BOLLETTINO UNIONE MATEMATICA ITALIANA

MIRIAM CIAVARELLA

Congruences between modular forms and related modules

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 9-B (2006), n.2, p. 507–514.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2006_8_9B_2_507_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Congruences Between Modular Forms and Related Modules.

MIRIAM CIAVARELLA

Sunto. – Fissiamo ℓ un primo e M un intero tale che ℓ $\not|M$; sia $f \in S_2(\Gamma_1(M\ell^2))$ una forma nuova supercuspidale di tipo fissato a ℓ e speciale in un insieme finito di primi. Per un'algebra di quaternioni indefinita su Q, di discriminante che divide il livello di f, associamo a f un'algebra di Hecke locale quaternionica T. L'algebra T agisce su un modulo M_f proveniente dalla coomologia di una curva di Shimura. Applicando il criterio di Taylor-Wiles e il teorema di Savitt, rivediamo T come l'anello di deformazione universale di un problema di deformazione globale di Galois associato a $\overline{\rho}_f$. In particolare M_f è libero di rango 2 su T. Nel caso particolare in cui f sia di livello minimale, come conseguenza dei nostri risultati e grazie al lemma di Ihara classico, proviamo un teorema di alzamento di livello e un risultato sugli ideali di congruenza. L'estensione al caso non minimale è un problema aperto.

Summary. – We fix ℓ a prime and let M be an integer such that ℓ $/\!\!\!/M$; let $f \in S_2(\Gamma_1(M\ell^2))$ be a newform supercuspidal of fixed type at ℓ and special at a finite set of primes. For an indefinite quaternion algebra over Q, of discriminant dividing the level of f, there is a local quaternionic Hecke algebra T associated to f. The algebra T acts on a module M_f coming from the cohomology of a Shimura curve. Applying the Taylor-Wiles criterion and a recent Savitt's theorem, T is the universal deformation ring of a global Galois deformation problem associated to $\overline{\rho}_f$. Moreover M_f is free of rank 2 over T. If f occurs at minimal level, as a consequence of our results and by the classical Ihara's lemma, we prove a theorem of raising the level and a result about congruence ideals. The extension of this results to the non minimal case is an open problem.

Introduction.

The principal aim of this article is to study some congruence properties of modular forms studying the integer cohomology group coming from a Shimura curve. This work take place in a context of search which has its origin in the works of Wiles and Taylor-Wiles on the Shimura-Taniyama-Weil conjecture. Conrad Diamond and Taylor [4] and Breuil Conrad Diamond and Taylor [1] allow one to hope that the congruence properties are predictable even in tha case of fixed type. This approach was follow by Terracini [20], in the case of trivial nebentypus. Our first result extends this work to a more general class of types and allows to work with modular forms having a non trivial nebentypus. Since we will

work with Galois representations which are not semistable at ℓ but only potentially semistable, we use a recent Savitt theorem [17], that prove a conjecture of Conrad, Diamond and Taylor ([4], conjecture 1.2.2 and conjecture 1.2.3), on the size of certain deformation rings parametrizing potentially Barsotti-Tate Galois representations, extending results of Breuil and Mézard (conjecture 2.3.1.1 of [2]) to the potentially crystalline case in Hodge-Tate weights (0,1).

1. – Deformation problem.

We fix a prime $\ell > 2$. Let \boldsymbol{Z}_{ℓ^2} denote the integer ring of \boldsymbol{Q}_{ℓ^2} , the unramified quadratic extension of \boldsymbol{Q}_{ℓ} . Let $M \neq 1$ be a square-free integer not divisible by ℓ . We fix f an eigenform in $S_2(\Gamma_1(M\ell^2))$, then $f \in S_2(\Gamma_0(M\ell^2), \psi)$ for some Dirichlet character $\psi : (\boldsymbol{Z}/M\ell^2\boldsymbol{Z})^\times \to \overline{\boldsymbol{Q}}^\times$ of order prime to ℓ . For abuse of notation, let ψ be the adelisation of the Dirichlet character ψ and we denote by ψ_p the composition of ψ with the inclusion $\boldsymbol{Q}_p^\times \to \boldsymbol{A}^\times$.

We fix a regular character $\chi: \mathbf{Z}_{\ell^2}^{r^{\times}} \to \overline{\mathbf{Q}}^{\times}$ of conductor ℓ such that $\chi|_{\mathbf{Z}_{\ell}^{\times}} = \psi_{\ell}|_{\mathbf{Z}_{\ell}^{\times}}$ and we extend χ to $\mathbf{Q}_{\ell^2}^{\times}$ by putting $\chi(\ell) = -\psi_{\ell}(\ell)$. We observe that χ is not uniquely determined by ψ and, if we fix an embedding of $\overline{\mathbf{Q}}$ in $\overline{\mathbf{Q}}_{\ell}$, we can ragard the values of χ in this field. We consider the type $\tau = \chi \oplus \chi^{\sigma}$, where σ denotes the complex conjugation.

We fix a decomposition $M=N\varDelta'$ where \varDelta' is a product of an odd number of primes and we shoose $f\in S_2(\Gamma_1(M\ell^2))$ such that the automorphic representation associated to f is supercuspidal of type $\tau=\chi\oplus\chi^\sigma$ at ℓ and special at primes $p|\varDelta'$. Let $\rho_f:G_{\mathbf{Q}}\to GL_2(\overline{\mathbf{Q}}_\ell)$ be the Galois representation associated to f and $\overline{\rho}$ be its reduction modulo ℓ . We impose the following conditions on $\overline{\rho}$:

(1)
$$\overline{\rho}$$
 is absolutely irreducible;

(2) if
$$p|N$$
 then $\overline{\rho}(I_p) \neq 1$;

(3) if
$$p|\Delta'$$
 and $p^2 \equiv 1 \mod \ell$ then $\overline{p}(I_p) \neq 1$;

(4)
$$\operatorname{End}_{\overline{F}_{\ell}[G_{\ell}]}(\overline{\rho}_{\ell}) = \overline{F}_{\ell}.$$

(5) if
$$\ell = 3$$
, $\overline{\rho}$ is not induced from a character of $Q(\sqrt{-3})$.

Let K be a finite extension of Q_{ℓ} containing Q_{ℓ^2} , $\operatorname{Im}(\psi)$ and the eigenvalues for f of all Hecke operators. Let \mathcal{O} be the ring of integers of K, λ be a uniformizer of \mathcal{O} , $k = \mathcal{O}/(\lambda)$ be the residue field.

Let \mathcal{B} denote the set of normalized newforms h in $S_2(\Gamma_0(M\ell^2), \psi)$ which are supercuspidal of type χ at ℓ and whose associated representation ρ_h is a de-

formation of $\overline{\rho}$. For $h \in \mathcal{B}$, let $h = \sum_{n=1}^{\infty} a_n(h) q^n$ be the q-expansion of h and let \mathcal{O}_h be the \mathcal{O} -algebra generated in \mathbf{Q}_ℓ by the Fourier coefficients of h. Let \mathbf{T} denote the sub- \mathcal{O} -algebra of $\prod_{h \in \mathcal{B}} \mathcal{O}_h$ generated by the elements $\widetilde{T}_p = (a_p(h))_{h \in \mathcal{B}}$ for $p \not| M\ell$.

1.1 - The global deformation condition of type (sp, τ, ψ).

We let Δ_1 be the product of primes $p|\Delta'$ such that $\overline{\rho}(I_p) \neq 1$, and Δ_2 be the product of primes $p|\Delta'$ such that $\overline{\rho}(I_p) = 1$. We define the global deformation condition of type (sp, τ, ψ):

DEFINITION 1.1. – We consider the functor \mathcal{F} which associate to a local complete noetherian \mathcal{O} -algebra A with residue field k, the set of strict equivalence classes of continuous homomorphisms $\rho: G_{\mathbf{Q}} \to GL_2(A)$ lifting $\overline{\rho}$ and satisfying the following conditions:

- a) ρ is unramified outside $M\ell$;
- b) if $p|\Delta_1 N$ then $\rho(I_p) \simeq \overline{\rho}(I_p)$;
- c) if $p|_{\Delta_2}$ then ρ_p satisfies the sp-condition, that is for a lift F of Frob_p in G_p

$$\operatorname{tr}(\rho_p(F))^2 = (p\mu(p) + \mu(p))^2 = \psi_p(p)(p+1)^2;$$

- d) ρ_{ℓ} is weakly of type τ ;
- e) $\det(\rho) = \varepsilon \psi$, where $\varepsilon : G_{\mathbf{Q}} \to \mathbf{Z}_{\ell}^{\times}$ is the cyclotomic character.

We observe that our local Galois representation $\rho_{f,\ell} = \rho_{\ell}$ is of type τ ([4]); let $\mathbf{R}_{\mathcal{O},\ell}^D$ be the local universal deformation ring associated to a local deformation problem of being weakly of type τ . Since, in dimension 2, potentially Barsotti-Tate is equivalent to potentially crystalline (ence potentially semi stable) of Hodge-Tate weight (0,1) ([9], theorem C2), this allow us to apply Savitt's result ([17], theorem 6.22) thus $\mathcal{O}[[X]] \simeq \mathbf{R}_{\mathcal{O},\ell}^D$. Moreover, the space of deformations of $\overline{\rho}_p$ satisfying the sp-condition includes the restrictions to G_p of representations coming from forms in $S_2(\Gamma_0(N\Delta'\ell^2),\psi)$ which are special at p, but it does not contain those coming from principal forms in $S_2(\Gamma_0(N\Delta'\ell^2),\psi)$. The corresponding versal ring is $\mathcal{O}[[X,Y]]/(X,XY) = \mathcal{O}[[Y]]$. The functor \mathcal{F} is representable; let \mathcal{R} be the universal ring associated to \mathcal{F} .

2. – Shimura curves and cohomology.

We put $\Delta = \ell \Delta'$. Let B be the indefinite quaternion algebra over Q of discriminant Δ . Let R be a maximal order in B. If p is a finite place we put $B_p = B \otimes_{Q} Q_p$ and $R_p = R \otimes_{Z} Z_p$. If $p \not\mid \Delta$, we fix an isomorphism $i_p : B_p \to 0$

 $M_2(\mathbf{Q}_p)$ such that $i_p(R_p) = M_p(\mathbf{Z}_p)$ and we define

$$V_0(N) = \prod_{p \not\mid N} R_p^\times \times \prod_{p \mid N} K_p^0(N), \quad V_1(N) = \prod_{p \not\mid N\ell} R_p^\times \times \prod_{p \mid N} K_p^1(N) \times (1 + u_\ell R_\ell)$$

where

$$K_p^0(N) = i_p^{-1}igg\{igg(egin{array}{cc} a & b \ c & d \ \end{array}igg) \in GL_2({m Z}_p) \mid c \equiv 0 mod Nigg\}$$

$$K^1_p(N)=i_p^{-1}igg\{igg(egin{array}{cc} a & b \ c & d \end{array}igg)\in GL_2({m Z}_p)\mid c\equiv 0 mod N, \ a\equiv 1 mod Nigg\}.$$

Let $\widehat{\psi}:=\prod_{p\mid N}\psi_p\times\chi$ be a character of $V_0(N)$ with kernel $V_1(N)$. For i=0,1 we shall consider the Shimura curves $\pmb{X}_i(N)=B_{\pmb{Q}}^\times\setminus B_{\pmb{A}}^\times/K_\infty^+\times V_i(N)$, where $K_\infty^+=\pmb{R}^\times SO_2(\pmb{R})$ and let $H^1(\pmb{X}_1(N),\mathcal{O})^{\widehat{\psi}}$ be the sub-Hecke-module of $H^1(\pmb{X}_1(N),\mathcal{O})$ on which the subgroup of $V_0(N)/V_1(N)$ with order prime to ℓ acts as $\widehat{\psi}$.

3. - Construction of a Taylor-Wiles system.

Let $T_0^{\widehat{\psi}}(N)$ be the \mathcal{O} -algebra generated by the Hecke operators $T_p, p \neq \ell$ and the diamond operators, acting on $H^1(X_1(N),\mathcal{O})^{\widehat{\psi}}$. By the Jacquet-Langlands correspondence, the form f determines a character $T_0^{\widehat{\psi}}(N) \to k$. The kernel of this character is a maximal ideal in in $T_0^{\widehat{\psi}}(N)$; we define $M = H^1(X_1(N),\mathcal{O})_{\mathrm{int}}^{\widehat{\psi}}$. By combining proposition 4.7 of [5] with the Jacquet-Langlands correspondence, we see that there is a natural isomorphism $T \simeq T_0^{\widehat{\psi}}(N)_{\mathrm{int}}$. Therefore $M \otimes_{\mathcal{O}} K$ is free of rank 2 over $T \otimes_{\mathcal{O}} K$. Since \mathcal{R} is topologically generated by the traces of $\rho^{\mathrm{univ}}(\mathrm{Frob}_p)$ for $p \neq \ell$, [14] §1.8, there is a surjective homomorphism of \mathcal{O} -algebras $\Phi: \mathcal{R} \to T$. Applying the Taylor-Wiles criterion in the version of Diamond and Fujiwara, we prove:

THEOREM 3.1. – a) \mathcal{R} is complete intersection of dimension 1;

- b) $\Phi: \mathcal{R} \to \mathbf{T}$ is an isomorphism;
- c) M is a free T-module of rank 2.

4. - A generalization of the Conrad, Diamond and Taylor's result using Savitt's theorem.

Savitt's theorem allows to suppress the assumption of acceptability in the definition of strong acceptability. In particular, if S is a set of rational prime not

dividing $N \mathcal{L}\ell$, we consider a newform $f \in S_2(\Gamma_0(SM\ell^2), \psi)$ with nebentypus ψ , supercuspidal of type $\tau = \chi \oplus \chi^{\sigma}$ at ℓ and such that $\overline{\rho}_f$ satisfies the conditions (1), (2), (4) and (5) of section 1. We assume that f occurs with type τ and minimal level. We consider deformations of type (S, τ) of $\overline{\rho}$, [4], such that $\det(\rho) = \varepsilon \psi$ and we will call this deformation problem of type (S, τ, ψ) . Let $\mathcal{R}_S^{\text{mod}, \psi}$ be classical type (S, τ, ψ) universal deformation ring and let $T_S^{\text{mod}, \psi}$ be the classical Hecke algebra acting on the space of the modular forms of type (S, τ, ψ) . Let M_S^{mod} be the cohomological module defined in §5.3 of [4], (the " τ -part" of the first cohomoly group of a modular curve of level depending on S) and let $M_S^{\text{mod}, \psi}$ be the ψ -part of M_S^{mod} . Then by Savitt's theorem and by the Ihara's lemma, $\Phi_S^{\text{mod}, \psi}$: $\mathcal{R}_S^{\text{mod}, \psi} \to T_S^{\text{mod}, \psi}$ is a complete intersection isomorphism and $M_S^{\text{mod}, \psi}$ is a free $T_S^{\text{mod}, \psi}$ -module of rank 2. We observe that $\mathcal{R} \simeq \mathcal{R}_{\emptyset}^{\psi, \text{mod}}$, $T \simeq T_{\emptyset}^{\psi, \text{mod}}$, $M \simeq M_{\emptyset}^{\psi, \text{mod}}$ so we find teorem 3.1. As a consequences we find the following results.

4.1 - Raising the level.

If f occurs with type τ and minimal level, the following result hold:

PROPOSITION 4.1. – Let $f = \sum a_n q^n$ be a normalized newform in $S_2(\Gamma_0(M\ell^2), \psi)$ supercuspidal of type $\tau = \chi \oplus \chi^{\sigma}$ at ℓ , special at primes in a finite set Δ' , there exist $g \in S_2(\Gamma_0(qM\ell^2), \psi)$ supercuspidal of type τ at ℓ , special at every prime $p|\Delta'$ such that $f \equiv g \mod \lambda$ if and only if $a_q^2 \equiv \psi(q)(1+q)^2 \mod \lambda$ where q is a prime such that $(q, M\ell^2) = 1$, $q \not\equiv -1 \mod \ell$.

4.2 - Congruence ideals.

Let g be a newform in $S_2(\Gamma_0(N\Delta_1\ell^2), \psi)$), supercuspidal of type τ at ℓ . We suppose that $\overline{\rho}$ is ramified at every prime in Δ_1 .

Let Δ_2 be a finite set of primes p, not dividing $\Delta_1\ell$ such that $p^2 \not\equiv 1 \mod \ell$ and $\operatorname{tr}(\overline{p}(\operatorname{Frob}_p))^2 \equiv \psi(p)(p+1)^2 \mod \ell$. We let \mathcal{B}_{Δ_2} denote the set of newforms h of weight 2, character ψ and level dividing $N\Delta_1\Delta_2\ell$ which are special at Δ_1 , supercuspidal of type χ at ℓ and such that $\overline{\rho}_h = \overline{\rho}$. We choose an ℓ -adic ring \mathcal{O} with residue field k, sufficiently large, so that every representation ρ_h for $h \in \mathcal{B}_{\Delta_2}$ is defined over \mathcal{O} and $Im(\psi) \subseteq \mathcal{O}$. For every pair of disjoint subset S_1, S_2 of Δ_2 we denote by \mathcal{R}_{S_1,S_2} the universal solution over \mathcal{O} for the deformation problem of $\overline{\rho}$ consisting of the deformations ρ satisfying conditions b, d, e of definition 1.1 and

- a) ρ is unramified outside $N\Delta_1S_1S_2\ell$;
- c) if $p|S_2$ then ρ_p satisfies the sp-condition.

Let \mathcal{B}_{S_1,S_2} be the set of newforms in \mathcal{B}_{Δ_2} of level dividing $N\Delta_1S_1S_2\ell$ which are special at S_2 and let T_{S_1,S_2} be the sub- \mathcal{O} -algebra of $\prod_{h\in\mathcal{B}_{S_1,S_2}}\mathcal{O}$ generated by the

elements $\widetilde{T}_p = (a(h))_{h \in \mathcal{B}_{S_1,S_2}}$ for p not in $\Delta_1 \cup S_1 \cup S_2 \cup \{\ell\}$. As a consequence of the generalization of Conrad, Diamond and Taylor's result, we have that $\mathcal{R}_{S_1,\emptyset} \to T_{S_1,\emptyset}$ is an isomorphism of complete intersections, for any subset S_1 of Δ_2 .

If $\Delta_1 \neq 1$ then each T_{\emptyset,S_2} acts on a local component of the cohomology of a suitable Shimura curve, obtained by taking an indefinite quaternion algebra of discriminant $S_2\ell$ or $S_2\ell p$ for a prime p in Δ_1 . Let η_{h,S_1,S_2} be the congruence ideal of h relatively to \mathcal{B}_{S_1,S_2} ; we know that η_{h,S_1,S_2} controls congruences between h and linear combinations of forms different from h in \mathcal{B}_{S_1,S_2} . Theorem 3.1 gives the following:

Theorem 4.2. – Suppose $\Delta_1 \neq 1$ and Δ_2 as above. Then

- a) $\mathcal{B}_{\emptyset,A_0} \neq 0$;
- b) for every subset $S \subseteq \Delta_2$, the map $\mathcal{R}_{S,\Delta_2/S} \to T_{S,\Delta_2/S}$ is an isomorphism of complete intersection;
- c) for every $h \in \mathcal{B}_{\emptyset,4_2}$, $\eta_{h,S,4_2/S} = (y_S(h))\eta_{h,\emptyset,4_2}$ where $y_S(h)$ is a well defined element of \mathcal{O} coming from the deformation problem.

5. - Problem: extension of results to the non minimal case.

Let S be a finite set of primes not dividing $M\ell$; we fix $f \in S_2(\Gamma_0(N\Delta'\ell^2S), \psi)$ supercuspidal of type τ at ℓ , special at primes $p|\Delta'$. If we modify our Galois deformation problem allowing ramification at primes in S, we obtain a new universal deformation ring \mathcal{R}_S and a new Hecke algebra acting on the newforms giving rise to such representation. We make the following conjecture:

Conjecture 5.1. $- \bullet \mathcal{R}_S \to T_S$ is an isomorphism of complete intersection; \bullet let M_S be the module $H^1(X_1(NS), \mathcal{O})_{\Pi_S}^{\psi}$ coming from the cohomology of the Shimura curve $X_1(NS)$ associated to the open compact subgroup of $B_A^{\times,\infty}$, $V_1(NS) = \prod_{p \nmid NS\ell} R_p^{\times} \prod_{p \mid NS} K_p^{1}(N) \times (1 + u_{\ell}R_{\ell})$ where $K_p^{1}(N)$ is defined in section 2, and u_{ℓ} is a uniformizer of B_{ℓ}^{\times} . M_S is a free T_S -module of rank 2.

Conjecture 5.1 easily follows from the following conjecture:

Conjecture 5.2. – Let q be a prime number such that $q \not| N \Delta' \ell^2$. We fix a maximal non Eisenstein ideal of the Hecke algebra $T_0^{\widehat{\psi}}(N)$ acting on the group $H^1(X_1(N), \mathcal{O})^{\widehat{\psi}}$. Let $X_1(N)$ be the Shimura curve $X_1(N) = B^{\times} \setminus B_A^{\times}/K_{\infty}^+V_1(N)$ where $V_1(N) = \prod_{p \not| N\ell} R_p^{\times} \prod_{p \mid N} K_p^1(N) \times (1 + u_{\ell}R_{\ell})$ where $K_p^1(N)$ is defined in section 2, and u_{ℓ} is a uniformizer of B_{ℓ}^{\times} . The map

$$a_{\mathfrak{m}}: H^{1}(X_{1}(N), \mathcal{O})^{\widehat{\psi}}_{\mathfrak{m}} \times H^{1}(X_{1}(N), \mathcal{O})^{\widehat{\psi}}_{\mathfrak{m}} \rightarrow H^{1}(X_{1}(N_{q}), \mathcal{O})^{\widehat{\psi}}_{\mathfrak{m}^{q}}$$

is such that $a \otimes_{\mathcal{O}} k$ is injective, where \mathfrak{m}^q is the inverse image of the ideal \mathfrak{m} under the natural map $\mathbf{T}_0^{\widehat{\psi}}(Nq) \to \mathbf{T}_0^{\widehat{\psi}}(N)$ and $k = \mathcal{O}/\lambda$.

This conjecture would provide an analogue for the Shimura curves of the Ihara's lemma in case $\ell|\Delta$. In [6] and in [7], Diamond and Taylor show that if ℓ not divides the discriminant of the indefinite quaternion algebra, then the analogue of conjecture 5.2 holds.

REFERENCES

- [1] C. Breull B. Conrad F. Diamond R. Taylor, On the modularity of elliptic curves over Q, J.A.M.S., 14 (2001), 843-939.
- [2] C. Breuil A. Mézard, Multiplicités modulaires et représentations de $GL_2(\mathbf{Z}_p)$ et de $Gal(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ en $\ell=p$, Duke Math. J., 115, no. 2 (2002), 205-310, With an appendix by Guy Henniart.
- [3] M. CIAVARELLA, Eisenstein ideal and reducible λ-adic representations unramified outside a finite number of primes, Bollettino U.M.I. (8) 9-B (2006), to appear.
- [4] B. CONRAD F. DIAMOND R. TAYLOR, Modularity of certain Potentially Barsotti-Tate Galois Representations, Journal of the American Mathematical Society, Vol. 12, Number 2 (April 1999), 521-567.
- [5] H. Darmon F. Diamond R. Taylor, Fermat's Last Theorem, Current Developments in Mathematics, 1995, International Press, 1-154.
- [6] F. DIAMOND R. TAYLOR, Lifting modular mod ℓ representations, Duke Math. J., 74 (1994), 253-269.
- [7] F. DIAMOND R. TAYLOR, Non-optimal levels of mod ℓ modular representations, Invent. Math., 115 (1994), 435-462.
- [8] F. DIAMOND, The Taylor-Wiles construction and multiplicity one, Invent. Math., 128 (1997), 379-391.
- [9] J.-M. FONTAINE B. MAZUR, Geometric Galois representation, Conference on Elliptic Curves and Modular Forms (Hong Kong, 1993), International Press, 41-78.
- [10] H. Hida, Congruences of Cusp Forms and Special Values of their Zeta Functions, Inventiones Mathematicae, 63 (1981), 225-261.
- [11] H. Hida, On p-adic Hecke algebras for GL₂ over totally reals fields, Ann. of Math., 128 (1988), 295-384.
- [12] H. Jacquet R. Langlands, Automorphic forms on GL_2 , Lecture Notes Math., vol 114, Springer 1970.
- [13] R. LANGLANDS, Modular Forms and \ell-adic representation, Modular Functions of One Variable II, 1972, vol. 349 of Lecture Notes Math., Springer, 361-500.
- [14] B. MAZUR, Deforming Galois Representations, Galois Groups over Q, Ed. Ihara Ribet Serre, Springer 1989.
- [15] A. Mori L. Terracini, A canonical map between Hecke algebras, Bollettino U.M.I. (8) 2-B (1999), 429-452.
- [16] K. A. Ribet, Mod p Hecke Operators and Congruences Between Modular Forms, Inventiones Mathematicae, 71 (1983), 193-205.
- [17] D. SAVITT, On a conjecture of Conrad, Diamond, and Taylor, Peprint, April 19, 2004.
- [18] T. Saito, Modular forms and p-adic Hodge theory, Inventiones Mathematcae, 129 (1997), 607-620.

- [19] R. TAYLOR A. WILES, Ring-theoretic properties of certain Hecke algebras, Ann. Math., 141 (1995), 553-572.
- [20] L. TERRACINI, A Taylor-Wiles System for Quaternionic Hecke Algebras, Compositio Mathematica, 137 (2003), 23-47.
- [21] A. WILES, Modular elliptic curves and Fermat last Theorem, Ann. of Math., 141 (1995), 443-551.

Dipartimento di Matematica Università degli Studi di Torino Via Carlo Alberto 10, 10123 Torino, Italia. E-mail: ciavarella@dm.unito.it

Pervenuta in Redazione il 13 marzo 2006