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Bollettino U. M. 1.
(8) 9-B (2006), 445-484

Existence and Nonexistence Results
for Quasilinear Elliptic Equations Involving the p-Laplacian.

BOUMEDIENE ABDELLAOUI - VERONICA FELLI - IRENEO PERAL (¥)

Sunto. — L’articolo riguarda lo studio di un’equazione ellittica quasi-lineare con il p-
laplaciano, caratterizzata dalla presenza di un termine singolare di tipo Hardy ed
una nonlinearita critica. St dimostrano dapprima risultati di esistenza e non esi-
stenza per lequazione con un termine singolare concavo. Quindi si passa o studia-
re 1l caso critico legato alla disuguaglianza di Hardy, fornendo una descrizione del
comportamento delle soluzioni radiali del problema limite e ottenendo risultati di
esistenza e molteplicita mediante metodi variazionali e topologici.

Summary. — The paper deals with the study of a quasilinear elliptic equation involving
the p-laplacian with a Hardy-type singular potential and a critical nonlinearity.
Euxistence and nonexistence results are first proved for the equation with a concave
singular term. Then we study the critical case related to Hardy inequality, provi-
ding a description of the behavior of radial solutions of the limiting problem and
obtaining existence and multiplicity results for perturbed problems through varia-
tional and topological arguments.

1. — Introduction.

In this paper we study the following elliptic problem

© .
—dyu= o7 |u]9 u+ g(x) |u|?” " tu, in RY,
x

w(x) >0, wue®PRY),

@

where N=3,1>0,0<q<p—1,1<p<N,and p* = Np/(N — p) is the criti-
cal Sobolev exponent. Here M ?(RY) denotes the space obtained as the com-

(*) First and third authors partially supported by Project BFM2001-0183. Second
author supported by Italy MIUR, national project «Variational Methods and Nonlinear
Differential Equations».
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pletion of the space of smooth functions with compact support with respect to

the norm
1/p
Il = { f 17upas)

RN

Notice that the potential 1/|x|” is related to the Hardy-Sobolev inequality.
More precisely we have the following result.

LEMMA 1.1 (Hardy-Sobolev inequality). — Suppose 1 <p < N. Then for all
ue M- P(RY), we have

- _ N-pY
2) f|u|”|9c| pde/lN}pf|Vu|pdac, AN,p=(—) :

RN RN p

Moreover A ﬁ}p is optimal and it is not achieved.

In bounded domains the above problem has been studied in [2], [5], [7],
[11], [12], [13], [14] and [18] (see also the references in these papers). In the
whole RY and for p =2 there are some results in [21] and in [1].

Let us briefly recall the known results for bounded domains and 2 =g =1,
because it will be useful to give some insight to the problem in RY.

In the case in which ¢ = p — 1 and @ is a starshaped domain with respect to
the origin, a Pohozaev type argument proves that there is no positive solution
in W P(Q). If ¢>p —1 and k(x) = 1, there is no positive solution even in the
stronger sense of entropy solutions (in the case p = 2 this notion of solution is
equivalent to the distributional one). This nonexistence result is also true in
the case g=p—1and 1>y ,.

Finally if 0 < ¢ <p — 1, there exists some 1* > 0 such that the problem has
solution for A€ (0, A*] and has no solution if A > A%,

This paper is organized as follows. Section 2 is devoted to the study of the
case ¢ <p — 1; we prove the existence of 1* > 0 such that for any 1 < 1* there
exists a positive solution. Some results on comparison of solutions and nonexi-
stence for large A are also obtained.

Section 3 deals with the case g=p—1,h=g=1,and 0 <A <Ay, ,. In this
case we prove the existence of a one dimensional manifold of positive solutions.
In subsection 3.2 we analyze the behaviour of radial solutions and we get an
uniqueness result modulo rescaling. Notice that, in the case p =2, the result
obtained by Terracini in [25] gives a complete classification of solutions since
moving plane method can be applied in such a case.

Section 4 is devoted to the study of nonexistence and existence for the case
g=p—1, g=1, and h satisfying suitable conditions. We will use the concen-
tration-compactness principle by P.L. Lions to prove that the Palais-Smale
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condition holds below some critical threshold, thus obtaining existence results
under some condition on . The same analysis can be carried out if we assume
that A =1 and ¢ satisfies some convenient conditions.

In the last section multiplicity of solutions is proved in the case in which
h =1 and g satisfies some conditions. Such multiplicity results are obtained by
using some variational and topological argument as in [1].

h ©Q bounded Q=R¥
g<p-1 nonconstant | existence existence
g<p-—-1 constant existence non existence
g=p-—1 constant non existence in starshaped domains | existence
g>p—1 constant non existence non existence

Acknowledgment. Part of this work was carried out while the second au-
thor was visiting Universidad Auténoma of Madrid; she wishes to express her
gratitude to Departamento de Matemaéticas of Universidad Auténoma for its
warm hospitality.

2. — The concave case related to the p-Laplacian.

Throughout this section we assume that 0 <g<p —1 and g =1, namely we
deal with the following problem

Ah(x) u?
—Ad,u=———+
®3) ||?
w@) >0, ue® PRY),

#* .
u?" "1, in RY,

where 0 <g<p—1 and % is a positive function such that

h“(x
(h) f (,)dx<oo where Q=L.
N L p—(g+1)
R
For simplicity of notation we set

p—(g+1)

h*(x) ’
Lu(‘xlfpdx) = ( » d.%'
AT

We will use the following version of the well known Picone’s Identity in [19].
For the proof we refer to [2](see also [3]).

Ik
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THEOREM 2.1. — If ue @' P(RY), u=0,ve WP (RY), —4,v=0is a boun-
ded Radon measure, v=0 and not identically zero, then

u?
f|Vu|p;fvp_l(—A,,v).
RN

RN

As an application of Theorem 2.1, we get the following lemma, the proof of
which can be obtained as a simple modification of the argument used in

[2].

LEMMA 2.2. — Let u, ve MV P(RY) be such that

h(x) u?

—A,u=
@ ]
u>0 i RY, wue®PRY),

, in RY,

h(x) v
—A4,v<s 1

) ]
v>0 in RY, wve® PRY),

n RY,

where 0 <q<p—1 and h is a nonnegative function such that h0. Then
uzvin RY,

As a direct consequence we have the following lemma.

LEMMA 2.3. — The problem
X
—A,w=——w" in RY,
®) ER

w>0 in RY, we®P(RY),
with ¢ <p—1 and h satisfying (h), has a unique positive solution.

Proor. — Existence can be proved by using a classical minimizing argu-
ment. To obtain uniqueness one can use Lemma 2.2. =

Week solutions to problem (3) can be found as critical points of the
functional

1 2o(h
M ) = —f|Vu|”dac— B G
Py g+1y x|

1 N
] e — — f |w|P” da .
p* 5

Using Hoélder, Hardy, and Sobolev inequalities we obtain that for some positi-
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ve constants ¢ and ¢;

ol b — < o
+1 a5 P(RY) p*

1 «
J/’l(u) = —||u||€>l,ﬂ(RN) - ;;DI,P(RN), Vue @LP(RN).
p

Therefore we get the existence of a e RY, r,> 0, and 1, > 0 such that for any
Ae[0, 1] there holds

1) J;(u) is bounded from below in B, = {uwe @ P(RY): [[ullgr. oy <70}
and [ = inf {J;(u) for ueB, } <0;

2) J,(w) = a>1I for |jul| = r,.

To prove that the minimum is achieved we need the following lemma.

LEMMA 24. — Let C(N, p, q, h) be such that

1 _axt 1 1
— s =24y, (— - —) Wl e -ran st =
N g+1 p*

“CN, p,q, h)ATT, V¥s>0.

Then for any sequence {u,}c M"P(RY) with
1 _~ _r
® Ji(n,) e <ed) = =87 ~CW, p, g, R AT and T (w,)—0,

where S is the Sobolev constant for the p-Laplacian, there exists a subsequen-
ce that converges strongly in M“P(RY).

ProOF. — We use the following result which can be proved by adapting the
argument used in [6] for the Laplacian.

LEMMA 2.5. — Let {u, } c D" P(RY) be a sequence satisfying the hypotheses
of Lemma 2.4. Then for any n >0 there exists o >0 such that

f |V, [P de < .

[z] >e

We come back to the proof of Lemma 2.4. Since {u, } is a Palais-Smale se-
quence, it is bounded, i.e., ||, |l@1.»zv) < M, then up to a subsequence still de-
noted by {u,},

1. u,—u in DV P(RN);

2. u,—u, almost everywhere and in L% (RY) for any ae[1, p*).
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Using the Concentration Compactness Principle by P. L. Lions (see [15])
we conclude that {u,} satisfies

1. |Vu,b|p—‘d/‘u2 |Vu0|p+ 2/1]6].
|un|p*édv— |uo |P" + v 0.
Je
3. Sv r* <u; for any jeJ, Where J is an at most countable set.

Then it is not difficult to prove that either v; =0 or v; = u;. Therefoye, 1f
the singular part is not identically zero, i.e., if v; # 0, we have that v; =S
view of hypothesis (h) and weak convergence of {un}, Vitali’s Convergence
Theorem yields

h(96)|un|‘7+1 fh(ao)|uo|"+1

RN EE

If we assume that v; = 0 for some j, then, for ¢ >0, we have

1
cte >J/I(un) - _*(J,(un)’ un) =
P

= [ 1vu - ( _L)fhww“
" qg+1 p* ||”

naV RN

and, since ¢ is arbitrary, using the definition of C(N, p, q, ) we obtain
that

1~ :
o) > e = =87 —CN, p, q, By AT

which is a contradiction with the hypothesis on ¢(4). Then v; = u; =0 for all j
and u, —u, strongly in M"P(RY). =

Notice that for A small, ¢(1) > 0, therefore since I <0 we get the existence
of uge M P(RYN) such that J; (u,) = J;( | %o |) =1 <0. Then problem (3) has at
least a positive solution for A small.

We set

@ = {2 >0 such that problem (3) has a positive solution},

then using Lemma 2.2 and a monotonicity argument, we can prove easily that
@ is an interval and that, for all 1 € @, problem (3) has a minimal solution ;.
We prove now that @ is bounded. More precisely we have the following
result.
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THEOREM 2.6. — Let A* = sup {A|Problem (3) has solution}, then A* < .

Theorem 2.6 is a particular case of a result proved in [11]. We formulate he-
re a more general theorem that extends the result in [11] and gives a more
precise estimate on A*. Namely we consider the problem

Ah(xe) u?
A=

® ol
w>0in RY, wue® P(RY),

+g(x)uP "1 in RY,

where ¢ is a bounded positive function and q and & are as above. We set

(10) 2% = sup {1|Problem (9) has solution}.

If the supports of & and g have nonempty intersection, it was proved in [11]
that 1% < o . The following theorem states that the same result holds true in
the general case.

THEOREM 2.7. — Let 2* be defined in (10) then 1* < « .

ProoF. — When supp (%) N supp (g) #= @ the result is known (see for instan-
ce [11]). We prove the result in the general case. Without loss of generality we
can assume that 4 > 1, if not we are done. Let u, be a positive solution to pro-
blem (3) with fixed 1. Then —4 ,u; = A|x| " h(x)ui. Let v; be the unique sol-
ution to problem

h(x)

—A,v= vl xeRY,
(1) BG

v>0, ve® PRY),
1
see Lemma 2.3. We set v; =17« vy, then —4,v; <A|x| P h(x)v{. Since u,

is a supersolution to problem (3), then from Lemma 2.2 we obtain that u, =
vy =Ar»-w+D ;. Consider the following eigenvalue problem

—A,w=m(p* —p)g@)ul P |w[’ 2w in RY,
we MY P(RY).

Let m; be the first eigenvalue and w; the corresponding normalized eigenfun-
ction. Then we have

f|Vw|”dac
. N
my= min R .
b P(RY) =
we f(p*_p)g(x)uf P|w|)3dx
N RY

Since u} Top eL 7 (RY) and u; >0, the minimum is achieved. Now by using
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Theorem 2.1 we obtain that

Since —A4 ,u; = g(x) u!” "' we conclude that
[ 1V |7de — [ g wpup-7=0.
]RN RA/
By the definition of w; we get
[1vwn|? = my(p* = p) [ gaymwpup® 7.
RN RN

Therefore we obtain

Using the definition of m,; we obtain that

f|Vw|”dac
1 . N
- sm s inf R .
- we @Y P(RY) *
peop - @*=p) [ 9@ uf" 7 |w|"de
RN
_r
Since u; = A r»-«+v v;, we have
2 1
f|Vw|pdac
. N
1< inf — 7R .
L PRY) L p* —
we ( >Ap—<q+1) fg(x) /Ufo p |w|17
RY
So we get
f|Vw|pdac
o . N _
Ar-@+) < inf R =m.

Db P(RNY *_
wedre )fg(m)vf’ Plw|? du

RN
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P*-p
Then A»-w+v <m where m is the first eigenvalue to problem

—A,w =m(g(x) VP TP |w|? 2w in RY,
we MLHP(RY),

_ p—(g+1)
Then A* <m »-» , and the proof is complete. =

To prove that 1* e @ the following lemma is in order.

LEmmA 2.8. — Let u; be the minimal solution to problem (3), then
J), (%l) <0.

ProOF. — Fixed 4,€ A and let u,;, the minimal solution to (3) with 4 = 4.
Let

M={ue®@ PRY), v, Susu,},
where v;, is the unique positive solution to problem

h(x)

|]?

w>0, in RY, we®“P(RY),

w? in RY,

_pr:/,{o

see Lemma 2.3. Then M is a convex closed set in M ?(RY). Since J, , is weakly
lower semi continuous, bounded from below, and coercive in M, then we get
the existence of wye M such that mIViIn Jo,(u) =J;,(wy). Hence for all ve M we
have

Aoh(x wq * _
(12) f|Vw0|p2VwOV(v—w0)dac2f(L)po +w! 1)(v—w0),
and v;, < w, < u;,. We claim that w, = u, . Since u;, = nli_r)r}o u,, where u,, is defi-
ned by u,=v;, and
Aoh(x) u) il .
—A Uy 41 = Aolla) i +ul""1 in RY,
(13) | |?

u,>0 in RN, wu,e @ P(RY),

we have just to prove that u, < w, for all n. If n = 0 the result is verified by the
definition of w,. Let v; = wy + (u; — wy) . . Since v; | < u; < u,,, then v; e M and
by using (12) we obtain that

Aoh 3 .
f|Vw0|”‘2Von(u1—wo)+dm2 f(%ﬁpwo + wf ‘1)(u1—w())+.
¢

R RN
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Taking (u; — wy), as a test function in (13) with » =0 we obtain that

/l h’(x) /U},q * _
f|Vu1|p_2Vu1V(u1—w0)+dx=I(W +vf 1)(u1—w0)+.
RN RN

Then by using the fact that v;, <w, we conclude that

(14) [ Va7~V = | Voo |72 V) - Vo, = wg), dx < 0.
RY

We set D,(x, y) = ||’ %x — |y|" %y where x, y e RY, then we have the fol-
lowing inequality (see [22])

C,le—yl|? itp=2,
15) (D,(x, y), ©—y)= c o —y|?

U Lo A T S
T (el + |y

Therefore, by (14) and using (15), we conclude that (u; —wy), =0 and then
uy < wy. Since the sequence {u, } is increasing, the result follows by an induc-
tion argument. Therefore u, <w, and we conclude that u,, <w,. Hence w, =
uy,- Since J; (wy) < J;,(v;,) <0, we conclude that J; (u;,)<0. =

We get now the following existence result.
LEMMA 2.9. - A*e d.

PRroOF. — Let {1, } be an increasing sequence such that 1,, T 1*. Denote by
u; the minimal solution to problem (3). From Lemma 2.8, we know that
J; (u;,) <0, which implies [[u; |[g1.»@y) < M. Since the sequence {u; } is an
increasing sequence, we get the existence of u;+ = lim u; which is a solution
to (9) with A=A*. m !

In the case in which 2 =1, we have the following nonexistence result.

LemmA 2.10. — Let uy be a solution to the following problem

l q * .
—A,u= B RY,
(16) | |”

u>0 in RY, wue®yP(RY),

where 0 <q<p—1, then uy=0.
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PrOOF. — For R =1, let us consider the problem

w?

—A,u= +uP" "1 in BR(0),

an [P
u>0 in Br(0), %sp,0)=0.

Let A% = max{4>0: problem (17) has a solution}. By a rescaling argument
we can prove that 1% =R BT ¥, hence A £—>0as R— o . Let u, be a
po§itiye _sol_ution to (16), then there exists Ry>1 such that 1% =
R 7?1 1)/'LT < i for R = R,. Since u, is a super solution to (17) and v,, the

solution of

v}

18) ||
1,>0 in Bp(0),  0840)=0,

in Bg(0),

is a subsolution of (17) such that v; < u,, then by an iteration argument we can
prove that problem (17) has a positive solution w such that v; < w < u, which is
a contradiction with the definition of 1%. Hence we conclude. ™

3. — The critical case related to Hardy inequality.

3.1. Existence result.

In this section we will study problem (1) with h=g=1 and g=p—1, ie.

p-1
[ —A,u=2 +u?" "1, xeRY
|w|”

19)
u>0 in RY, wue® ?(RY)
N—p)fO

p

where p* = N—N and 0 <1< . As a consequence of a Pohozaev type
-p

identity, one can see that problem Z()19) does not have nontrivial solution in any
bounded starshaped domain with respect to the origin, see Lemma 3.7 of [12].
This motivates the work in RY.

The case p = 2 has been studied in [25], where it is shown that problem (19)

(for p=2) has a one dimensional manifold of positive solutions given by
—(N-2)

z,(r)=pu 2 zi(ﬁ)where

Cn
z/l(x) = N_2

(|90|17V*(1 + |9€|2”))T

1
> N-2

42 2 -
Viz(l_m) and CN:(N(N_z)V%) S
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We will partially extend the result of [25] to the case of the p-laplacian, namely
we will describe the behaviour of all radial positive solutions to equation (19).
We set

P
(20) Ql(u)=f|Vu|pdm—/lf|u—|pdx
RN RN |x|
and
Kz[ueDl”’(RN) [ lu p*dle].
RN
Let
AQQ) = inf &
ueDP(RM)\{0} f || =7 | |P da
RN

The first result of this section is the following lemma.

LEMMA 3.1. — Assume that A(1) <0, then problem (19) has no positive
solution.

ProOF. — Arguing by contradiction, assume that A(1) <0 and problem (19)
has a positive solution %. Then since A(1) <0 there exists ¢ € Cy° (RY) such

that Q,(¢) <0, ie.
|#1”
frworr -2 [ 12 <o
RN

RN

Since ¢ € C;” (RY), from Theorem 2.1 we obtain that

vorrs [ Z4r% o1
Volr= | —2 19"
RN "

RN

Therefore we get

P
f|V¢|P_lf% = fup**p|¢|p;0,
RN RN

RN

which yields a contradiction with the choice of ¢. The proof is thereby
complete. =

LEMMA 3.2. — Assume that A1) >0, then Q,(u) s an equivalent norm to
the norm of the space M"P(RY).
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Set
(21) S, = inEQl(u).

It is easy to see that S; > 0 and S; < S where S is the best Sobolev constant for
the embedding MV ?(RY)cL?"(RY). We prove now the following existence
result.
N-p\? .
THEOREM 3.3. — Assume that A e (0, (—) ), then there exists uye K

P
such that S; = Q,(uy). In particular there exists a positive constant ¢ such

that cuy is a positive solution of (19).

Proor. - Let {u,} be a minimizing sequence to (21). Since Ae

_ p

(0, (M) ) and by classical Hardy inequality, we get that {u, } is bounded
4

in MYP(RY). Therefore using the concentration-compactness principle, see

[15], we get the existence of a sequence of positive numbers {o,, } such that the
N .
sequence %, =0, ¥ u, ( —) is relatively compact in @' ?(RY). The sequen-
an
ce {u, }, is also a minimizing one. We can get easily that u, = nli_r)r%c u, € K and
Q1 (uy) = S;.
Moreover u, satisfies the following Euler-Lagrange equation
ul~! .
(22) —Ayu—A——=S;ul" .
o]

1
If we set v =cu, where ¢=S,>"-» then v is a solution of (19). =

Now we have the following result concerning the regularity of solutions to
(19).

REMARK 3.4. — Let u be any solution of (19), then ueC**“(RY — {0}).

ProoF. — Let u, be any solution. For 0 <& <R, we set Q = B(R)\B(¢)
where B(e) (resp. B(R)) is the ball in RY of center 0 and radius ¢ (resp. R). Sin-
ce uge MV P(RY), then uge W P(3B(¢)) and uge WP P(3B(R)). Since u, is
a solution to problem

e p-1

—A,u=2 +uP’ "l e
g |c|?

(23) 3w sy = Uo | sBr)

| s8R = o | 3RG>
(#>01in Q, ueWh"?(Q),
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from [24] we get that uye C* “(Q). Since ¢ and R are arbitrary, we obtain the
desired result. =

N- .
It is easy to check that all dilations of u, of the form o v Uy ( — ) where
o

0 >0 are also solutions of the minimizing problem (21). Therefore we get a fa-
mily of solutions to problem (19). Moreover we have the following characteri-
zation of minimizers in problem (21).

LemmaA 3.5. — All munimazers of (21) are radial.

PRrROOF. — Since if uge MY ?(RY) is a minimizer of S, (.e K(u,) =1 and
Q(uy) = S;) then the decreasing rearrangement ug* of u, given by

ug () =inf{t>0: [{yeRY: u(y) >t} | <oy |z|}
where w y denotes the volume of the standard unit N-sphere (see [20]), is also
a minimizer, so it satisfies the same Euler-Lagrange equation i.e
(uo* »o !

A = Sy

(24) — A ug — A

Notice that by the classical result by Polya-Szegd (see [20]) we obtain
that

[ 1V |Pde = [ |Vuit |7 dac.
'RN RN

Since ug* is a solution to (24) we obtain that

* )P
f|Vu0*|”dac=f(i (') +S,1(u0*)”*) die =

|]?

RN RN

P
A9l s ) de= [ [Vug|7de.
|ﬂﬁ'|p 0 0
RN

RN
Hence we conclude that [ |Vug* |Pdx = [ |Vuy|?dx. Notice that ug* is strictly
RN RN

increasing, then |{Vug*=0}|=0. Then from [8], there exists xoe RY such
that uy(-) = ug* (- + ). Since equation (22) is not invariant by translation we
obtain that x; =0 and the result follows. =

3.2 The behavior of the radial solutions.

We study now the asymptotic behavior of all radial solutions of the problem
(19).
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Let u(r) be a radial positive solution of (19), then
p—-1

@) U e R (e R
r
We set

26) t=logr, y@)=r’u(r) and =2(t)=rTTOPD 1y (r) P20’ (r),

N_
where éz—p.

p

Then using the equation (25) we obtain the following system in % and z

dy N-p 2o

— = + |z|7 1z,

7 y+ |z]7
27)

dz N-p

— = z— |y|P" Py —Aly|P %y

I p ly|” "y =Aly" "y
Notice that by a direct calculus we obtain easily that y satisfies the following
nonlinear equation

28) (w—-D|oy—y' | 2{oy —y"}+

Ooy —y | 2oy —y'} — Ay —y? T =0.
By the initial equation of » we conclude that pN-1 |w'(r)|? “2u'(r) is a strietly
decreasing function, then it has a limit as »r—0.
Since Vu e L?(RY), such a limit must be 0, hence »¥ =1 |u' () |? 7 2u'(r) <
0 and then «’'(r) <0, which yields z <0.
The stationary points of the system are P;=(0,0) and P, = (¥, ?)
where
P = p-1
— 2 _ -
(52 22
P P

The complete integral of the system is given by

p—1 » N-p

£ l
e

1
(29) Wy, 2)=— 1y yz.
p

V(t)

We set V(t) = V(y(?), 2(t)). Since =0 for all te R, we get that

30) V(t) = V(y(t), 2(t)) = K,

for some real constant K.
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LEMMA 3.6. — y and z are bounded.

Proor. — By Young inequality, (29), and (30), we obtain that

1 . A oy|?
Lyl 2y - 12 <k,
p- p
from which we can conclude that ¥ is bounded in R. Again by Young inequality
we have that for any ¢ > 0 there exists C, such that
-
|y() 2(t) | <e|z(t)|»-1 +C. |yt)|".

Hence from (30) and (29) we have

p—1 = = P
K= » |2(t) | 71 — oe|2(t) | »-1 — OC, |y(t) |".

Therefore, taking ¢ small enough, from the boundedness of y(t) we deduce
that z is also bounded. =

The following lemma states that K;=0.

LEMMA 3.7. — For any teRY

(y(t), 2(1) e {(y, 2) e R?®: V(y, 2) =0} .

ProOF. — Let us define the following even function

0" — 1 1, .
|s[P = — Is]".
ES

p

It is easy to obtain that ¢ is strictly increasing in [0, s,] and strictly decrea-

31 P(s) = Ko+

sing in [sy, %) where sy = (6 p — 1)° and ¢(sy) = K, + K, where K; = %(6” -
NP Since ¢(y(t)) =0 we obtain that K, = —K;. We have four cases

1
2,
3. K,>0;
4

In the first case the maximum of ¢ is zero but since ¢(y(t)) = 0 we obtain
that y(f) = sy and u(r) = s—(; ¢ ML P(RYN). In the second case, i.e. —K; < K, <0,
r

let s; be the first zero of ¢, then s, is strictly positive and y(¢) = s, for allt e R,
hence u ¢ MV P(RY). In order to exclude the third case let us observe that if
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K, >0, then ¢ vanishes only at a positive value b. If ¢ is a critical point of ¥, i.e.
y' () =0, then from (27) and the negativity of z, we obtain that

(32) oy = | |77

From (29), (30), and (32), it follows that ¢(y()) = 0. Hence y(f) = b. Hence all
the stationary points of ¥ must stay on the same level b > 0. From this fact and
the integrability condition on u, it follows that ¥ must be strictly increasing for
t < — R for some large R > 0. In particular there exists tl}imoo y(t) and by inte-

grability of # such limit must be 0. Since y(t) =0 as t — — o« and z(¢) is boun-
ded, from (29) and (30), we deduce that there exists { = t lirzl 2(t) and

-1 _r_
Ko=L2"" 0.
P

On the other hand from the second equation in (27), we infer that { must be 0,
which is not possible if K, > 0. Hence the only possible case is case 4, i.e. K, =
0. The conclusion follows from K,=0 and (30). =

LEMMA 3.8. — There exists tye R such that y(t) is strictly increasing for t <
ty and strictly decreasing for t >t,. Moreover

N Up*—p)
(33) maxy(t) = y(t,) = [—(6” - /1)] .
teR¥N N-»p

ProOF. — In view of the integrability condition on % and since y is a strictly
positive function, to conclude it is enough to show that y has only one critical
point. Arguing as above, it is possible to show that if %' (£) = 0 then ¢(y(#)) =0,
where the function ¢ is defined in (31). Since K, =0, ¢ has only two zeros,
which are s =0 and s = b, where

1/(p* —p)
b=[i(ép—/1)] .
N-p

Since y is strictly positive, we deduce that %(f) = b. Hence all the critical points
of y must stay on the same level b > 0. As a consequence, if ¥ has two distinct
critical points t; < t,, it must be y(t) = b for any t; <t <t,, hence y'(¢) =0 for
all t € [t;, t5]. Therefore, using (27) we conclude that z(t) = —(5b)? ~! for all t e
[t, ts] and then 2’ (¢) = 0 for all t € (¢, t5). Now in view of Lemma 3.7 and from

(27) we obtain that z'(t) = — p—;py”** 1(t) < 0 for all te (¢, t5) a contradic-
Y

tion with the fact that z'(¢) =0 in (¢, &,).
Hence we conclude that y has only a critical point ¢,, which must be a global
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maximum point in view of the integrability of « and the positivity of y. Moreo-
ver maxy = y(ty) =>b. =
R

Since the system (27) is autonomous, then modulo translation we can assu-
me that £, =0. Using (28) we get

t
B4  |oy—y' [P H{oy—y' }=e* f e®(Ay? " 1(s) +y? ~1(s)) ds .
Hence we conclude that oy —y' > 0. The following result gives the exact
behavior of y as t— + .

LEMMA 3.9. — Suppose that y is a positive solution of (28) such that y is in-
creasing in (— o, 0) and decreasing in (0, ©), then there exist positive con-
stants ¢y, co, such that

(35) im @7y (1) = y(0) ¢, > 0
(36) lim e~ y(t) = y(0) ez > 0

where 1y, l, are the zeros of the function E(s) = (p—1)s?P— (N —p)s? 1+
such that 0 <l; <l,.

ProoF. — It is easy to see that I, <0 < [,. Let us now prove (35). Using (27)
we obtain that

d 6o G-It |z(t)|ri1
= () = BOY0) [/ Eakia kinay
p (e yt) =e y |4 o

Therefore we get

37 e 0y (f) = yy(0) e [ v I
We set H(s) = M We claim that
y(s)
38) H is an increasing function from (— o, 0] to ({;, 6].

To prove the claim, we first show that H'(s) > 0 for all s <0. Indeed, assume
by contradiction that there exists s, <0 such that H'(sy) <0. Since

1 2-p .
- jy(S)z’(S) |2(s) |-t — |z(s) | »- 1y ' ()
H'(s)=

y*(s)
from H'(s,) <0, (27), and (29), it follows that (l - i) y?"(55) <0 which
p p-
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yields a contradiction with the positivity of . Therefore H' > 0 and then H is
a strictly increasing function. Using (27) and the fact that ¥ '(0) =0, we find
that H(0) = (N — p)/p. From (29) we conclude that Erpw H(s) =1;. The claim
is thereby proved. ’

From (37) and (38) we conclude that e ©~Wiy(t) is a decreasing function,
therefore there exists tlimwe’(é’ll)ty(t) and

0 L (H(s)—1y)ds >0.

a= tl}rym e O Wiyp) =y(0)e !
Hence to prove (35) it is enough to show that a < + . To this aim let us note
that from a direct computation

__r
(p—1)XN-p)

where £ is given by &(s) = (p — 1) s? — (N — p) s? ~! + 1. Thus performing the
change of variable o = H(s), we have do = H'(s)ds = ¢(0) ds where o(0) = —

P
(p—1)XN —p)
negative function such that |g(o) | = const > 0 for o e [l;,(N — p)/p]. Therefo-
re we obtain

H'(s) = - H(s)* P E(H(s))

0% P &(0). We can write o(0) = (o — I;)(0 — I,) g(0) where g is a

a= lim e*(é*ll)ty(t) — y(o) e—f(lm(H(S)—ll)dS — y(o) e—f?I[((f—lz)g((f)]_lda.
t— —

Since ;>0 and |g(o)|=¢ if oell;,(N—p)/pl, we conclude that
o

f mdc < 4 o, hence a < + o . The proof of (36) can be done obser-
L (00— 1) g0

ving that limH(f) =, and using the same argument. ®
tte

In the following corollary we translate the results above to energy sol-
utions u of equation (25), namely to radial solutions of (19) in the energy space
MDY P(RM).

COROLLARY 3.10. — Let u be a positive energy solution to (25), then there
exist positive constants C; and C, such that

(39) lin%rll w(r)=C;>0,
(40) 11er3° reu(r) =Cy>0
and

41) lin}Jrll“|u’(r)|=Cll1>0 and  lim r2 1w (r)| =Cyly>0.
r— r—+
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Proor. — (39) and (40) follow from (35), (36), and (26), while (41) follows
from (26) and the fact that tlim H(t) =1, and tlim Ht)=1,., =
— —® — +

Notice that since lim H(s) =1, and tlim eli=y(t) = y(0) ¢;, we obtain
that ’ o

(42) Jim el 2(t) |71 = y(0) [, >0,
and since lim H(s) =1,
s§— + o
1
(43) tlianm e 2(8) | 7T = c9(0),> 0.

The uniqueness in the case of bounded solutions to quasilinear equations could
be seen in [10]. We state and prove now the uniqueness result for energy posi-
tive solutions to problem (25), that requires a different approach based on the
previous analysis.

THEOREM 3.11. — Let u,(r) and uy(r) be two positive energy solutions to
equation (19). Let us denote by (y,(t), z:(t)) and (y,(t), 22(t)) the solutions to
system (27) corresponding to u, and u, respectively. Assume that

1

t 0 N mép /'L%
te(@?{m)?/l()—%( )_(N——p) 0P =2) .

If y5(0) = y1(0), then (y,(1), z1(1)) = (y2(), 25(t)) and hence u; = us.

Before proving the above uniqueness result, we state the main consequen-
ce of Theorem 3.11.

THEOREM 3.12. — Let u,(r) be the fixed energy solution to (19) such that, if
(Y, (1), 2:(t)) is the solution to system (27) corresponding to u,, then

1

N \77 o
= = — 51’ — /'L p*-p .
Erygg)yl(t) y(0) (N ) ( )

te(

Then for any other solution v there exists wo>0 such that v(r)=
wo N PP (rfug).

ProoF. — Let (y2(t), 22(t)) be the solution to system (27) corresponding to
v. From Lemma 3.8, there exists tye (— o, ©) such that

1

b=yt N\ o
Tzliéfw)?lz()—?/(o)—(N—) (0P =A)vr-».

te(
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We set %,(t) =y(t —ty) and z,(t) = 2,(t — ;). Notice that

1

N p*—p 1
To(t) =7 = 0P =) -».
,ax o(t) = y2(0) (N_p) ( )y

Using the fact that the system (27) is autonomous we obtain that (., z,) is also
a solution to (27). Since %,(0) =y;(0), from Theorem 3.11 we obtain that
#a2(t), Z5(t)) = (y1(t), 2,(t)). Hence from (26) we conclude that

1 r
u1(1")= EU(@).

Therefore we conclude that v(r) = u, 5u1(r/u0) where u=e™. m

Proor oF THEOREM 3.11. — Let u,;, u, be two solutions to problem (19) and
let (y; (%), 21(t)), (y2(t), z2(t)) be the solutions to system (27) corresponding to
u; and u, respectively such that

1

N \r—» 1
m?-o)‘(w)?ll(t) =y (0) = (N—) (0P =A)re-».

te(—

Assume that y,(0) =y;(0). From Lemma 3.8 we know that ¥, has a unique
maximum point ¢, at which v (ty) = (N(8” — 1)/(N — p))"® 7. Since #,(0) =
1#1(0) = (N(6P — l)/(N_p))l/“’*’p) we conclude that ¢, = 0. Hence y, (0) =0.
From (27) we get

t

e y(t) =y(0) — [e= |2(0) |77 do .
0

Hence we obtain that

t

|91 (D) =y (B) | < eétfefég
0

|21(0) | -1 — |23(0) | »-1 | do .

Since from (27) we have that z;(0) =2,(0) = —(dy,(0))’ !, we get the exi-
stence of o; >0 such that for all o€ [0, o,;] we have

1 1
|21(0) | 7=1 — |22(0) | 71

< C(oy) |z1(0) —25(0) | .

Therefore we conclude that

t
1) — 12()) | <€ C01) [ |21(0) = 22(0) |do
0
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Now from (27) we obtain that

e 2(0) =2 (0) — [ Lyl s + 9 ()] ds
0
Hence

o

|21(0) = 22(0) | <de™% & [y ~1() —yd " () |ds +
0

g

e [ |yp"1s) —yp"A(s) |ds.

0
As above, we can prove the existence of s; >0 such that for se[0, s;] we
have

971 5 T O] < G0 [9169) — e s) |

and

90" ) =" ©) ] < Cals) 1 (5) — 1e(s) |
Hence

|21(0) — 22(0) | < C(sp)(A +1) ef‘sofeas |1 (s) — y2(s) | ds .
0
Therefore, if 0 <t<min{oy, s;} we obtain that

t o
ly1 (1) — 9o (D) | < e‘”Cfe‘%"l fea”’ [y1(s) — yo(s) |ds} do
0

0
where C =C(0,) C‘(sl)(i + 1), and hence

t t
|y (1) — 92 (1) | < Ce(”fe‘s" |91 (0) — y»(0) I{ fe““‘dS] do .

0 o

Consequently we obtain

t
e |y (1) — 1 (®) | < Co [ e |1(0) — (o) | dor .
0
Therefore, using Gronwall Lemma we conclude that y,(t) =y.(t) for te
[0, min {0y, s;}] and then u,(r) = uy(r) in [1, 7] where r,> 1. To prove the
identity for all » =0 it is enough to iterate the above argument. =

We can resume in the next statement the main results obtained in this
section.
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THEOREM 3.13. — All positive radial solutions of (19) are
_N-p .

u)=0 » uo(—)

o

where 1w, ts the wunique solution of (19) such that wue(1) =y(0) =

(NL)" p(d”—l)“*". Moreover there exist constants C;, Cy>0 such
-p

that

up ()

1,/6 L/ O
(Jo]" + || )

0<C <

4. — Existence result for perturbed problems.

4.1. Perturbation tn the linear term.

In this section we will prove some existence and nonexistence results in the
case ¢ = p — 1, extending to the p-laplacian operator the analogous results ob-
tained in [1] for p = 2. Let us start by considering the case of a perturbed coef-
ficient of the Hardy-type potential, i.e. we deal with the following pro-
blem

A+ h(x «
—A,u= #u”‘1+u” 1 xeRY,
(44) |]”
>0 in RY, and uwe @V P(RY),

where N =3 and p* = ;—N. Hypotheses on & will be given below.
—-p

4.2. Nonexistence results.

The following nonexistence results show how in this kind of problems both
the size and the shape of the perturbation are important. We set

Qu) = f |Vu|1”0l.oc—fM |uw|Pde,

p
(45) RN RN |%|
X = {ue@l’p(RN) f|u|i’*dm=1},

RN

and consider I, = ing Q(u).

LEMMA 4.1. — Problem (44) has no positive solution in each one of the follo-
wing cases:
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@) if A+ h(x) =0 in some ball B5(0) and I, <0,

@) if b is a differentiable function such that (h'(x), x) has a fixed
sign.

Proor. — Let us first prove nonexistence under hypothesis (1). Suppose
that 7; <0 and let u be a positive solution to (44). By classical regularity resul-
ts for elliptic equations we obtain that u e C-“(R¥\{0}). On the other hand,
since 4 + h(x) = 0 in B,(0), we obtain that —4 ,% = 0 in the distributional sen-
se in the ball B;(0). Therefore, as # =0 and u # 0, by the strong maximum
principle we obtain that «(x) =c¢ >0 in some ball B5(0)cc By(0).

Let ¢,€Cy*(RY), ¢,20, [l¢,[l,-=1, be a minimizing sequence of I,.
Using Theorem 2.1 we obtain that

[0, 17> .
HN IRN
Hence
A+h
f|V¢n|”dac>f (”) qu"
RN RN

On the other hand, I; <0 implies that there exists an integer %, such that if

n=mn
A+ h(x)
[ 15gupp— [ 2200 4y g
& N kA
R

As a consequence f pLuP” P <0 for n = n,y, which is a contradiction with the

hypothesis u > 0.
Let us now prove (2). Testing the equation with the Pohozaev multiplier,
we obtain that any positive solution u to (44) satisfies the following identi-

ty

R

R

which is not possible if (h'(x), x) has a fixed sign and 0. =

COROLLARY 4.2. — Assume either

1) A>Ay , and h=0, or
A

R
then problem (44) has no positive solution.

1) A>Ay, , and 1<
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4.3. The local Palais-Smale condition: existence results.
Existence results will be obtained through a variational approach. More

precisely we look for critical points of the associated functional

p —

1 f/1+h(.oc)

46) Ju) = 1 f |V |? doe —
RN RV
We suppose that & verifies the following hypotheses
(h0) A+ R1(0) >0,
(h1) he C(RN) N L = (RY),
(h2) for some ¢;>0, A+ |[|k]|.. <Ay, ,—c.

Solutions to equation (44) ecan be found as critical points of J in " P(RY).
The following theorem yields a local Palais-Smale condition for J.

THEOREM 4.3. — Suppose that h satisfies (h0), (hl), and (h2) and denote
h( ) = lim sup h(x). Let {u,},nC @ P(RY) be a Palais-Smale sequence for

|x] — o

J, namely

J(u,) —c< o and J'(u,)—0.

If
1
* 3 N, N,
c<cr= N min {S(A/fhw)), S(l/fh(oc))}

where SYP 10y and S 1w, are defined in (21), then {u,}, .~ has a conver-
gent subsequence.

ProOF. — Let {u,}, be a Palais-Smale sequence for J, then according to
(k1) — (h2), {u,}, is bounded in M P(RY). Therefore, up to a subsequence,
Uy — g in DY P(RY), u, —uy a.e., and u, —u, in L (RY), ae[1, p*). Hence,
by the Concentration Compactness Principle by P. L. Lions (see [15] and
[16]), there exists a subsequence still denoted by {u, }, and an at most counta-
ble set J such that

1. |Vun|fudu> | Vo |” + Zyjam,_+ﬂoao,

" = |uo|?” +21/ 0, + V0o,
je
3. SVP < u; for allyeJU{O}

up
|oc|? |c|?
5. AyyoSio-

+7/0601
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To study the concentration at infinity of the sequence, we also need to in-
troduce the following quantities

V= lim lim sup f |u, |P"de, u.= lim lim sup f |V, |P de
R— n—> oo R— n— o

x| >R |¢| >R
and
w |P
Y = lim lim sup f ﬂdw.

S Rl

We claim that J is finite and that for any j e f either v; = 0 or v; = SV2. We fol-
low closely the arguments in [6] (see also [1]). Let ¢ > 0 and let ¢ be a smooth
cut-off function centered at x; such that 0 < ¢(x) <1,

if |x—u;| <é&2,

¢(ac)=ll’

10, if [x—u]=e¢,
and |V¢|=<4/e. Testing J'(u,) with u, ¢ we have

0= lim (7' (u,),,9)

:nlilrgo( f|Vun|p¢+funlvunlp_ZvunV(p_f
RN

RN RN

A+ h(x) .
7o [plual”").
B

From 1), 2) and 4) and since 0 ¢ supp (¢) we find that

n— o

tim [ Va7 = [gdu, tm [fugrg=[pav,

RN RY RN RN
and
. A+ h(x) , A+ h(x) ,
i [ S e [ e .
B (x) |-%'| B (x) |-’)C|

Taking limits as e—0 we obtain

e—(0) n—>®

lim lim f|u,,| |Vu, | 1| Vo | —0.
RN

Hence

0= hrr}) nl%(J’(u,z), Uy D) Zpj— V.
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By 3) we have that SV/JL* < u;, then we obtain that either v; =0 or v; = SV?,
which implies that J is finite. The claim is proved.

Let us now study the possibility of concentration at x =0 and at . Let y
be a regular function such that 0 < y(x) <1,

1, if || >R+1

w(m):{o, it || <R,

and |Vy| <4/R. From (21) we obtain that

f |V(unw) |pd.’)0 — (/1 + h( oo))f |1/|)u|np| dac
(47) RY o = S04 i)
( [ 1yu. 1 )
RN
Hence

u, |P . p/p
f|V(un1p)|pdac—(l+h(oo))f |Txl’°| dacBS(Hh(m))( . P) :
RN RN

RN

Therefore we conclude that

(48) f |V, + u, Vo |P dow =

RN

plp*
(A + h( o ))f W%ln de + S+ i ))<f|¢un|p> .

RY
We claim that
(49)  lim lim sup[ f|1qun+unV1p|pdac—fwP|Vun|pdx}
ey RY
Indeed from the following elementary inequality
|| X+Y)|?— |X|?| <C(|X|P~'|Y| + |Y|?) for all X, YeRY,
it follows that

[ 1wVa, +u, Vg 2=y |Vu, |7 |de<C [V, |77 [, o | + |, Vip|?) dec

RN RN
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From Holder inequality we obtain

I | |99, P~ | V| dee <
RN

p—1

( f |un|p|V1/J|”dx)p( f |Vun|pdac) "

R<|x|<R+1 R<|x|<R+1

Hence

lim sup f |, | 9?1 |V, [P~ |V |de
n—> oo RN

1

P
sc( i |u0|p|Vzp|de)
R<|x|<R+1
2 2
sc( i |u0|”doc)( | |V¢|Ndac)
R<|z|<R+1 R<|z|<R+1
plp*
<C f |u0|p*doc) .
R<|x|<R+1

Therefore we conclude that

lim limsup [ Ju, [P Vo, |71V |da <
R— x n— ]RN

*

_ . plp
Clim( [l dac) ~0.

R— x
R<|x|<R+1

Using the same argument we can prove that
Jim Tim sup [|un|p|vw|pdm:0.
]

The claim is thereby proved. From (48) and (49), we deduce that
(50) ,lloo_(/1+h(°°)))/oc2S(/1+h(m))1/€ép*-

Since Rlim lim (J ' (u,), u, ) =0, we obtain that ., — (A + (o)) vy, <v,
Do n>® N
Therefore we conclude that either v, =0 or v.. =Sy, ,.,). The same holds

for the concentration at x, =0, namely that either

N
V():() or V()Bs(f_'_h/w)).
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As a conclusion we obtain

Cc =J(un) - l<J,(un); un> + 0(1)

flun [flu()lp d.%"{'VO‘l'V +ZV]

Jjed
If we assume the existence of je JU{0, o} such that v;= 0, then we obtain
that ¢ = c*, a contradiction with the hypothesis. Hence, up to a subsequence,
u,—uy in MHP(RY). =

To find solutions through the Mountain Pass Theorem, we need to find so-
me path in M ?(RY) along which the maximum of J(y(¢)) is strictly below ¢ *
To this aim, we set H = max {h(0), i(®)} and consider {w,} the one par-
ameter family of minimizers to problem (21) where 4 is replaced by A + H. The
following theorem provides a sufficient condition for the minimax level to stay
below the critical threshold c*.

THEOREM 4.4. — Suppose that (k1) and (h2) hold. Assume the existence of
o> 0 such that

e
o ST e o [

then (44) has at least a positive solution.

ProOF. — Let u, be as in the hypothesis, then if we set
f) =Jtw,,) =

(flv 0|olac—fi "D o d )——f| £=0

RY

we can see easily that f achieves its maximum at some #, >0 and that there
exists some ¢ >0 such that J(tw,,) <0 if |ftw,,|=0. A simple calculation
yields

f|V \rda _J«i+h(x)wfodx (N = p)/p?
) S e

J 1w,
RN

ty=
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and

A+h /i
f|VwM0 |”dx—fﬂw” e |

1% & e "
J(tow,,) = max J(tw,,) = — -

o (frere]”

Using (51) we obtain that

N/p
[ 1V, |7 das
e o el Ly
J(towu0)<ﬁ . P =ES(/{+H)\C .
(f|wuo|p*dw)
RN
We set
r={yeC(0, 1], @"?(R")): y(0) =0 and J(y(1)) <0}.
Let

c¢=inf max J(y(t)).
vel te[0,1]

Since J(tyw,,) <c*, then we get a mountain pass critical point u,. Then we ha-
ve just to prove that we can choose u,= 0. Consider the Nehari manifold

M={ue® ?(RY):u=0 and {(J'(u), u)=0}

L oeN A+ h(x) .
=lue® P(RY): u=0 and | |Vu|Pde= —— |u|Pdet | |ul” de.
RY RY ] RY

Notice that ug, |ug| € M. Since u, is a mountain pass solution to problem (44),
then one can prove easily that c¢=J(uy) = mi]‘r/}J (u) (see [27]). Hence
ue

J(ug |) = mi]réJ(u) and then |u,| is a critical point of J. Therefore by using

the strong maximum principle by J. L. Vazquez, see [26], we conclude that
U > 0. L

REMARK 4.5. — It is immediate to see that hypothesis (51) is satisfied for
example in the case in which h(0) = h(o) = mirk h(x) and h#const.
relR’
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4.4. Perturbation in the nonlinear term.

In this section we deal with problem (19) with a perturbed coefficient of the
nonlinear term, namely we study the following problem

—A,u=
(52) | |P

u>0 in RY, and ue ®"?(RY),

wuP 1+ k(x)u? ", xeRY,

where N =3, 0 <A<Ay , and k is a positive function.

4.5. Existence.

Assume that k verifies the following hypothesis
(K0) keL*(R¥)NCMRY) and [kl > max{k(0), k()},

where k() = lim sup k(x). Let

‘x|—>oc

j‘ P
Jy(u) = = f|Vu|”d 1l g

1 .
- — fk(ac) |u|? d,
p*
RN

then critical points of J; are solutions to equation (52). Arguing as in Subsec-
tion 4.3, we can prove that Palais-Smale condition is satisfied below some level
as stated in the following lemma.

LEMMA 4.6. — Let {u, },cnC @V P(RY) be a Palais-Smale sequence for J,
namely

J(u,) >c< o and J)(u,)—0.

If
1 By
€< &) = - min(S T S k(0T S (o)) T

then {u,},on has a converging subsequence.

Since the proof is similar to the proof of Theorem 4.3, we omit it. If k is a ra-
dial positive function, we can prove the following improved Palais-Smale con-
dition.

LEMMA 4.7. — Define

. 1.x _Nop _Nop
6(2) = <8 min{(k(0)) 77, (k) ).
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If {u, }pen€ DV P(RY) is a Palais-Smale sequence for J,, namely J,(u,) —c,
Ji (w,) =0, and ¢ < ¢y, then {u,},x has a converging subsequence.

We define
J+oo if k(0)=Fk()=0
b(A)=1 1 ) _N-p
—S/{mein{k(O) Pp,k(OO) z)p} otherwise.
| v
LEmma 4.8. - If (KO) holds, there exists e3>0 such that

%SN/”IIkII;(N*WP <b(A) for all A<e, and

N-p

1 _
53 ¢(A) =c¢= —SVP|K|. >
(53) () =i=— [l

for any 0 <i<eg,.

ProOF. — From (K0) and by the fact that S; —S as 1 —0, it follows that if 1
N-—

is sufficiently small then %SN/Z’”]C”; 7 < b(A) and hence the result follo-
ws. ®

As a consequence we obtain the following existence result.

THEOREM 4.9. — Let k be a positive function such that (KO) is satisfied. As-
sume that there exists wy >0 such that

(54) fk(ac) wp” () dwe > max {k(0), k( )} fwfo*(m) dx
RV R’V
where w,, is a solution to problem

A .
—A,w=——wP T+w? "1 xeRY,
|w|”

w>0 in RY, and we OVP(RY).

Then (52) has at least a positive solution.

Proor. — Since the proof is similar to the proof of Theorem 4.4 we omit
it. =
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5. — Multiplicity of positive solutions.
To find multiplicity results for problem (52) we need the following extra
hypotheses on &
(K1) the set C(k) = {aeRN k() = ma>§k(x)} is finite, say C(k) =
reR’
{a; |1 =j < Card(Ck))};
(K2) there exists 0 (p, L) such that if a; e C(k) then k(a;) — k(x) =
o|x—a;])" as w—a;. et
Consider 0 <7,<<1 such that B, (a;))NB,(a;)=0 for i=j, 1<i,

j < Card (C(k)). Let 0 = D and for any 1 <j < Card (C(k)) define the following
function 3

Jwi@|Vul?de
G5 Tiw) =" where y;(x) = min {1, |&—a|}.
[ 1vul?dz

RY

For the proof of the following separation lemma we refer to [1].

LEMMA 5.1. — Let we MY P(RY), u0, such that T;(u) < 6 and Ti(u) <9,
then 1=7j.

Consider now the Nehari manifold,
(56) M) ={ue @Y P(RY): w0 and (J; (u), uy=0},
namely u e M(A) if and only if %0 and

p
f|Vu|pdac—lf|u—|pdm=fk(m)|u
RN ] RN

RN

Notice that for all we @“?(RY) such that ##0, there exists ¢ >0 with tu e
M(2A) and for all uwe M(A) we have

P dge .

p *_1 .
57) f|vM|pdx—/1f el g < P fk(ac)|u|p dx .
RN |'/X"|p p_lRN

RN
Therefore we can prove easily the existence of ¢; > 0 such that

VueM@),  |fullgrr@y = c.
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DEFINITION 5.2. — For any 0 <A<Ay and 1<j< Card(C(k)), let us
consider

M) =
{weMQ): Tj(u) <6} and its boundary T';(A) = {ueM(Q): T;(u) = 6}.
We define
m;(2) = inf {J,(u): we M;(A)} and ;) = inf {J,(u): ue [;(A)}.

The following two lemmas give the behaviour of the functional with respect to
the critical level ¢. The proofs can be obtained with a small modification of the
arguments used in [1].

LEMMA 5.3. — Suppose that (K0), (K1), and (K2) hold, then M;(A) # 0 and
there exists £, >0 such that

(58) m;(A) <c¢ for all 0<A<e; and 1<j<Card(Ck)).

LEmMA 5.4. — Suppose that (K0), (K1), and (K2) are satisfied, then there
exists €, such that for all 0 <A < e, there holds

We need now the following lemma that is suggested by the work of Tarantello
[23]. See also [9].

LEMMA 5.5. — Assume that A < min {e,, €, } where €, e, are given by Lem-
mas 5.3 and 5.4. Then for all uwe M;(A) there exists o0, > 0 and a differentiable
Sfunction

f:B0,0,)c @ P(RY)—>R

such that f(0) =1 and for all weB(0, 0,) there holds f(w)(u —w) e M;(A).
Moreover for all ve WP (RY) we have

69)  (f'(0),v) =

p—2
%dw—p*fk(x) || ~2uvde

P\N

p [ |Vu|?=2Vuvede - pi [

RY RY

p
(p—l)[ f|Vu|pdx—lf|—|pdx]—(p*—l)fk(x)|u|”*dac
RN

u
RN | & | RN
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ProOF. — Let uw e M;(A) and let G : R x @"?(RY) — R be the function defi-
ned by

G, w) =

—wl?
tp-1 f|V(u—w)|de_,1fde _tp*_lfk(x)|%—W|p*dx.
RY RN |90| QN

]

Then G(1,0) =0 and
P
Gi(1,0) = (p—l)[ f|Vu|de—if|u—|pdm] — (p*—l)fk(x)|u|”*dx¢0
RN RN |x| RN

in view of (57). Then by using the Implicit Function Theorem we get the exi-
stence of ¢, >0 small enough and of a differentiable function f: B(0, 0,)C
M P(RY)—R such that f(0) =1 and G(f(w), w) =0 for all we B(0, 0.,
which implies that f(w)(u —w) € M;(A). Moreover, we have

(Gu(1,0),0)

/0’ —_
(f'(0),v) G0

p—2
X
— RY RV

(p—l)[ [ 1vu|rde—2 %dw]—(p*—l)fk(amuv*dx

RN RN

RN

RY

The proof is thereby complete. =
We are now in position to prove the main result of this section.

THEOREM 5.6. — Assume that (K0), (K1), and (K2) hold, then there exists €5
small such that for all 0 <A < &5 equation (52) has Card (C(k)) positive sol-
utions u; ; such that

(60) |V7/v_;',a|pﬁSN/p||k||;(N_p)/p5@j and, |u7,’/1|19*_)sN/p”k”;N/P6 a; as 1—0.

PrOOF. — Assume that 0 <1 <e3=min{ey, €y, €2}, Where ¢y, €; and ¢,
are given by the Lemmas 4.8, 5.3 and 5.4. Let {u, },.~ be a minimizing se-
quence for J; in M;(4), ie. u, e M;(4) and J;(u,) —>m;(A) as n— . Since
Jy(w,) =J;(|u,|), we can choose u, = 0. It is not difficult to prove the existen-
ce of ¢y, ¢, such that ¢; < ||u,, ||g1.»&¥) < c. By the Ekeland variational principle
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we get the existence of a subsequence denoted also by {u,} such that

1 1
Jy(uy,) < mj(A) + — and J,(w) =J,(u,) — —||w—un|| for all weM;(4).
n

Let 0<p<p,=0,, and fu=1.,, where ¢, and f, are given by Lemma 5.5.
We set v, = ov where [[v]lgr. »evy = 1, then v,€B(0, 0,,) and we can apply Lem-
ma 5.5 to obtain that w, =f, (v,)(u, — v,) € M;(A). Therefore we get

1
E”wg - un” = Ji(un) - J,{(’I/UQ) = (Ji, (un)y Uy, — wg> + O(H?/L,,, - wg”)

= an(Q’UXJ/{ (’Mn), ?)) + 0(”7’% — Wy ||)
Hence we conclude that
, 1 ”wo_ ”
(J7 (u,), v) < ——(1 +0o(1)).
n of.(o
Since |f,(ov)|— |f,(0)|=c as 0—0 and

”wQ — Uy, ” _ ”fn(o)un _fn(Qv)(un - Q?))”
o o
_ ke ll1£0) = futov) | + Jo] Ifulov) |

Q
Therefore we conclude that J; (u,) — 0 as n— o . Hence {u, } is a Palais-Sma-
le sequence for J;. Since m;(1) < ¢ and ¢ = ¢(4) for A < &, then from Lemma
4.6 we get the existence result.
Let us now prove (60). Assume A,—0 as n— o and let u,=wu; ; €
M; (4,) be a solution to problem (52) with 4 = 4,,. Then up to a subsequence we
get the existence of ¢ >0 such that

SC|ﬂ(0)|Hv||+cgsc

Tim [ [Vu, [Pde = Tim [ k@) |u, P de =10
RN RN
From Sobolev inequality, it follows that £ = S™P HkHw . On the other hand
since u,, € M(A,) we have

F 1 _N-p
ﬁ+0(1)=J,1 (un)s—SN/P”k”m » +o(1)
which yields ( < SN/p||k||7 . Therefore { = S™7||k|.. = and hence

Tim [ (k.. — k@) [u]?" de=0.
RN
We set w, = ﬁ then ||wn|| =1 and 71li_r)r}o ||wn||€31,p(RN) = §. Hence we get
U [Ip :
the existence of w,e M ?(RY) such that one of the following alternatives holds
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1. wy#0 and w, —w, strongly in the M P (RY).
2 wy =0 and either
) |Vw,|P—du=S6,, and |w,|" —dv=20,,
or
ii) | Voo, |P—du . = S0 .. and |w, |?"—dv . =0 .

Arguing as in [1, Lemma 3.11] it is possible to show that the alternative 1
and the alternative 2 ii) can not hold. Then we conclude that the unique possi-
ble behaviour is the alternative 2. i), namely we get the existence of x,e RY
such that

|Vw, |P—du =86, and |w,|""—dv =20

Xo*

Since

f|an|pdac=S+o(1)=Sf|wn|p*dac+0(1)=ﬁfk(%)lw

RN RN

—k(xy) +0o(1),
IR

then we obtain that x,e (k). Using Lemma 5.1, we conclude that x, = a,, and
the result follows. m

6. — Further results.

In this section we use the Lusternik-Schnirelman category theory to get
multiplicity results for problem (52), we refer to [4] for a complete discussion.
We follow the argument by Musina see [17]. We assume that k is a nonnegati-
ve function and that 0 <1 <¥, where ¢, is chosen in such a way that

ey \ VP
( ;’ ) > 3 and g, < ¢, being ¢, given in Lemma 4.8. We set for 6 >0

Ck) = {aeRY |k(a) =|k®)|.} and Csk) = {xeR": dist(x, C(k)) <4} .
We suppose that (K2) and the following assumption
(K3) there exist R,, d,>0 such that sup. |k(@) | <kl —

[z >Ry
hold. Let M(4) be defined by (56). Consider
M) = {ueM@): J,(u) <¢}.
Then we have the following results.
LEMMA 6.1. — Let {v,},enCM(A) be such that J,(v,)—c<c¢ and

Sy (V) =0, then {V, }nen contains a convergent subsequence Moreover
there exists & >0 such that if 0 <1 <A, :=min{g, &}, then M(1) #= 0 and
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for any {4, }nenC R, such that A,—0 as n— % and {v,},.nC M(L,), there
exist {2, e CRY and {7, },cnC R, such that x,—xye Ck), r,—0 as n—
o and

(61) Uy — (ﬁ) ! urn('_xn)_)o m (Dl’p(RN);
where
(62) u, () = G =

» » -p
(’I"F‘l‘ |90|1)T1) P

and C, is the normalizing constant to be |u,|,-=1.

ProOF. — The proof is a direct modification of the arguments used in [1] and
it will be omitted. =

REMARK 6.2. — Notice that as a consequence of the above lemma we obtain
the existence of at least cat(M(A)) solutions that eventually can change
sign.

The main result of this section is the following Theorem, for the proof of
which we refer to [1].

THEOREM 6.3. — Assume that hypotheses (K0), (K2) and (K3) hold and let
0> 0. Then there exists A, >0 such that for all 0 <1 < 1,, equation (52) has
at least cate,uy (k) positive solutions.

REMARK 6.4.

i) If C(k) is finite, then for A small, equation (52) has at least
Card (C(k)) solutions.

ii) We give now a typical example where equation (52) has infinitely
many solutions. Let n : R—R . be such that n is regular, n(0)=0 and n(r)=1
for r= % We define k, on [0, 1]1cR by

1 ifr=0,

k =
1(7) 1= ()

110
sin—| fo<r<l,
r

where p < 0 < N. Notice that k, has infinitely many global maxima achieved
on the set

Clky) = {m= ifor n= 1}.
NI
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Now we define k to be any continuous bounded function such that k(x) =
k(x| if |x| <1, |kl <1 and |ll‘im k(x) = 0. Since for all m € N there exists

o(m) such that cat(C)e, =m, then we conclude that equation (52) has at least
m solutions for 1 < A(0).
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