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Effect Algebras and Extensions of Measures.

ANNA AVALLONE - ANNA DE SIMONE - PAoLo VITOLO

Sunto. — St affronta il problema dell’esistenza di un’estensione tipo Carathéodory per
misure modulari definite su lattice-ordered effect algebras.

Summary. — We investigate the existence of a Carathéodory type extension for modular
measures defined on lattice-ordered effect algebras.

1. — Introduction.

The classic Carathéodory extension theorem says that every group-valued o-
additive exhaustive measure defined on a Boolean algebra A can be uniquely
extended to a g-additive measure on the o-algebra generated by A. A similar
extension theorem has been proved for a class of measures (modular functions)
on orthomodular lattices in the more general setting of non-commutative mea-
sure theory (see [24], [4]) and for measures on MV-algebras in fuzzy measure
theory (see [9]) (see also [13], [20], [25]).

The aim of this paper is to study the extension problem for modular measures
defined on lattice-ordered effect algebras (D-lattices), structures that represent
a common generalization of orthomodular lattices and MV-algebras. Effect al-
gebras were introduced by M.K. Bennett and D. Foulis in 1994 (see [11]) with the
aim of modelling unsharp measurements in a quantum mechanical system, and
they belong to a large class of non-Boolean structures frequently used because of
their wide range of applications: in quantum physics (see [10]), in Mathematical
Economics (see [17], [19], [30]), in fuzzy theory (see [12], [23]). For an extensive
list of references see [16].

In the case of classic measure theory (i.e. additive functions defined on
Boolean algebras), the fundamental tool used to obtain extension theorems are
some topological methods based on the theory of Fréchet-Nikodym (FN)
topologies (see e.g. [15], [21], [26]). Our approach in the present paper is based on
similar topological methods, which have been adapted to the specific case. In this
context the role of FN-topologies is played by D-uniformities (i.e. uniformities
which make the lattice operations Vv, A and the & operation uniformly con-
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tinuous) introduced in [2]. Differently from the Boolean case, in which the outer
measure associated to a given measure naturally generates an FN-topology on
the Boolean algebra, for the case of D-lattices it is not clear if the outer measure
generates a D-uniformity. If this happens, we are able to establish an extension
theorem (Theor. 6.2) which generalizes the one proved in [4] (Theorem 2.2.1) for
modular functions defined on orthomodular lattices. The use of a Bartle-
Dunford-Schwartz-type theorem in D-lattices proved in [5], allows to obtain an
extension result for modular measures with values in a complete locally convex
Hausdorff linear space (Cor. 6.8).

The paper is organized as follows: After stating the basic definition in the
following section, we prove some technical results in Section 3, which allow to
characterize in terms of additive classes the o-sublattice generated by a given
lattice. In Section 3 we study monotone functions which are useful in the next
section, where we introduce an outer measure associated to a given measure,
and we prove that, under suitable hypothesis, it has the properties we need
(it is, in fact, a o-submeasure). The results of Sections 3 and 4 are essential
tools for obtaining the extension theorems proved in the last section.

2. — Preliminaries.

In this section we briefly describe the kind of measures we use and the struc-
tures on which they are defined. Let us start by the definition of effect algebras.

DEFINITION 2.1. — An effect algebra (L, ®,0, 1) is a structure consisting of a
set L, two special elements 0 and 1, and a partially defined binary operation & on
L x L satisfying the following conditions for every a,b,c € L:

1) Ifa @b is defined, then b ® a is defined and a b =b @ a.

@) Ifbdcand a® (b ® c) are defined, then a © b and (a ® b) ® ¢ are de-
finedandadbdc)=(@dd) ®ec.

(8) For every a € L, there exists a unique a* € L such that a ® a* is de-
fined and a ® at = 1.

4) Ifa @1 is defined, then a = 0.

In every effect algebra a dual operation © to @ can be defined as follows: ¢ © ¢
exists and equals b if and only if b & ¢ exists and equals a.

Moreover we can define a binary relation on L by a < b if and only if there
exists ¢ € L such that ¢ @ a = b and < is a partial ordering in L, with 0 as the
smallest element.

The sum allows to define orthogonality between two elements.

DEFINITION 2.2. - We say that two elements a,b € L are orthogonal, and we
write a L b, if a @ b exists. Then a L bif and only if a < b*.
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For every a,b e L, we have a* =16 a, a® b= (b S a)*, and @ < b if and
only if a* > b*.

In a natural way the sum of more than two elements is obtained: If ay, ..., a, €
L, we inductively define a1 @ ... ® a, = (a1 ® ... ® ay_1) ® a,, provided that the
right hand side exists. The definition is independent on permutations of the
elements and allows us to define orthogonality among more than two elements.

DEFINITION 2.3. — A finite subset {ay, ..., @y, } of L is orthogonal if a; & ... ® a,,
exists. For a sequence {a,}, we say that it is orthogonal if, for every n, @ a;
exists. If, moreover, sup € a; exists, we set P a,, = sup P a;. i=n

n o i<n n n o i<n

The measures we consider are all defined on a special type of effect algebras.

The definition follows.

DEFINITION 24. — If (L, <) is a lattice, we say that the effect algebra is a
lattice ordered effect algebra or a D-lattice.

The notion of g-continuity of a D-lattice is, as usual, expressed in terms of
monotone sequences: We write a,, T @ (respectively, a,, | @) whenever {a,} is an
increasing sequence in L and a = supa, (respectively, {a,} is decreasing and
a= igf an). "

DEFINITION 2.5. — The lattice L is said to be o-continuous if a,, 1 a implies
an ANb T a A b (or, equivalently, a, | aimpliesa, Vb | aV b)foreveryb € L.L1s
said to be a-complete if every countable set has a supremum and an infimum.

Letusset A={(a,b)e LxL:a=0b}.Ifa,bcL,weputaAb=(aVb)o
(a A b). Moreover, if a < b, we denote by [a, b] the interval with these as extreme
points:
[a,b]={ceL:a<c<b}

Our problem is to extend a function defined on a certain sublattice of a given
D-lattice, the exact definition follows.

DEFINITION 2.6. — If M C L, we say that M is a D-sublattice of L if it is a
sublattice of L, 1 € M and, for every a,b € M with a < b, the difference b S a
belongs to M.

A sublattice M of L is a D-sublattice if and only if, 0 € M, the complement a
of every element a of M belongs to M and, for every a,b € M with a L b, the sum
a @ b belongs to M.

In the sequel, we denote by L a g-continuous D-lattice, and by G a complete
Hausdorff topological Abelian group.
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Measures on D-lattices are defined the usual way:

DEFINITION 2.7. — A function u : L — G s said to be a measure if ¢ L b im-
plies p(a @ b) = u(a) + w(b). We say that u is o-additive if, for every orthogonal

sequence {a,} in L such that @ a, exists, (P a,) = 3 wlay).
n n

n=1

It is easy to see that u is a measure if and only if a < b implies u(b © a) =
() — u(a). We are interested, in particular, in modular measures:

DEFINITION 2.8. — A function p: L — G s said to be modular if;, for every
a,be L, ulaVb)+ ula A b) = u(a) + wb).

If L is an orthomodular lattice, every modular function ¢ with 4(0) =0is a
measure. Conversely, if L is an MV-algebra, every measure is a modular func-
tion. In a D-lattice the two concepts are independent. The following result gives a
characterization of modular measures by just an equation.

PrOPOSITION 2.9. — Let ©: L — G be a function. Then u is a modular
measure if and only if, for every a,b € L, the following equality holds

(%) w(a) = ul(a Vv b) © b) + ula A b).

ProOF. - If x is a modular measure, then for every a,b € L, we have
1@V b)ob)=uaVvb) —ub) = u(a) — u(a A b), whence the assertion.

Conversely, if ¢ and d are orthogonal elements in L, applying () with a =
c®dand b = d, we obtain u(c & d) = uc) + u((c ® d) A d) = u(c) + u(d). Hence u
is a measure and therefore, by (* ), we also obtain that x is modular. O

By [18], every modular function on a lattice generates a lattice uniformaity
U(p), i.e. a uniformity which makes the lattice operations vV and A uniformly
continuous and U(u) is the weakest lattice uniformity which makes x uniformly
continuous (see also 3.1 of [28]). Moreover, by 4.2 of [3], if u is a modular measure
on L, then U(u) is a D-uniformity, i.e. U(u) makes & (and therefore &) uniformly
continuous, too, and a base of U(u) is the family consisting of the sets {(a,b) €
L x L : u(c) € W for every ¢ < a A b}, where W is a neighbourhood of 0 in G.

DEFINITION 2.10. — A function u : L — G is said to be exhaustive if, for every
monotone sequence {a,} n L, {u(ay)} is a Cauchy sequence in G. It is said o-
order continuous (g-0.c.) if a,, T a or ay, | @ in L implies lim u(a,) = u(a).

n

Some more terminology will be useful in the sequel: By 2.2 of [3], a measure u
is g-additive if and only if x is ¢-o.c.
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A D-uniformity U is said to be exhaustive if every monotone sequence in L is a
Cauchy sequence in U, g-order-continuous (o-o.c.) if a,, T a or a, | ain L implies
that {a,} converges to a in U, and U has the property (o) if, for every Cauchy
sequence {ay} in (L,U) such that a,, T @ or a,, | a, {a,} converges to @ in (L,U).

By 3.5 and 3.6 of [28], a modular function u : L — G is exhaustive (respec-
tively, g-o.c.) if and only if U/(x) is exhaustive (respectively, ¢-o.c.).

3. — o-D-lattice generated by a D-sublattice.

The aim of this section is to characterize the o-sublattice generated by a given
lattice. To this aim, monotone subsets of D-lattices are needed.

DEFINITION 3.1. — A subset M of L is said to be monotone if it is closed with
respect to the limats (in L) of its monotone sequences.

If M C L, we denote by a(M) the least monotone D-sublattice of L which
contains M. The set o(M) is called o-D-sublattice generated by M. Moreover we
set

M,={acL:3a,} CM:a,a},
Ms={aeL:Ha,} CM:a,]a}
and

Mos = (My)s.

We will be able to prove that for a given D-sublattice M of L, the set o(M)
coincides with the least monotone subset I(M) of L which contains M. This
equality is an essential tool in the next sections.

We list below some relations regarding monotone sequences in D-lattices.
They can be viewed as an immediate consequence of 1.8.7 and 1.8.8 of [16].

LEMMA 3.2. - (1) If b, T b and a > b, for each n, then a © b, | a S 0.
@) Ifb, | band a > b, for each n,then a &b, T a S b.
@) Ifb, 1 band a < b, for each n,thenb, a1 boa.
4) Ifb, | b and a < b, for each n,then b, ©a | boa.
®) Ifa, 1 a,b, T banda L b, then a, L b, foreach n and a, ® b, T a & b.

A description of the set I(M) is contained in the following result.

PRroPOSITION 3.3. — Let M C L. Denote by w, the set of all countable ordinal
numbers, and let {M,:y € w} be the transfinite sequence defined in the
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following way:

(@) My=M.
(b) M{Hrl = (Ma)a'éfo’r a € wi.
(© M, = Mgifyc w ts alimit ordinal number and y > 0.
<y
Then:

O IM) = | M,.

yeEm
(2) If M is a sublattice of L, then I(M) and every M, (y € w1) are sublattices
of L.

PRrROOF. — Let us prove (1) in three steps:

(i) We first prove that {M, : y € w;} is increasing.

Let S,y be in wy, with f < y. By induction with respect to y, suppose that, if
o <a” <y, then My C M. If y is a limit ordinal number, then we have My C
U M; = M,. On the other hand, if y = a + 1, for some a € w;, then f < a < y. By
A<y
the inductive assumption, we have My C M,. Since M, = M1 = (My)ps 2 M,
then My C M,

(ii) We now prove that M, C I(M) for every y € w.

Trivially Mo =M C I(M). Let y > 0 and suppose by induction that My C
I(M) for every f < y. If y is a limit ordinal number, then M, = |J My C I(M). If

<y
y=a+ 1 for some a € w;, then M, C I(M) by the inductive assumption and
therefore M, = M, 11 = (M )55 € U(M))ys = I(M).
(iii) We finally prove that I(M) C |J M,.

ST

Since |J M, D M, it is sufficient to prove that |J M, is monotone. Let

yEW yEw

{a,} € U M, be a monotone sequence and let a be its order limit. For each =,
yEMm

let y,, € w; be such that a,, € M, . By the properties of ;, there exists f = supy,
n

in ;. Since {M,, : a € w} is increasing and, for each n, a,, € M, , we have a,, €
M for each n. At this point a € (Mjy), if {a, } is increasing and a € (Mp); if {a, }

is decreasing. In any case, a € (Mp),5 = Mpy1 € J M,.
Sl

Let us now pass to the proof of Statement (2). Suppose that M is a sublattice
of L. We prove that, for every y € w1, M, is a sublattice of L.

This is obvious if y = 0, since in this case My = M. Take then y > 0 and as-
sume, by induction, that for every f < y, My is a sublattice of L. If y = a + 1, for
some a € wy, then M, is a sublattice by induction and therefore M, = (M,),s is a
sublattice, too, since L is g-continuous. If y is a limit ordinal number, then M, =
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/;U Mjp. By induction, for every f < y, My is a sublattice. Then M, is a sublattice,
<y
too, since {Mjy : f < y} is increasing by ().

In a similar way we can prove that (M) is a sublattice of L. O
We are now ready to describe the desired characterization of o(M).

THEOREM 3.4. — Let M be a D-sublattice of L and o(M) the o-D-sublattice
generated by M. Then o(M) = I(M).

PrOOF. — Since o(M) D I(M), we only have to prove that (M) is a D-sublattice
of L.

By Prop 3.3, I(M) is a sublattice of L. Moreover 0,1 € I(M) since M C I(M).

Let {M, : y € w1} be as in Prop 3.3. We will prove that, for every a € w; there
exists a natural number k such that, if @ and b are elements of M, with a > b,
then a © b € M, This will imply the thesis.

Let a € w; and a,b € M, with a > b. We proceed by induction. We may as-
sume that o is the minimum ordinal number such that a,b € M,. If a = 0, the
assertion is trivial since in this case My = M. We can then assume a # 0. Ifa is a
limit ordinal number, by the equality M, = |J Mg, we can find 8, f, in w; such
that f; < a,fs < a,a € Mg and b € My, F<¢

If we set f = max{f};, 5}, we obtain f < a and a, b € My, a contradiction with
the definition of a. Then there exists y € w; such that a =y + 1, which gives
M, = (M,),s. Take two double sequences {@u» }, {bm»} in M, and two sequences
{an},{bs} in L such that, for each %, ¢y 1, @n, On T, by and, moreover, a,, |
@, b, | b. By Prop 8.3 M, is a sublattice of L, this allows us to assume that, for
each m, the sequence {a,,,} is decreasing with respect to n (if not, we can re-
place {a;,,} with the sequence {cy,,} defined as ¢, = 11<1£ W i)-

Choose now a natural number k corresponding to y according to the inductive
hypothesis and fix m,n, p, ¢, > p and s > ¢. Then, by the inductive assumption,

a?“.q O (bmm A\ (lp’s) e M}'+k'
Since Statement (3) of Lemma 3.2 gives
Uy q ) (bm,n N G’P-,S) TT Qg o (bm”ﬂ A ap,s),

we obtain ag © (b A aps) € (M,11),. Moreover, since by, T, by and L is o-
continuous, (1) of Lemma 3.2 implies ag © (byn A @ps) Ly @g © (b A apg). At this
point aq © (by A a}ls) € (M)urk)aﬁ = M}'+k+1 =M,y

Similarly, since a, s T, as and L is o-continuous, using again (1) of Lemma 3.2
we obtain that a; © (b, A aps) 1, ag © (by A as). Thenay © (by A as) € (Myik)oss =
M, 11)os = M- From by, | b, by (2) of the same lemma it follows that a, © (b, A
as) T, ag © (b Aag). Then ay © (b A ag) € (My.p),- Since a, | @, using again (2) of
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Lemma 3.2 we obtain ae(®Aa,)Ta,obANa)=a,6b. Hence aq,0b¢
M y11)g0 = (M), Finally, since a, | a, Statement (4) of the same lemma gives
a;©b | a6 b, fromwhicha © b € (Myi1)55 = Moiri1 follows. O

4. — Monotone functions.

In this section we study some properties of [0, +oc]-valued functions on L
which will be useful in the next section.
For a function # : L — [0, +00], we say that 5 is:

e upper-continuous if a,, 1 a implies lim #(a,,) = n(a),
n
o lower-continuous if a,, | a implies lim #(a,) = #(a),
n
o upper-D-continuous if, for every a,b € L and every sequence {b,} in L,
b, 1 b or b, | bimply #((a Vv b) ©b) <limsup#((aV b,) S by,),
n
e exhaustive if, for every monotone sequence {a, } in L, lim n(a, A a,4,) = 0,
5 n
Vp € N,
e g-order continuous if a,, T a or a, | a imply lim#(a, Aa) =0,
n
e has the property (o) if a, 1 a or a, | a and lim#y(a, Aa,,) =0 imply
. n,m
lim#(a, A a) =0, '
n
e subadditive if, for every a,b € L with a L b, n(a ® b) < n(a) + n(b),
o g-subadditive if, for every orthogonal sequence {a,} in L such that §a,

. S n
exists, 7( P an) < Y nan).
n n=1

It is easy to see that 7 is upper D-continuous if and only if, for every a,b € L
and every sequence {b,} in L, any of the relations b,, 1 b or b,, | b implies n((a V
b) e b) < supy((aVb,) &b,). A study of the relation among the previous prop-

n

erties follows. Let us start by verifying that o-subadditivity is a stronger con-
dition than property (o).

PROPOSITION 4.1. — Let n: L — [0, +oc] be o-subadditive and monotone.
Then n has the property (o).

ProOF. — Take a sequence a, T a and assume that lim n(a, A a,,) = 0. For
n,m

¢ > 0 and, for every k, let n; be such that, for every ¢ > j > n, n(a; © a;) < e/2k.
We may assume that the sequence {#} is strictly increasing. If we set b, = ay,,
we have b, Ta and #(b; ©b)) < /2% for every i >j >k and every k. Set

k
¢y = by, © by—1 for eachn > 2. From 2.1 of [3] we have &P ¢,, = b, © b; for every k.

n=2
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Then, by (3) of Lemma 3.2, we have

00 k
@cn = sup@ck =sup by ©b1) =a S b.
n=2

n=2 k

Since # is g-subadditive, we have n(a © by) < in(cn) < i 27% = ¢. Since 7
is monotone, we have z5(aea,) <nao bf;:i ¢ for 753:;0}1 n >mny. Then
li”m (an ANa) = liyrbn nla e a,) =0.

If a, | @ and Br% 0@y, A ay) =0, then a;- T a*. From the previous result we
obtain lign na, ANa) = liyrbn na, © a) = liqun naetoal) = liyrbn nla* A a;t) = 0. This

completes the proof. d

The following two results compare the notions of upper continuity and upper
D-continuity for monotone functions.

ProPoSITION 4.2. — Let n : L — [0, +0c] be a monotone function. If n is upper
D-continuous, then n is upper-continuous.

PRrOOF. — Let {a, } be asequence in L such that a,, T a. Since a;> | a*, we have
na) =n(@AVvat)oat) <supn(lVa;)oay) =supna,) < na). a
n n

PROPOSITION 4.3. — Let  : L — [0, +00] be a monotone subadditive function.
If n 1s upper and lower-continuous, then n is upper D-continuous.

Proor. — Take two elements a and b in the lattice ¢(3/) and a sequence {b, } in
the same set increasing to b. By (1) of Lemma 3.2, we have that the sequence
(a Vv b) S (aV b,) decreases to zero. Then for each positive ¢ we can choose 7 such
that #((a v b) © (a Vv b)) < e. By 1.1.6-iv of [16], we have

(@vb)sb,=aVb,)eb,)®(aVb)e(aVby)).
We then obtain
n((a v b) ©b) <nllaVb)oby) <nllaVb,) o by +nlaVb)o(@V b))
<e+n(@Vb,)©by) <e+ sup n((a Vv by) © by).

Let us now take b, | b. By (4) of Lemma 3.2, we have b, &b | 0. Hence,
if £ >0, we can choose n such that (b, © b) < &. Again, the use of 1.1.6-iv
of [16], gives n((a Vv b)©b) <n((aV b,) ©b) <nl(aV by) S b,) +nb, ©b) <e+
supn((a V b,) © b,), which implies the assertion. O
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For some functions defined on an orthomodular lattice, upper continuity is
equivalent to upper D-continuity.

PROPOSITION 4.4. — Let  : L — [0, +oc] be a monotone subadditive function.
If L is an orthomodular lattice, then n is upper D-continuous if and only if n is
upper-continuous.

Proor. — By Prop 4.2, we only have to prove that, if # is upper-continuous,
then # is upper-D-continuous.
Take a,b € L and {b,} C L such that b, T b. Since L is g-continuous, we have
@V )AL T (@Vvb)AbL. Then n((aVvb)eb)=nlaVvd)AbL) = supn((a Y,
b,) ADY) < sup n((@Vby,) ANb) = sup n((a Vv by) © by).

In case bn | b, o-continuity of L 1mp11es (@Vb)Ab; 1 (@Vb)Ab*. Therefore
we obtain

n(a Vv b)©b) =n((aVb)Ab) =supnaV b) Aby)

< supn((aV b,) Aby) = supn(aV by) © by).
n n I:l

We now introduce the concept of submeasure, which plays an important role
in the next sections.

DEFINITION 4.5. — A function n : L — [0, +00] is said to be a submeasure if i
1s monotone and subadditive, n(0) = 0 and n((a Vv b) © b) < n(a) forevery a,b € L.
A o-subadditive submeasure is called o-submeasure.

Observe that every positive real-valued modular measure 1 is a submeasure
since A((a vV b) ©b) = Aa Vv b) — Ab) = Ma) — Aa Ab) < Xa).

By 3.2 of [6], every submeasure 7 on L generates a D-uniformity () on L,
which is the weakest D-uniformity which makes # uniformly continuous, and a
base of U(#y) is the family consisting of the sets {(a,b) € L x L : nla A b) < &},
where ¢ > 0.

It is easy to see that a submeasure 5 : L — [0, +00] is exhaustive or ¢-o.c. or
has the property (o) if and only if U(y) is exhaustive or g-o.c. or has the property
(0).

We need the following results to give in Prop 4.8 below a characterization of
the submeasures by just an inequality in similar way as that obtained in Prop 2.9.

LEMMA 4.6. - Take two elements a and b in L. Define ¢ = a © (a A D) and
d=bc(@Ab). Then cvVd)od=(aVb)obh.
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ProOF. — By 1.1.6-iv and 1.8.4 of [16], we have
aAb=((avdobobdol@nb)=@c@Ab)Vbo(aAb).
We then obtain
(avbhob=(@Abo b @)

=((@e@nb)ve@rb)ebsland)=~cvdod.
O

LEMMA 4.7. — Let n : L — [0, +00] be a monotone function. Then the follow-
ing conditions are equivalent:

(1) Forevery a,b e L, n((aV b)©b) =nla o (a ADb)).
(2) Forevery a,b € L, n((aV b) S b) < na).
) anb=0= naVb)ob) >na).

Proor. — Statement (1) is obviously stronger than (2) and (3). To prove that (2)
= (1), let us take a,b € L and set c =a S (@ A D), d =b & (a A D). The previous
lemma ensures that #((a VvV b) © b) = y((c Vd) & d) < 5(c) = n(a & (a A b)). More-
over, since ao(aAb)=(a Ab-oat=(at Vv bH)oat, we obtain 7ao(aAb)) <
nb*+ © (@t AbH) =n(a Vv b) & b).

Let us now show that (3) = (1). Take elements a,b in L and set ¢ =
ao@ANb),d=b5(aAb). By 1.8.5 of [16], we have ¢ A d = 0. By the previous
lemma we obtain #((aV b)Sb) =n(cVvd) oed) >nic)=rnasc(@Ab)). Then
na o (@Ab) =yt vbt)cat) > nbt o @t AbY)) =n(aVb) Sb). O

We can conclude this section by the desired result:

PROPOSITION 4.8. — Let #5: L — [0,4+0c0] be a monotone function, with
n(0) = 0. Then n is a submeasure if and only if, for every a,b € L, the following
mequality holds

(%) n(a) < nla Vv b) ©b) + nla Ab).

ProOOF. — Let 7 be a submeasure. We can suppose #(a A b) < +oo. Then we
have

na) < nla o (@A b)) +nlaAb).
By Lemma 4.7 above, it follows that #(a © (a A D)) = n((a Vv b) © b), from which
the assertion follows.

Conversely, by (*), we have that, if a Ab =0, then n((aV b) ©b) > n(a).
Again, the use of Lemma 4.7 gives

navb)ob) <na)  Va,bel.
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Moreover, if ¢ and d are orthogonal elements in L, then, application of () with
a=c®dandb =d, gives n(c ® d) < 5(c) + n(d). This is sufficient to say that 7 is
a submeasure, as wanted. O

5. — The outer measure.

In this section M C L is a D-sublattice of L, || - || is a fixed seminorm on G and
u: M — G is a g-additive exhaustive modular measure.

Following the classical way, we define an outer measure x* associated to u.
We prove that, under suitable hypothesis, x* is a g-submeasure on o(M). This
fact yields, by 3.2 of [6], the existence of a D-uniformity on o() which makes u*
uniformly continuous, which is the starting point for establishing the desired
extension in the next section.

In the following, we set, for a € L,

i) = sup{||u®)|| : b € M,b < a}
and
wi(a) =inf{u®) : b € M;,b > a}.

We say that u is upper-D-continuous if u* is upper D-continuous on o(M).
Let us start by stating some properties of /.

PROPOSITION 5.1. —- The function it is a submeasure on M.

PRrOOF. — Itis clear that fi is monotone and that j1(0) = 0. Take two orthogonal
elements a and b in M. We first prove that (e @ b) < ji(a) + ju(b). Let ¢ be an
element of M withc < a®b. Setd =cAa and e = (¢ V a) © a. By the relation

e<at<atvet=(arc)t
we obtain d L e. Moreover we have
ud@e)=pulcNa)+ulcVa)ca)
= u(c Na)+ pule vV a) — wa) = ue).

Since d<a and e<((e@bdVa)oa=(@db)oSa=>~b, then |ul)| =
lle(d @ e)|| < ||| + ||wle)|| < ile) + ju(b), the assertion follows.

Let us now check that z((a Vv b) ©b) < ji(a). Let ¢ € M be such that ¢ <
(aVvb)ob. Sets =02 (((aVb)cb)cc). If we prove that ¢ = (a V s) S s, it will
follow that u(c) = u(aVvs)— u(s) = ula) — wla As) = u(a & (@ As)), whence
llu(o)|| < fi(e) and therefore the thesis.

Obviously b < s; from 1.1.6-iv of [16], it follows that s =b@ ((aVb) © ¢) © b) =
(avb)oc<aVvb ThismeansthataVvs=aVvb whence(aVvs)oc=(@Vbd)o
c=s.Atthispoint (avs)os=(@Vvs)o(aVvs)oc)=c. |
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REMARK 5.2. — Note that U(u) and u(,&| u) have the same base of neighbour-
hoods of 0. Hence, by 2.4 of [6], we have U(w) = Ui ).

ProprosITION 5.3. — (1) The function it is upper-continuous on M,.
@) If a and b are orthogonal elements in M,, then a®be M, and
ia @ b) < a) + ab).

Proor. — (1) Take a,, T ain M. Suppose first that a,, € M for each n. Let b be
an element of M such that b < a. Since L is g-continuous, we have that b A a,, 7 b.
o-order continuity of 1 ensures that u(b) = lim u(b A a,,). Let ¢ > 0 and » be such
that ||u(b) — u(b A a,)|| < & Then !

u®)| <&+ [|ubd Ay < e+ an) < &+ sup flay).
n

Hence ii(a) < sup ji(a,,). On the other hand, we have ji(a) > ji(a,) for each n since
n
[t is monotone. Then ji(a) = sup jay,).
n

Take now a sequence {a, } in C M,. For each n, let {b,,} C M be such that
bum T Q. Set ¢, = sup by, . We have that {c,} C M, ¢, < a,, for each m and

n<m
¢m 1 a. From the previous result, it follows that

f(@) = sup ji(cy,) < supia,) < ia),

which implies ji(a) = sup ji(a,).
m

(2) If @ and b are two orthogonal elements in M, their sum a & b belongs to
M, thank to (5) of Lemma 3.2. Suppose first that a« € M and choose a sequence
{by} in M such that b, 1 b. Of course, b, L a for each n, a ¢ b, T @ @ b and, by
D), ia & b) = lim ia & by) < (@) + lim ji(b,) = jua) + ju(b).

Suppose now a € M,,. Choose {a,} in M such that a,, T a. Thena, ®bTad b
and f(a & b) = lim ji(a, @ b) < lim fi(a,) + ) = j@) + f(b). a

We continue by stating the properties of the function u*.

LEMMA 54.—-Let beM and suppose that, for every acM,
wW(aVvbd)eb) < u(a). Then, for every a € L, u*((a Vv b) & b) < u*(a).

Proor. — Take ain L and an element cin M, with ¢ > a. We have to prove that

1 ((aVvb)ob) < ). Choose a sequence {b, } in M such that b,, | c. Then, by (3)

of Lemma 3.2, we have (b, Vb)© b T (c VvV b) ©b. Since the elements (b, Vb) S b

belong to M, the relation (¢ vV b) © b € M, holds. Upper continuity of x* on M,,

due to Prop. 5.3 above, gives wu*((cVb)Sb)=supu“((b,Vvd)eb). From
n
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{b,} C M, it follows that u*((b,, V b) © b) < u*(b,) < ju(c). At this point, the rela-
tion a < ¢, implies p*((a vV b) © b) < u*((c vV b) © b) < ji(c), as wanted. O

LEMMA 5.5. —- For every a € L, there exists a decreasing sequence {a,} in M,
such that a, > a for each n and p*(a) = lim u*(ay,).
n

PrOOF. — Let a € L. By definition of x*(a), we can find for each » an element
by, in M, such that b,, > a and u*(a) > ju(b,) — 1/n.
Set a,, = %nf by.. Then {a,} is a decreasing sequence in M, and, for each n, it is
<n

an > a and fa,) < ju(b,) < u* (@) + 1/n. Since y*(a) < i(ay) for each n, we get
wa) = liqgn 1W(ay). O

LEMMA 5.6. - Let A C L be a set with the following properties:

1) MCA.
(2) If S C A is a sublattice of L, then S, C A.
3) If S C A s a sublattice of L and M, C S, then S5 C A.

Then (M) C A.

ProoF. - By assumption, we have that, if S C A is a sublattice of L with
M C S, then S,5 CA.

Let {M, : y € w1} be as in Prop 3.3. By this proposition and Theor. 3.4, we
have

oM) = | | M,.
yewy
All'we need to prove is that M, C A for each y € ;. By assumption, My = M C A.
Take now y > 0 and suppose by induction that M, C A for each a < y. If yis alimit
ordinal, we trivially obtain M, C A. If y is of the type y = a + 1 for some a € wy,
then M, C A since in this case, due to Prop 3.3 M, is a sublattice of L. O

We can now obtain o-subadditivity of x* as a consequence of its upper con-
tinuity on a(M).

THEOREM 5.7. — Suppose that 1* is upper-continuous on a(M). Then u* is o-
subadditive on o(M).

PRrOOF. — Step 1: We first prove that x* is subadditive on o(M).
Set

A={beL:VacaoM) with a Lb, 1’ (a®b) < u*(@) + & ®)}.
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We prove that A has the properties (1), (2) and (3) of Lemma 5.6 above, whence
we will obtain that o(M) C A and then that u* is subadditive on o(M).

(1) Let us start by proving that M C A.

Take a € a(M) and b € M such that ¢ L. b. We use Lemma 5.5 to find a de-
creasing sequence {a,} in M, such that a,, > a and x*(a) = lim x*(a,,). Set ¢, =
a, A bt. We have: "

cn €M, and c, > a vYn e N
At this point ¢*(a) < j(c,) < i(ay), whence lim ji(c,) = 1*(a). Observe thatc, 1 b

for each n, and set b, =c, & b. By 1.8.7 of [16], we have that b, € M, and,
moreover, b, > a ®b. Then we obtain i(b,) > u*(a & b). Moreover, by (2) of
Prop 5.3, we have 1" (a) + 1* (b) = lim ji(c,,) + ju(b) > lim ji(b,,). Therefore u*(a & b) <
(@) + 1 (b). " "
(2) We prove in fact that, if {b,,} is a sequence in A increasing to b, then b € A.
Take an element a in ¢(M) orthogonal to b. Since b,, < b for each », then a is
orthogonal to each b,, and, by 1.8.7 of [16],

byoalbada.
The fact that the elements of the sequence {b,} are in A, gives

# (@@ b) =limu (@ ® by) <lim ' (b,) + 1 (@) = @ (0) + 1 (@).

(3) Let S C A be a sublattice of L such that M, C S. We want to prove that
Ss CA.

Take b € S;.

(a) We first prove that there exists a sequence {c,} C Ssuchthatc, | band
h}qn wi(cy) = p ().

Choose a sequence {b,} in S decreasing to b. By Lemma 5.5 we can find a
decreasing sequence {a,} in M, such that a,, > b for each n, and liqr7n wiay,) =
w ). Set ¢, = a,, A b,. Since M, is a subset of S, we have, for each n, ¢, € S and
b < ¢y < ay. Then u* () < u(cy) < u*(ay), whence lim u*(c,,) = 1*(b). Moreover,
since b < ¢, < b,, then ¢, decreases to b. "

(b) Take in o(M) an element a orthogonal to b, and choose a sequence
{¢x} C S asin (a). Since ¢;; 1 b+ and L is o-continuous, we have

anc; Tanb:=a
and
ancy <a<bh
Then, by 1.8.7 of [16]

(ane)@bladb.
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Hence p*(a @ b) = lim u*((a A cj) @ b). On the other hand, since {c,} C A and
n

b<c, we have w((aihcy)db) <panch)®cy) < panc)+u (e, <
w(a) 4+ 1 (cy). Therefore we obtain u*(a & 0) < u*(a) + u*(b), which implies that
beA.

Step 2: We now prove that 4* is o-subadditive.
By Step 1 we obtain by induction that, if {a;,---,a,} C a(M) is orthogonal,
then (a1 & - - - @ ay) < p*(ar) + - - - + (). Now let {a, } C a(M) be such that

a = P a, exists. Set b,, = @ a; for each n. Then b,, increases to a and b,, belongs
n i<n

to o(M) for each n since a(M) is a D-sublattice of L. Since x* is upper-continuous
on o(M), we obtain

(@) = sup (b)) < sup Y (@) = > pay).
" ni<n n=1

O

The work done up to this point allows to give a sufficient condition for x* to be
a g-submeasure.

THEOREM 5.8. — If u is upper-D-continuous, then u* is a o-submeasure on
o(M).

PrOOF. — By Prop 4.2 and Theor. 5.7, the function x* is o-subadditive on a(M).
We prove that, for every a € L and every b € (M), the following inequality holds

wavb)ob) < u(a).

Set A={beaM):VaeL, (aVvb)ob) <u(a)}. Prop5.1l ensures that
Wavd)eb) <u(a) for every a,b € M. Then, Lemma 5.4 gives M C A.
Moreover upper-D-continuity of x implies that A is monotone. Then the assertion
follows by Theor. 3.4. a

We can say something more if the function we start with takes values in
[0, +oo.

PROPOSITION 5.9. — Let y: L — [0, +oo[. Then:

1) w* is upper-continuous on L and lower-continuous on o(M) (and
therefore, by Prop. 4.3, u is upper-D-continuous).

@) If{a,} and {b,} are sequences in M such that a, T a,b, | banda > b,
then iI%f wby,) < sup u(ay).

ProOF. - (1) By 3.1 of [1], x* is upper-continuous on L. We prove that u* is
lower-continuous on a(M).
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For every a € L define
wa) =inf{u®d):be M,b > a}

and

u(a) = sup{/wt(b) :beMs,b<a}.

As in Prop 5.3, we can prove that u is lower-continuous on M. Hence, by (3.1) of
[1], u, is lower-continuous on L. We prove that u* = u, on o(M), whence the
assertion.

The proof consists of four steps:

(i) We first prove that, for every a € L, u(a) = u(1) — ji(a*). Let b € M with
b>a. Then a') > u(bt) = u(1) — u(b), whence u(l) — ji(a*) < w(®). Hence
u(1) — fila™) < (a).

Conversely, let ¢ € M with ¢ < a*. Then u(a) < u(c*t) = (1) — u(c), whence
ia") < p(1) — p(@). -

(ii) We now prove that, for every a € L, u.(a) = u(1) — u*(ab).

Let b € Ms with b < a. Then, by (i), we have u*(a*) < u(b*+) = u(1) — (),
whence u(1) — *(at) > pu,(a). Conversely, let ¢ € M, with ¢ > a*. Again by (i),
we have p,(a) > u(ct) = u(1) — f(c), whence p*(a*t) > u(1) — p.(@).

(iii) We prove that p, < u*.

By (i) and Theor. 5.7, we have, for every a € L, u.(a) = u(1) — p*(at) <
@) + (o) — piat) = 1 (a).

(iv) We finally prove that u* = u, on o(M).

Set A={aeclL:p(a)=ula}. Since u* = u, on M, by Theor. 3.4 it is suf-
ficient to prove that A is monotone. Let {a,,} C A be such that a,, 1 a. Then, since
1" is upper-continuous on L, we have u*(a) = hgn wiay,) = h}ln w.(ay) < p.(a). By

(iii), we obtain that & € A. On the other side, take a sequence {a, } C A such that
a, | @. Since p, is lower-continuous on L, we have u. (a)=1limy/ (a,) =
n
lim u*(ay,) > w*(a). Then, by (iii), @ belongs to A.
n

Statement (2) trivially follows from (1). O

6. — The extension theorem.

We are now ready to establish the main result.

As in Section 5, M is a D-sublattice of L and u : M — G is a c-additive ex-
haustive modular measure.

The next result (6.14 and 8.2.1 of [27]) is an essential tool for the proof of our
main theorem.
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THEOREM 6.1. — Let L' be a lattice, S C L’ a sublattice and U a lattice uni-
formity on L'. Then:

(1) The closure of S in (L', U) is a sublattice of L.

(2) If U 1s exhaustive on S, then U is exhaustive on S.

(3) If U has the property (o) and the restriction of U to S is exhaustive, then
S is monotone.

THEOREM 6.2. — Suppose that the group G is normed and that the measure u
1s upper-D-continuous. Then i can be uniquely extended to a o-additive ex-
haustive modular measure i : c(M) — G, and M is dense in (o(M),U(R)).

PRrOOF. - Theor. 5.8, ensures that 4* is a g-submeasure on o(M). By 3.2 of
[6], it generates a D-uniformity U(u*) on a(M) which makes yx* uniformly
continuous. Rem. 5.2 gives U(u) = Z/I(,&‘M) = L{(u‘*M). This means that u iiuni—
formly continuous with respect to U(u*), too. Therefore, denoting by M the
closure of M in (¢(M),U(1*)), i can be extended to a function 77 : M — G, which
is uniformly continuous with respect to Z/(u*). Observe that L{(ul*M) = U(u) is
exhaustive and that, by Prop 4.1 and Theor. 5.7, U/(x*) has the property (o). At
this point we use Theor. 6.1 to obtain that 2/(x*) is exhaustive and M is closed
with respect to the limits of monotone sequences. Hence M = o(M). Moreover,
since x* is exhaustive and has the property (o), by 8.1.2 of [27] i* is ¢-o.c.
Hence 7 is exhaustive and ¢-o.c., too, since @ is uniformly continuous with
respect to U(u*).

Let us show now that 7 is a modular measure. Take two orthogonal elements
@, bin o(M). Choose sequences {a, }, {b,} in M which converge, respectively, to a
and b in (e(M),U(1*)). We may assume that, for each n, a,, L b, since we can
replace {a,} by {a, A b;:}. Since U(x*) is a D-uniformity, we have that {a, @ b, }
converges to a & b in U(u*). Since [ is continuous with respect to U(u*), the se-
quence {zi(a, ® b,)} converges to z(a & b). On the other hand, since i = pron M,
then

ﬁ(an ®b,) = ,u(an) + ,u(bn) - ﬁ(a) + ﬁ(b)

Then 7i(a & b) = @i(a) + u(d).

In the same way we see that 7 is modular.

From U() < U(u*), it follows that M is dense in (a(M), U(R)).

Now let uy, 15 : 0o(M) — G be o-additive modular measures such that u, =
L = pron M. Set v = u; — uy. Sinee v is a g-o.c. modular measure, v has o by 8.1.2
of [27], and vy = 0 is exhaustive. By Theor. 6.1, M is dense in (o(M),U(v)),
Hence v = 0 on o(M). O

REMARK 6.3. — Note that, by Prop 4.4, Theor. 6.2 represents an extension of
2.2.1 of [4].
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A Carathéodory type extension theorem for positive real-valued modular
measures immediately follows from the latter result.

COROLLARY 6.4. — Let ji : M — [0, +oo[ be a g-additive modular measure-
Then it can be uniquely extended to a o-additive modular measure @i : o(M) —
[0, +oc[, and M is dense in (c(M),U(f7)).

Proor. — By 2.6 of [7], it is exhaustive. Moreover, by Prop 5.9, i is upper-D-
continuous. The assertion follows by Theor. 6.2. O

REMARK 6.5. — Note that Cor. 6.4 above can be also obtained as a con-
sequence of Theor. 5 of [1]. It is sufficient to observe that Condition 4.4 of [1],
i.e. Statement (2) of Prop 5.9, is satisfied and that, by the density of M in
(e(M),U(D)), the extension of [1] is also a measure.

Again, as a consequence of the previous Theor. 6.2, we obtain a further Cara-
théodory type extension theorem.

In the next result a control measure for a modular measure u: M — G is a
modular measure v : M — [0, +oo[ such that U(v) = U(u).

COROLLARY 6.6. — Suppose that u: M — G has a control measure. Then u
can be uniquely extended to a o-additive exhaustive G-valued modular measure
7 on aM), and M is dense in (o(M),U(R)).

PrOOF. — Let v: M — [0,4+00[ be a control measure for u. The equality
U() = U(v) ensures that v is exhaustive and o¢-o.c., hence g-additive by 2.2
of [3]. Cor. 6.4, ensures that v can be extended to a c-additive exhaustive
modular measure v : 6(M) — [0, +oo[, and M is dense in (¢(M),U(v)). Moreover,
since x is uniformly continuous with respect to U(v) and U() < U®) 1.1, We
have that u is uniformly continuous with respect to /(v). This means that u can
be extended to a function 1 : o(M) — G which is uniformly continuous with
respect to U(D).

Asin Theor. 6.2, using the fact that M is dense in (¢(M), U(v)) and that U (D) is
a D-uniformity, we can prove that @ is a modular measure. The uniform con-
tinuity of 7 with respect to U(v), implies that 7 is exhaustive and o-additive and
that M is dense in (e(M), U(R)).

The uniqueness of i can be proved as in Theor. 6.2. O

We recall that, if || - || is a seminorm on G, for a modular measure u : L — G,
the total variation is the function |u| : L — [0, +o00] defined as

n—1
ul(@) = sup{z l1@ivn) — @l :ao < a1 < -+ < ay = a}, a€lL.
=0
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By 1.3.10 of [28], || is a modular function. Moreover, with a proof similar to 3.11
of [8], it is possible to prove that |u| is a measure.

COROLLARY 6.7. — Suppose that G is normed and that u has bounded
variation. Then u can be uniquely extended to a o-additive exhaustive modular
measure 1 : (M) — G, and M is dense in (c(M),U(D)).

Proor. — By 1.3.11 of [29], the total variation || of u generates the same to-
pology and, by (2.4) of [6], the same uniformity. Hence |z is a control measure for
4. At this point, it is sufficient to apply Cor. 6.6 to obtain the thesis. O

Cor. 6.6 also allows to obtain the extension result for functions with values in
Hausdorff linear spaces. The way of reasoning is the same as that of [4].

COROLLARY 6.8. — Suppose that G is a complete Hausdorff locally convex
linear space. Then p can be uniquely extended to a o-additive exhaustive
modular measure i : (M) — G, and M s dense in (c(M),U()).

ProOF. - If G is metrizable, we can apply Cor. 6.6 since, by 4.2 and 3.3 of [5],
has a control measure.

Assume then that G is not metrizable. In this case, G can be embedded in a
product [ G, of metric spaces and therefore x can be seen as a function (¢,)gca
with valties in [] Ge.

acA
For each a € A, 1, can be extended to a g-additive exhaustive modular

measure 7, : o(M) — G,, and M is dense in (c(M),U(,)). Set it = (T, )yca- Then
:oM) — [] G, is a g-additive exhaustive modular measure which extends .

acA
Using the fact that L{(ﬁ‘ ) = U is exhaustive and that, given 8.1.2 of [27], U(w)
has the property (o) , we obtain by an application of Theor. 6.1 that M is dense in
(o(M),U(@)). At this point
wWa(M)) C uM) C G

and therefore 7 is a G-valued extension of u to a(M).
The uniqueness of 7 can be proved as in Theor. 6.2. O

We can now prove the following generalization of [14] (Corollary 1.5.2).

THEOREM 6.9. — Let Ly be a D-lattice, X a complete metrizable locally convex
linear space and A:L; — X a modular measure. Then the following are
equivalent:

1) A1is exhaustive;
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2) ALy) is relatively weakly compact;
3) A has a control measure.

Moreover, if Ly is a o-continuous D-lattice which contains Ly as a D-sub-
lattice and A is a-additive, they are also equivalent to the following:
(4) Ahas a (unique) extension to a o-additive exhaustive modular measure
on the g-D-sublattice o(L1) of L generated by L.

Proor. — (1) & (2). By 4.1 of [28], the equivalence between exhaustivity and
relative weak compactness of the range holds for any modular function 4 on any
lattice L which satisfies the following condition: for every finite chainay < ... < a,,
in L and for every I C {1,...,n},

(%) Z [A(a;) — Aa;-p] € ML) — AL).
el

By the proof of 2.6 of [7], every modular measure on L; satisfies (* ), hence
the equivalence holds.

(3) = (1). Let v be a control measure for 1. By 2.6 of [7], vis exhaustive. Since
UA) = U(v), then 1 is exhaustive, too.

(1) = (3) follows by 4.2 of [5].

For the second part, we observe that (4) follows from (1) given Cor. 6.8, the
reverse implication, (4) = (1) is trivial. O
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