point of Orb(C,, f) is the constant function f(z).

REMARK 1.2. — This result holds in the case of standard weights G. For fast
weights we must request the boundedness of C,,. If ¢ fixes the origin then it in-
duces a bounded composition operator (in fact from the Schwarz lemma and from
the hypothesis that G is not increasing, condition (3) is always satisfied). We can
then observe that in A?;, with G fast weight, every elliptic automorphism with the
corresponding composition operator C, bounded, must necessarily fix the origin,
that is it must be a rotation. We then conclude, by the previous proposition, that
every function in the closure of the orbit along f must be equal to 0 at the origin. If
instead ¢ is not an elliptic automorphism, the proofis the same as the one given for
standard weights.

1.2 — The linear fractional case

In the study of cyclic and hypercyclic behaviour of the composition operator
C,, the linear fractional self maps of 4 play a fundamental role. We first study the
cyclic and hypercyclic composition operators induced by linear fractional self
maps of 4; one can then transfer the obtained results to a wider setting by using
linear fractional maps to represent more general ones. The possibility of such a
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connection is suggested by a remarkable theorem of classical function theory:
the Linear Fractional Model Theorem [5], [4].

Hence, as a first step, we study composition operators induced by linear
fractional maps.

Recall that, by Proposition 1.1 the possibility of hypercyclicity arises only for
self maps of 4 without interior fixed point; for the rest, the issue is confined to
cyclicity.

Simply observing that every automorphism ¢ of 4 is conjugated, by the au-
tomorphism y = {2 (Where z is a fixed point of ¢), to a rotation y(z) = 2z, we
can conclude that if C), is cyclic so is C,,. Conversely, if C;, is not eyclic, nor is C,,.
Recall that the positive result holds in H? [4]: if A is an irrational multiple of
then C, is cyclic in H2. By Theorem 1.2 it follows that, in this case, the com-
position operator C, is cyclic in Aé for any weight function G. Suppose, con-
versely, that 1 is a rational multiple of 7. We must distinguish the standard case
and non standard case. For the first one let f be in AZ, its orbit, under the C,,
action, is made of a finite number of points, then f cannot be a cyclic vector. In the
non standard case, since C, is bounded, by Remark 1.2, ¢ must be a rotation. We
can then apply the same proof given in the standard case. We have then con-
cluded once and for all the elliptic case:

ProposiTiON 1.2. — Let G be any weight function. If ¢ is an elliptic
automorphism of Athen the associated composition operator C,, if it is bounded,
is cyclic in A% if, and only if, ¢ is conjugate with a rotation of an irrational
multiple of n.

Now, thanks to Theorem 1.2 and Theorem 2.2 in [4], we conclude that all the
maps without interior fixed point, except for the parabolic non automorphism
maps, induce hypercyclic composition operators, while the maps that are not
automorphisms induce cyclic operators if they have an interior and an exterior
fixed point. The case in which ¢ has an interior and a boundary fixed point is still
open for weighted Bergman spaces. We have to analyze now the case in which ¢
is a linear fractional parabolic self map of 4, that is not an automorphism. In the
following proposition we prove that C, is strictly non hypercyelic on H?(a**?)
with —1 < a < 0. The proof is quite similar to the one given in H?, but we enclose
it here since we use the obtained estimate (8) for |f’(w)|.

ProPOSITION 1.3. — Let ¢ be a linear fractional self map of 4 that is not an
automorphism and which does not have an interior fixed point. If ¢ is parabolic,
then C, is not hypercyclic on H*(a*™) with —1 < a < 0; in fact the only possible
limit points of the C,-0rbit are constant functions.

Proor. — The map ¢ is parabolic, so it has a unique fixed point, necessarily on



538 ANNA GORI

the unit circle. Without loss of generality we may assume this fixed point is 1. We
explicitly compute ¢ by employing the Cayley trasformation 7'(z) = fjufz , which
sends A to the right half plane I7 = {w € C : Rew > 0}, the fixed point 1 to co
and ¢ to a traslation map y:I1 — I, that fixes oco. Theny =T ogo 77! has the
form w(w) = w + a, where Rea > 0, since w has range in /7 and it is not an au-

tomorphism (= Rea # 0.) Pulling back to the unit dise we obtain:

@) = 2-az+a
P = e T 2+a)
And more generally, for n = 0,1,2....
(2) = @2 —na) +na
40— @2+ na)
Furthermore
21 -2)
1= =572
and
4z
9(z) — p(0) =

2+ a)2+a—az)

Upon replacing a by na in these expressions and letting n — oo, we obtain

. 2
lim [l —¢,&)] = 4

4z

L2

nlggcn [9,(2) — ,(0)] = m

Now suppose f,g € H?(a**!) with g a cluster point of Orb(C,,f). Our goal is to
prove that g must be costant on 4. Recall that for every w € 4 the estimate 8
holds; hence by the equivalence of the norms induced, respectively, by A%; and by
A% we obtain also

M M
— <2 fllg

') < 27| fllg
1= |wP* 1= fw

atd ?
2

)

for an appropriate constant M. A similar inequality holds in H? and so in general
for each f € H?(a**1). In the sequel we denote with D a costant indipendent of .
Thus for any z, win 4, with |2| < |w| < 1, upon integrating f” over the line segment
from z to w, and using the above inequality for H%(a**!), we obtain that:

|2 — wl

If@) —fw)| < ClIfl,
A — |w)

ad
2
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By referring to the right half plane realization of ¢, as a traslation by na (where
we recall that Rea > 0) we see that the ¢ orbit of any point in 4 converges non
tangentially to 1. Now fix z € 4 and write s, = ¢,,(0) and ¢, = ¢,,(z). By the non
tangential convergence we can assert that there exists C = max{Cj, C2} such that
|1 - Sn‘ g Cl(l - |Sn|) S C(l - |Sn‘) and |]- - tn| < CZ(]- - |tn|) S C(]- - |tnD for
every n € N. For convenience let {u,} denote either {s,} or {¢,}: the one that
converges faster to 1. Then

|tn — Sn

[Fta) = fsu)| < Dllflla(1 < Di|f|,m.

atd —
e
Thus, for —1 < a < 0 and for n — oo, it follows that lim,_.. [f(t,) — f(sx)] = 0.
Since the convergence in H?(a**!) implies pointwise convergence then, if ¢ is a
cluster point of f o ¢,,, we get

9) = 9(0) = lim [£(p, ) —F(p,ON] = lim [£(t) —F(s,)] = 0

implying that g(z) = g(0), regardless of our choice of z € 4. So ¢ is costant, as
desired. m

A proof of the same result, with complitely different techniques, is given by
E.A. Gallardo-Gutierrez and A. Montes-Rodriguez in the paper The Role of the
Spectrum in the Cyclic Behaviour of Composition Operators [6].

1.3 — Transference Principle.

Following word-for-word [4] one can also solve the cyclicity problem in the
case of composition operators C, which are not induced by linear fractional maps.
Recall that the linear fractional model theorem guarantees that each univalent
self map of 4 is conformally similar to a linear fractional self map of 4 that is of
the same type, but is now viewed as acting on a more complicated domain.
Using the same notation of [4] we get the following general result

THEOREM 1.3 (Transference Principle). — Suppose that ¢ is a univalent self
map of 4 of either dilation, hyperbolic or parabolic automorphism type. Let o be
the interwining map for ¢ obtained by the linear fractional model theorem, and
let w be the linear fractional self map of A which represents . Suppose further
that the set of polynomials in o is dense in H*(a*™1). Then the cyclic behavior of
the linear fractional composition operator C, transfers to C,. More precisely:

(i) If ¢ is of hyperbolic type, or parabolic automorphism type, then C, is
hypercyclic
() If ¢ is of dilation type, then C, is cyclic, but not hypercyclic.
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The Transference Principle does not address the issue of whether the cyeclic
behavior of parabolic non automorphisms transfers to more general self maps of
that type. However there are some results, also in that case, if one requests
further hypoteses on the regularity of ¢ at its Wolff-Denjoy point (see [4]). In the
dilation case we have:

THEOREM 1.4. — Suppose that o maps 4 univalently onto a domain D C C,
and that there exists a complex number 1 € Asuch that 2D C D. Suppose further
that the polynomials in o are dense in H?>(a*tt). Let 9 = o' o o. Then the
composition operator C, 1s cyclic. Furthermore the collection of cyclic vectors for
this operator is dense in H*(a*+1).

The proof of the previous theorem goes through word-for-word as the one
given in H? [4].
One can apply the Transference Principle to show that the cyclicity problem for
C, is related to a polynomial approximation problem for ¢ when ||¢||,, < 1. Note
that the condition ||p||., < 1 implies, by the Brouwer theorem, that ¢ must have
an interior fixed point.

THEOREM 1.5. — Suppose that ¢ is holomorphic on 4 and that ||¢||. < 1. If
polynomials in ¢ are dense in H*(a**), then C, is cyclic.

A proof of the above theorem, in the standard case, easily follows the one
given in [4] (Theorem 3.4), taking into account the density of polynomials and the
generalized Littlewood principle in H?*(a*"!'). In their proof, Shapiro and
Bourdon shows that, without loss of generality, one can assume ¢(0) = 0. Note
that, in the case of fast weight, one cannot arbitrarily choose the fixed point.
Indeed if the fixed point is different from the origin, we may once again say that
there exists an automorphism y of 4 that takes this point to 0, but we cannot say
that the cyclic behavior of the new composition operator, induced by y~! o g o 7, is
the same as the behavior of C,, since C, is not bounded. If we take ¢ such that
¢(0) = 0, the composition operator C, is bounded and so is C, (where ¢ is the
interwining map) since ¢(0) = 0. We may then repeat the same proof given for
the standard weight G; hence if G is fast we have to impose in Theorem 1.5 the
additional condition ¢(0) = 0.

By applying the generalized Walsh theorem, we can affirm that polynomials
in ¢ are dense in H?(a"t!) whenever ¢(4) is a Jordan domain; then we have the
following:

COROLLARY 1. — If'the holomorphic function p maps 4 univalently onto the
interior of a Jordan curve lying in 4, then C, is cyclic on H*(a**1).
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1.4 — Concluding remarks and open questions.

In the previous part of the paper we have pointed out that all the positive
cyclicity results on H? transfer to the weighted Bergman space. We here present
an example of a composition operator induced by an opportunely chosen map ¢
which is cyclic on a weighted Bergman space and not cyclic on H?. We have not
been able to present an example in the unweighted Bergman space.

Recall that aregion Q2 C C bounded by two Jordan curves which intersect in a
single point, such that one of the Jordan curves is internal to the other, is usually
called crescent. Let ¢ be a Riemann map onto a crescent domain Q such that
e 0c Qand p0)=0;

e The closure of 2 lies inside the unit circle so that ||¢||, < 1;
e The Toepliz operator T, on H*(4), defined by T,(f) := ¢, is eyclic yet 1 is not

a cyclic vector.

That such a Q exists follows from Corollary 3.7 of [1]. Observe that the fact
that 1 is not a cyclic vector for 7', means that polynomials in ¢ cannot be dense in
H? which by Corollary 1.6 of [4], shows that C, is not cyclic on H%. Denote with f a
cyclic vector for T,. We claim that C, is cyclic on the weighted Bergman space
A‘2 flz(A). There are some details to check. First note that the closed graph the-
orem together with the fact that ||¢||, < 1 shows that C, is bounded. Now recall,
from Remark 1.1 that polynomials are dense in A%. By choice of g,
{p(p)f : pis apolynomial} is dense in H2. Hence this set is dense in the un-
weighted Bergman space, and it quickly follows that {p(p) : p is a polynomial} is
densein A2 ,(A). Theorem 2.3 then implies that the composition operator is cyclic
.9 If]
in A ‘Z(A).

I\%te that the reasoning above can be applied to produce a cyclic composition
operator on the unweighted Bergman space that is not cyclic on H? if, in the
multiplication operators language there is a ¢ such that 7, : H? — H? is cyclic
but does not have 1 as a cyclic vector, while T, : A%(4) — A%(4) is cyclic with 1 as
cyclic vector. This is a tough problem, that is been open for some time. Note that
the cyclic vector f can be taken to be bounded, in which case A2v|2(zl) contains the
unweighted Bergman space.

Necessary conditions for ciclicity.

In the Hardy space one can give several necessary conditions which
guarantee the cyclicity of a composition operator. Shapiro and Bourdon have
proved in [4] that if C, is cyclic in H? then ¢ must be univalent in 4 and uni-
valent almost everywhere on 04; however, in a more general framework we can
similarly prove that if C, is eyclic in AZ%(4) then ¢ must be univalent in 4. We do
not know whether the univalence a.e on 94 is necessary for cyclicity on the
Bergman space.
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There are several results concerning necessary conditions for the cycli-
city of the Shift operators M, both in the Hardy and Bergman spaces ([1],
[2]), and it would be very interesting to find connections between these two
operators.

We recall that in H?, a necessary condition for cyclicity is that polynomials
in ¢ are dense in the space. Thus in H?, the density of polynomials in ¢ is
quite equivalent to the eyclicity of C,. In this context another open question is
whether the density of polynomials in ¢ is necessary or not for cyclicity in
AZ(4). Indeed we cannot apply the argument used for H2. Furthermore note
that if ¢ is a Riemann map from the unit disc to an open domain 2 and we
consider the usual Bergman space L?(Q) (see [1] for the precise definition)
the equivalence between the density of polynomials in L?*(Q2) and the density
of polynomials in ¢, contrary to what happens in H?, does not hold. Indeed in
[2] Akeroyd showed that, if Q is a crescent domain bounded by two internally
tangent circles, then the shift M, is cyclic on H?(Q) and 1 is a cyclic vector; in
other words, we have that polynomials in ¢ are dense in H?(4). Using the
proved density of H? in the Bergman space we conclude that polynomials in ¢
are dense in L2(4) = A%(4). In [2] it is also shown that 1 is not cyelic for M, on
L?(Q), which means that polynomials are not dense in L?(Q), and this proves
our assertion.
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