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Bollettino U. M. 1.
(8) 9-B (2006), 485-504

Local Regularity of Solutions to Quasilinear Subelliptic
Equations in Carnot Caratheodory Spaces.

GIUSEPPE D1 FAZ10 - PIETRO ZAMBONI

Sunto. - In questa nota proviamo la disuguaglianza di Harnack per le soluzioni deboli
di una equazione sub-ellittica quasilineare del tipo
m
(%) > XAy, u@), Xu(x)) + B@, u(), Xu(x)) = 0,
=1

Jj=

dove X1, ..., X, denotano un sistema non commutativo di campi vettoriali localmente
lipschitziani. Come conseguenza otteniamo la continuita delle soluzioni deboli della ().

Summary. — We prove Harnack inequality for weak solutions to quasilinear subelliptic
equation of the following kind

m

(%) 3 X Ay, ul@), Xu@)) + B@, u(x), Xu@)) = 0,
j=1
where Xy, . .., Xy, are a system of non commutative locally Lipschitz vector fields. As a

consequence, the weak solutions of (x) are continuous.

1. — Introduction.

The regularity properties of weak solutions to many kind of PDE’s have been
very well studied in the past decades (see e. g. [13], [12], [10], [16], [17], [18], [11]
and [20]). To better introduce the problem we are going to study, we outline some
previous results in the literature. Let us consider the following quasilinear el-
liptic equation
1.1) divA(x,u, Vu) + B, u, Vu) =0
where A and B are measurable functions satisfying the structure assumptions

A, u, &) <aléP™ +bluf ! +e
1.2) B, u, &) <c|éP™" + djuf " +f

CAG, u, &) (¢ — dlul’ — g
forae. x € Q C R, Vu € R, V¢ e R".
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Regularity properties of weak solutions to (1.1), in the case when the lower
order terms belong to Lebesgue classes, were settled out in the celebrated work
[14] (see also the classic book [9]). However, it is easy to realize that Lebesgue
classes are not natural to study regularity properties as continuity or Holder
continuity. In this direction, the results in [14] and [9] have been greatly im-
proved (see e.g. [12] and [13]) assuming the lower order terms in some classes of
Morrey type which have been found to be the natural classes were to put the
lower order terms in order to obtain hélder continuity of the weak solutions.
Indeed, holder continuity of weak solutions is proved for equations of the kind

div A(x, u, Vu) + B(e,u, Vu) = u

where u is an appropriate Radon measure and, following the classical pattern of
[9], the LP assumptions have been replaced by the strictly more general Morrey
type conditions.

In [18], one of us, using a technique inspired by [14], gave some improvements
of the results contained in [13] and [12]. In [18] an invariant Harnack inequality
and the local hélder continuity for weak solutions of equation (1.1) were proved.
We stress that the assumptions in [18] are sharp in the Morrey scale.

It is worthwhile to recall [10], where, assuming the a priori boundedness of
the solutions, Harnack inequality and hélder continuity for the solutions of (1.1)
are proved. In [10] the Author considered structural assumptions which are more
general than those in [18], at least in some instances.

All the above mentioned papers are devoted to the study of the hélder con-
tinuity of the solutions of equation (1.1). We like to recall the work [20] (see also
[11]) where the coefficients in (1.2) are taken in a suitable class of functions of
Stummel-Kato type. These classes properly contain the Morrey spaces where
the coefficients in the above listed works are assumed to belong. In [20], fol-
lowing the pattern of [14], Harnack inequality is proved for the non negative
solutions of (1.1) and, as a consequence, it is obtained the continuity of the so-
lutions of (1.1). A crucial role in [20] is played by a Fefferman-Phong embedding,
established in [19], used to estimate products of coefficients times test functions.
The reader is referred to the enlightening paper of F. Chiarenza [3] for further
details.

Very recently, this kind of results have been generalized to the setting of
Carnot — Caratheodory spaces. These are metric spaces whose distance is
generated by the sub-unit curves associated to a system of non-commuting
vector fields. The non-commutativity of the vector field is one of the main dif-
ficulties in this new context. In this direction we quote the papers [2], [5], [6], [8]
and also the bibliography therein, where the above mentioned problems are
studied in the subelliptic context.

In order to state the results we need some notations. Let us consider a system
X = (Xy,...,X,,) of non commutative vector fields in an open set Q C R" with
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locally Lipschitz continuous coefficients. We write
X ijk ) jkEszloc(-Q) ]—1 kzl,...,n,

and denote by X = — ;;%(bjk -) its formal adjoint. Let  : @ ¢ R” — R be a

1
function. We set Xu = (Xju, ..., X,u) and | Xu| = (Z X; u)2> where, as usual,
J=1
Xju(r) = (X;, Vu(r)) identifying the X;’s with the first order differential op-
erator that acts on u € Lip(Q2) via the above formula.
In the sequel we set

Q) ={uellQ : Xuecll(Q),j=1,....m}, 1<p< oo,

and for any u € LYP(Q)
(1.3) lully, = llull, + [ 1Xul ||,

The completion of the set C;°(€2) with respect to the norm (1.3) will be denoted
by Si7 ().

A piecewise C! curve y:[0,7] — R" is called sub-unit, with respect to the
system X, if whenever y/(f) exists one has

@), < X0w),8°  VEER"
j=1

The sub-unit lenght of y is by definition ig(y) = T. Given .,y € R", we denote
by @(x,y) the collection of all sub-unit curves connecting « to y. Then
d(x,y) = inf{ls(y) : y € &(x,y)} defines a distance, usually called the Carnot
Caratheodory distance generated by the system X. We will denote B(x,r)
= {y € R" : d(x,y) < r} the metric ball centered at x of radius  and whenever x
is not relevant we shall write B,. We shall denote with d,(x,y) = |x — y| the
Euclidean distance in R" .

We now introduce the relevant quantitative assumptions we will need in the
sequel.

(AD). 7:(R",d,) — (R",d) is continuous.
(A2). (Doubling condition). — For every bounded set Q C R" there exist costants
Cp, Rp > 0 such that for xy € Q and 0 < r < Rp one has

|B(x,27)| < Cp|B(xy, )|

(A3). (Weak-L! Poincaré type inequality). - Given Q as in (A2), there exist po-
sitive constants Cp and a >1 such that for any x) € Q, 0<r < Rp and
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u € CY(B(xy, ar)), one has
iu}g [A[{x € B(xo,r) : |w(x) — Upe,»| > 2} < CpR f | Xu|de,
>

B(xg,ar)

where Up, r denotes the integral average |B(xy, 1ﬁ)|71 f w(y) dy.
B(xy,r)

Finally we put
Q= lOgZ Cp,

and we shall call it the homogeneous dimension of Q.
Let Q be a bounded open subset of R" with homogeneous dimension . The
equation we consider has the form
m
(1.4) 3 X Aja, ue), Xu(@)) + B, u@), Xu(@) = 0,

=1
where the functions
A, u,8): Q2 x Rx R™ - R™

and
Bx,u, &) : 2xRxR" =R

satisfy the structural assumptions (1.2) with p a fixed number in ]1, Q[.

Concerning the regularity properties of the solutions of (1.4) we recall the
paper [2] where Harnack inequality and local hélder continuity are proved in the
case when the vector fields X satisfy Hérmander condition and the coefficients
are taken in suitable Lebesgue spaces.

Later, in [5] e [6] similar results are obtained in the setting of Carnot
Caratheodory spaces with more general assumptions involving Morrey spaces
related to Carnot Caratheodory metric (see Definition 1.4). However, their as-
sumptions do not recover the sharper conditions of the classical euclidean case
(see e. g. [18]). Despite of this we stress that the assumptions in [8] give back the
classical sharp ones. To introduce our assumptions we state the following defi-
nitions.

DEFINITION 1.1. (Stummel-Kato class). — Let V € L}, (), r > 0and p € 11, Q[.
We set

d(x,y) 1% G y) a
= IF-T7"F 7oy |B(z,d(z,y))|
Pr(n) o B(x[)mw(ac, @, y)| (B(mfr)m| @ |B(Z’d(z’y))dz> d?/

p—1

We say that a function V € L}, () belongs to the space (Mx),(Q) if and only

loc
if ¢y (v) is finite for any r > 0 and, in addition, liI(I)l ¢y(r) =0.
r—0+



LOCAL REGULARITY OF SOLUTIONS TO QUASILINEAR SUBELLIPTIC ECC. 489

We will call ¢,(r) the (Mx),, — modulus of V. It is not difficult to prove that
¢y (r) is a continuous function.

REMARK 1.2. — We wish to point out that the function ¢ (r) satisfies the
doubling property, i.e.

3C > 1:¢,@r) < Cop(r), r>0.

DEFINITION 1.3. — Let 1 < p < Q. We say that V € (Mx),(L2) belongs to the
class (M X);, Q) if

) 1
35>0:f@dt<+oo.
0

REMARK 1.4. — We wish to point out that in the euclidean case X; = 0,,, then
(Mx), gives back the class M), introduced in [20], which, for p = 2, coincides with
the classical Stummel Kato class.

Referring to (1.2) we assume that a = constant and b(x), c(x), d(x), e(x), f(x)
and g(x) are measurable functions such that

(15) D), (@), @), dw), f@), 9) € Mx))(Q).

Following the classical Moser’s iteration technique, as adapted by J. Serrin in
[14] to the quasilinear case, with the aid of the Fefferman-Phong type inequality
(Theorem 2.1) and related Corollary , we are able to prove the local boundedness
of the solutions (Theorem 3.1) and the Harnack inequality for non negative so-
lutions of equation (1.4) (Theorem 3.2). As a consequence of the Harnack in-
equality we obtain the continuity of the solutions of (1.4) ( Theorem 3.3).

Now, in order to compare our hypotheses with those in our previous paper [8],
we need one more definition.

DEFINITION 1.5. (Morrey spaces) — Let p € [1, +ool. We say that V € L (Q)
belongs to L (Q), for some 1. > 0, if

1
, P
7
Vioion = —_— f VP d ;
IWVllzg0) = sup (IB(oc,r)ﬂQ V@ y) <
0<r<dy Bx,r)NQ

where dy = min (diam(Q), Rp).

REMARK 1.6. — It is trivial that in the euclidean case L%A gives back the
classical Morrey space LP" ",
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In [8] we assumed
1.6) b, e, @), d@), f(x), gle) € LA 4(Q),  for some &> 0.

We can give a comparison between the classes introduced above. Indeed,

PROPOSITION 1.7. — Let 1 < p < Q and 0 < ¢ < p. If V € L\ "“(Q) we have
¢v(r) < C(Cp, p, |V -7
for any 0 < r < Rp and then
Ly (@) € (M), ().
PRrOOF. — Setting
Alry,re ) ={y € Q : r <d(x,y) <},

we have

1

@, ) d(z, y)
/ _|B(9c_,d(ac,y))( | Velgg g dz) 2

{yeQ:dxy)<r} {zCQ:d(z,x)<r}

-

Ras _ dy) J dz,y)
= V@) —=—ri—d d
; f )|B(g(; dGe, )| kz A f w)l @) B, de )] Y
+00 V J _r_ "
2F
<cerr). | gam| Smesy | vela|
j=1 AOZ,) 2] k= 2] A
+00 J +1
< CCo. IV 22] ( )
=177 \k=0
= C(Cp, p,e)IIVll LT o

2. — Preliminary results.

This section contains some useful tools to obtain our results.

THEOREM 2.1. — (see [7]) Suppose (A1)-(A3) hold true, and consider a boun-
ded open set Q C R", with homogeneous dimension Q. Let 1 <p < Q. Let



LOCAL REGULARITY OF SOLUTIONS TO QUASILINEAR SUBELLIPTIC ECC. 491

V € (Mx),(Q). Then it exists a positive constant ¢ independent of u such that

f V@) @) dx < ey (2r) f Xu() P dae
Q Q
for any u € S(l)’p () supported in B,.

The next corollary is an easy consequence of the previous Theorem. It can be
obtained via a standard partition of unity (see e.g. [7]).

COROLLARY 2.2. — Under the same assumptions of Theorem 2.1 we have that

for any a > 0 there exists a positive function K(o) ~ W such that
14

f V@) @) di < o
Q

Xu@)|” dz + K(o) f (@) |P de,
Q Q

for all w € S;P(Q).
The following lemma will be useful during the iteration procedure.

LEMMA 2.3. - Let u(r) a continuous positive increasing function defined in
10, +oo[ such that liH(l) ur)=0,0<0<1
r—

The series
+oo .
> _0log (0™,
i=0

where g > 0, is convergent if and only if there exists p > 0 such that

S

P
f,wgt) dt < +oo0.
0

Proor. — We claim that

S =

»
fut(t) dt < 400
0

if and only if the serie
+00
Z (Oa; — at1)
i=0

is convergent, where

a; = 0'log  (u(p)0™).
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Indeed
u(p) 1

f 5 71 ds
ws) (= i(s))

-cl'—‘

[

heo  HOOT 1
= Z > 41 ds
1) 1 ()

(p)(ﬂ( i+1)

+00 . .
<> {ip)0ogu {(u(p)™)

1=0

1. ,
— )0 ogi (o) §

b +00
= ﬂ—q;p) > (Oa; — aipy).
=0

In analogous way it is shown that

P o1

7 +00
f“T(t) dt > ;(ﬁai —aj.1)

0

and the claim is proved. oo
Then, since the two series > (fa; — a;,1) and Z a; have the same behaviour,
the conclusion is obtained.  ° =0 O

The following lemma will play a crucial role to obtain the continuity of the
solutions of (1.4).

LEMMA 2.4. — (see [11]) Let 0 <y <1, h:]0,4+oc[ — ]0,+oc[ a non de-
creasing function with 1111% ) = 0, such that

2.1) () < Ch(t/2) Cc>1
and o : 10, +oo[ — 10, +ool a non decreasing function.

If
2.2) w(p) < ywdp) +h(p)  Vp<py <1

then there exist p < p,, 0 < g <1 and a positive constant K such that

olp) < Kr(p)  Vp <p.

Proor. — Let p > 0 be such that hi(p) < 1 for p < p. Set p = min (p, py), we
choose R > 0 such that R < p.
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Ifpe [g,R], letting

a(p)
M= sup ——,
[R/482] h(p)
we have
(2.3) a(p) < Mh(p).
R R
Ifpe 210 by (2.2) and (2.3) we have

w(p) < yMh(dp) + hip) < yMh®(4p) + 17 (p)
for every ¢ : 0 < ¢ < 1. Fixing ¢ such that
0¥ =a <1
where C is the constant in (2.2), we obtain

w(p) < (Ma + DR (p).

Iterating this procedure, if p € [45% , %] , we have

i-1
) 1
< i k g < o
w(p) < (Ma + kE:O o >h (p) < [M—i-—l — a]h (»),
and the conclusion is obtained with K = M + ﬁ O

Finally we recall the following definition.

DEFINITION 2.5. — A function u € Llllo‘i’ () is said to be a weak solution of (1.4)
m Qif
2.4) Z f A, ulx), Xu(x) X () do + f B, ux), Xu(x))p(x)de =0
=10 Q

for every ¢ € Sy?(Q).

Definition 2.5 is meaningful by Theorem 2.1.

3. — Main results.

The purpose of this section is to provide an Harnack’s inequality for non
negative weak solutions of equation (1.4) and, as a consequence, to obtain the
continuity of its solutions. We will follow the classical Moser’s iteration techni-
que, as adapted by J. Serrin in [14] to the quasilinear case.

We begin showing that weak solutions of equation (1.4) are locally bounded.
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THEOREM 3.1. — Suppose (A1)-(A3) hold true. Let Q be a bounded open set with
local homogeneous dimension Q and u € £ll(;f (Q), with 1 <p < @, be a weak
solution of (1.4). Assume that conditions (1.2) and (1.5) hold. Then, there exists a
positive constant C, independent of u, such that, for any B, = B(xg,r) for which
B(xy,4r) C Q and r < Rp, we have

1 P
%], < C (m f |u|pdac> +h(r)

Ba,

where

h(r) = {@561%(27-) + %(2@] Py [¢f(2f,-)],ﬁ.

Proor. - Set
v=|ul+nh
where h = h(r) is as in the statement of the theorem, by (1.2) we deduce
|AGe, u, &) <a|éP~ + byoP

@3.1) IBGe,u, O] <l + dyfof !
éA(ﬁC,u, é) Z|é|p - dl‘v|p

where by and d; are defined by
bi=b+h'Pe , di=d+h"Pf+hPyg.
It is easy to see that b’{pj and d; belong to the class (M X);J(BM.). Moreover

¢b11%(ﬂ) < C(p) [%%(ﬂ) + h‘%e%(p)} < C(p) {gbbp%(p) + 1}

and
$4,(0) < CD)[4(0) + P8 (p) + P, (0)] < C)[$y(p) +2],

for any 0 < p < 2r.
For fixed numbers ¢ > 1 and [ > h, we consider the functions

p? if h<ov<l]
F(v) = 1 ,
Qi — (-7 if I<w
and
G(u) = sign u{lf’(v)[ﬁ”(v)]p‘1 — qpflhﬁ} u €] — 00,400,
where f such that pg =p + f — 1.
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As a test function in (2.1) we take
p(x) = 1" (2)G(u),

where 7(x) is a non negative smooth function with support in B,
Substituting ¢(x) in (2.4), by conditions (3.1), we obtain as in [14]

3.2) f | Xl de < ap f (Xl |Xaw) P~ due
By, By,

+¢"p [ bal&nuwlmol ™! d+ [ elpollnx)P ! da
Bz,« BZV

++p)g [ dafol? de
Ba,

where w = w(x) = F(v).
With the aid of the inequality

abP1 < 181770(1” + (1 — l)f,bp, Ve >0
p p
we have

(3.3) fﬂ’“\XWI” dr < C(p7a)qp1{ fIW(Xn)I” dx +fV|77WI“’ d%},
Bz,« BZ)- BZ?'
where V is defined by
V= b’# +c +dy.

This implies that V € (Mx),,(Bay).
Moreover ¢;,(p) is such that

y(p)<C (p){fﬁb%(p) + ¢ (p) + ¢d1(/))}

< CO{8,2.() + 8. + ¢, + 3],

for any 0 < p < 2r.
Using Corollary 2.2 we get

[ X de < Cq“{(l +0) [ et da

By, By,

+o anw|pd9c+K(a)f17”wpdac} Vo > 0,

Bs, By,

495
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where

a

}QH}’

K(o) ~
'@

and C is a positive constant independent of w.

Fixing ¢ = 20(1%, we obtain

fnp|Xw|Pdm < C{qp 1f|X,7|Pwpdac+qp 1K<ZC o l)fn”wpdac}

BZr BZ;

By Sobolev inequality we have

P

3.4) ( f Il dx)

By,

p—1 p p—1
SC—|B| {q Bf|X;7|w7’dx+q K(Zcp 1>fnpw”dx}

where p* = and C is a positive constant independent of .

Let now 7'1 and 1o satisfy r < r; < 1y < 27 and choose 7(x) so that #(x) =1 in
= B(xp,71), 0 < 5(x) <1in B,, and |Xy| < . Substituting this function in
(3 4) we have

- 1 1
* < pfl
( [w dx) c— ‘B ; —(TZ — K (2—qu1 )Bf w? da,

B,

— rp—r1°

that is
Q

+p
(prldac>/§0 Tpﬁ 1 5 11 prdx,
i |B,[a(r2 —11) o1 < > 5,

Cqpr-1

Letting [ — + oo, w — v? and then we have

B,

"

Uz 1
f W dy | < Chi " - 1 - 1 f P do
B2 (ry 1) | 41 (L)
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Set y = pq, we have

1
y

1 1
Hv”Lﬁ(B,,.I) <@

7 (2 ) ol
B, \72 =11 N Q+p Li(Byy)"
¢V C(l)ﬁfl

P

Set
Vi =X’
and
P
T = T.+§7
where 1 = 1,2, ..., we have
1
prt
21+1 1
9]l i1 B, SC”/ VLB, )
DG, ) o (¢,1 ) ol s,
V. \Cy-Di

Iterating the previous inequality, we obtain
1

i
+00 1 b

1
||7)||L°C(B,,‘) <C|B,[ ™ H 7 0
oL (o))

”v”LP(BZV.)'

We stress that

400 1
H BV | < +00
(&' (7))

if and only if the series
s 1 1
S Luuw ()

is convergent. The conclusion thus follows by Lemma 2.3. O

THEOREM 3.2. — Suppose (Al1)-(A3), (1.2) and (1.5) hold true. Let Q be a
bounded connected open set with homogeneous dimension Q. Ifu € £1OC (Q) with
1 < p < Q is a nonnegative weak solution of (1.4), then there exists a positive
constant C, independent of u, such that, for any B, = B(xy,r) for which By, C Q
and r < Rp, we have
maxu < C{r%inu + h(r)}

B,
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where

1
n—1

W) = 6 2 (2) + ¢g<2r)]'l" + [¢en]™

PROOF. — Proceeding as in Theorem 3.1, setting v = |u| + h, with & defined by

1
p—1
)

h= |9 2,81 +¢,6n]"+ |46
we deduce the new conditions (3.1) and then, taking as a test function in (2.4)

p(@) = (e (v),

where 7(x) is a non negative smooth function with support in B, and ff € R, we
have

(3.5) f 1Xv|P P dae < Ci(p, a)d + ﬁ|1)p{ f | Xy[PoP L dae

By, By,
—&—anpv”*ﬂldx},
By,
where V is defined by
V=B 4o +dy.
Setting

@) = v1(x) where pg=p+p—-1 if f#1-p
Y logo@) it p=1-p

by (3.5) we have

3.6) [ Xl dw < C1lgP (1 + |/f|1>”{ J xnpur da

Bs, Bs,

+fv;7pwpdx} i pA1—p

Bs,

and

3.7 f;7P|Xw|pdac<Cl{f|X;7|”dx+an”dac} if f=1—p.

B 3r B 3r B 3r
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We consider first the (3.7). By Theorem 2.1, we have

fVﬂp dx < CZ¢V(1)f | X3P da

B3r B 3r

and then, from (3.7), we have

3.8) f P\ Xwl? dee < C3(p, a, by, diam Q) f Xnl” da.
Bgr BSr

499

Let Bj, an arbitrary open ball contained in By,. Choosing 7(x) so that n(x) = 1

in By, 0 <5 <1inBs, \ By and |X7| < by (3.8) we have

B 1

Therefore, by Poincaré and John-Nirenberg lemmas (see [1]), there exist
two positive constants py and C5 depending on the same arguments of Cy,

such that
1 1
1 "1 "
Pow - —pow
3.9 <|32r| fe doc) (B2r| fe dm) < Cs.
BZr BZr
Set

D(p, 1) = ( G dac)
By

for any real number p # 0; by (3.9), recalling that w = logv we have

1
+ P(po, 2r) < C5|Bay[0 D( — po, 2r).

|B27'|p0

(3.10)

We consider now (3.6). By Corollary 2.2 we obtain

fIXWIWdOKC{(IQI”H)(Hw) fIanpwpdx

B,
Q+p

1 fnw’dx

sl (1+) )| A

+
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By Sobolev inequality we have

P
%

e , 1\
11 Py | <C— P2 (1 ) XnPw? d
(3.11) (flnw| x) _CIBTI%{(M +2)(1+ 5 [ X e

B31" BSr

Q+p

1
+ ¢§1<|q|_p(1 +W1‘)7p> B{ﬂp’wpdx )

where p* = é% = py and C is a positive constant independent of w.
Let 7, and 73 be real numbers such that » < r; < 12 < 2. Let the function #
be chosen so that n(x)=1 in B,, 0 <xlx) <1 in B,,, ) =0 outside B,,

IX7| < £ By (8.11) we have

— rp—ry”

L
wP* p*

P
f | <1 _qr+2
e B, (r2 —71)"

Q+p
1\” 1
x<1+m) (0 B{w”dm.

Putting y = pg = p + f — 1 and recalling that w(x) = v7(x), we have

1 1

1 ! 1 1\«

D(yy,1) < C 4 - | (q” + 2)r (1 +—>
|B,[¢ 1Bl

Q;Tp
1 1
(3.12) X 7+ D(7,72),

' (IQ\_’” (1 +ﬁ) _p) (rg — 71y

for positive y #p — 1, and

Q+p

o\’ ) 1 1
(3.13) D(yy, 1) > Cr T (IQIp+2)?l —— ] - D(y, 12),
1 (Bm) &A™ ey

for negative y. These are the inequalities which we wish to iterate. In order that
(3.12) be applicable at each stage, we choose an initial value p;, < po in such a way
that the point p = 1 lies midway between two consecutive iterates of p, and for
1=0,1,..., welet

pi = 1'p)
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and
"
=7+ E .
Thus we also obtain
1

Iterating (3.12) and using Lemma 2.3 to prove the convergence of the itera-
tion procedure, we have

(3.14) B(c0,7) < C(p, a, ¢, diam Q)| B, [0 D(po, 2r).

Now if y; = y'po and r; = r + 3, the iteration of (3.13) yields

1
3.15) D(— 00,7) > C(p, a, ¢y, diam )| B, [0 d( — po, 2r).
Therefore, from (3.10), (3.14), (3.15) and noting that from Holder’s inequality

O(p},2r) < Dlpo 20|BI10 7,
we obtain
D(00, 1) < CP(— 00, 7)
where C = C(p, a, ¢y, diam ), that is

B, .

maxugC{minu+h}. O

REMARK 3.3. — We wish to note that the proof of Theorem 3.1 works also with
weak subsolutions of (1.4) and the proof of of Theorem 3.2 provides a weak
Harnack inequality for non negative weak supersolutions (see [15]).

By a standard argument Harnack’s inequality implies that weak solutions of
(1.4) are continuous with respect to the Carnot Caratheodory metric d(x, ).

THEOREM 3.4. — Suppose (Al1)-(A3), (1.2) and (1.5) hold true. Let Q be a
bounded connected open set with local homogeneous dimension Q. Let
u e LYP(Q), with 1 < p < Q, be a weak solution of (1.4) with sup |u| =L < +oo.
Then u is continuous.

ProoOF. — By Theorem 3.1 we have that
lux)| < L

in every arbitrary open subset @ of Q, where L is a positive constant depending
onun,p,da, ¢el%l(1), $:(1),¢,(1) and &'
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Let B, be an arbitrary ball contained in €', the functions

M(r) = maxu, m(r) = minu
B, B,

7 7

are then well defined in B,.

Set
u=M(®)—u,
it follows that  is a non negative weak solution in B, of the differential equation
m
(3.16) > XFAj(e,u, Xu) + B, w, Xu) = 0,
=1

where A(x, %, &) and B(x, 7, &) are defined by

AQw,u,8) = —Ae, M — i1, &)
B, &) = B(e, M — 7, —0),
and satisfy
A, 7, 0| <a|EP ' +bfal” ' +e
(3.17) \B(x, 7, &) <c[EP~' +dfaPt +f
EA,u,8) (&P — dul’ — g

where b(x), d(x), &(x), f(x) and g(x) are measurable functions belonging to (M. X);,
defined by

b(x) =2Pb(x)
d(x) =2Pd(x)
(3.18) a(x) =2Pb(x) [Pt + e(x)
f@) =2Pd(@)LP" + f ()
g(@) =2Pd(x)LP + ().

By Theorem 3.2 we have

3.19) max ul) < C (nllgip ux) + E)

3 3

where

€= C(p.a,8 2,1, 4, 1),4,0)

1
n—1

Ezmmszm+%@i@wﬁ.

er—1
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Note that % is a positive non decreasing function with lir% h(r) = 0, such that
— —
—) > .
h(z) >Kh(r) , 0<K<1
By (3.19) we have
r ™ |7
. —m(z) < —M|(= .
(3.20) M) m(g) < C[M(r) M(S) + h(r)}

In the same way, setting

w=u—m)
we obtain

r

3 3

3.21) M(g) — m(r) = max7 < C<mina+h> -

= C[m(5) - m) + 7).

Adding (3.20) and (3.21) we have

M(f)—m(“”) C= L) — mr) + C1K2h( 4)

3 C+1
Set, for p > 0
w(p) = M(p) — m(p),
Cc-1
oS
and
) = o KR,
then
of3) <ol3) <o +a()
The conclusion follows by Lemma 2.4. O

REMARK 3.5. — Using Proposition 1.7, it is trivial to note that the results listed
in this Section come back the analogous ones in [8].
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