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Bollettino U. M. 1.
(8) 9-B (2006), 397-421

Conductor and Separating Degrees for Sets
of Points in P" and in P! x P

Lucia MARINO

Sunto. — In questo lavoro generalizziamo alcuni risultati sui gradi del conduttore, noti
in P2 al caso di schemi O-dimensionali di P". Nella prima parte consideriamo il
problema di caratterizzare la sequenza dei gradi dei generatori del conduttore in
accordo con una fissata funzione di Hilbert per un insieme di punti in P" e de-
terminiamo il grado del conduttore di ogni punto in una r-parziale intersezione.
Inoltre diamo la definizione di separating degree di un punto per uno schema 0-
dimensionale su una quadrica liscia Q@ = P! x P! e proviamo dei risultati per esso
nel caso di sottoschemi speciali.

Summary. — We attempt to generalize conductor degree’s results, known in P2, to the case
of 0-dimensional schemes of P". In the first part of this paper, we consider the problem
of characterizing the sequences generators’s degrees of the conductor which are
compatible with a fixed postulation (or Hilbert function) for a set of points in P" and
we determine the conductor degree of every point in a r-partial intersection. In ad-
dition, we define the separating degree of a point for a 0-dimensional subscheme of a
smooth quadric @ = P! x P! and we give some results in case of special subschemes.

1. — Introduction.

Given a set of s distinet points, X = {P, ..., P} in the projective space IP", we
have the ideal of X, Ix C S = k[xy, ..., ], which is generated by the forms
vanishing on the points. The reduced 1-dimensional coordinate ring of X,
A = §/Ix, has as its integral closure (in its total ring of fractions) the ring
B = ®}_,k[T};], and the inclusion map A — B is made up of the various projec-
tions A — A/p;, p; the minimal prime ideal of A corresponding to the point P; of
X. The conductor associated to the inclusion (considered as an ideal of B) has the
simple form C = (77",..., T?*) and the first question one might ask is an inter-
pretation (geometrically) of the positive integers n;. This was done many years
ago by F. Orecchia [9] who showed that 7; is nothing more than the least degree
of a hypersurface in P" which vanishes at every point of {X \ P;}. This »; is
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denominated as conductor degree of the point P; on the scheme X. Later,
Geramita, Maroscia and Roberts, see [4], algebraicized the problem and con-
sidered the problem of finding out what possible sequences (7, ..., ns) could exist
for a set of points in P". The Hilbert function of a finite set of points in projective
r-space is an algebraic tool used to deseribe information about the way the points
are geometrically situated. Mainly, the conductor degree of a point P; € X is
strongly related to the Hilbert function of X; precisely,

H(@) J<mn

HF(X\ {P;}.j) =
(“}ﬁ{mwlﬁm

Hence, for every zero-dimensional differentiable 0-sequence H it is natural to
say that an integer d such that

H(j) Jj<d

H;() =
1) {H@—ljzd

is again a zero-dimensional differentiable 0-sequence, is a permissible values for
the conductor degrees with respect to H. Moreover, in this paper we will also need
the notion of r-partial intersection introduced by Ragusa, Zappala in [11]. A
review of basic facts on these schemes occupies all of Section 2.

In Section 3, it is shown how the conductor degree d of P € X C P" is con-
nected with the last graded Betti numbers of the ideal Ik generalizing the
Theorem 3.9 of [1] to 0-dimensional subschemes of P”". Thus we can build the set
of all permissible values for the conductor degree with respect to graded Betti
numbers B of Ik, which will be indicated by Sp.

On the other hand, we consider the problem of characterizing the sequences
(n1, ..., ms) which are compatible with a fixed Hilbert function for a set of points in
P". The following question arises

Question: Given a zero-dimensional differentiable 0-sequence H = {h;} with
hi1 <r+1,i.e. a possible Hilbert function for a set of distinct points X of P",

is it possible to find a configuration Y C P" with HF(Y) = H such that for
everyd € Sy 3P e Y with d=c.degy P?

In Section 4 we will give an affirmative answer to the above question. Here,
we will assume that the reader is familiar with the notation of r-type vectors as
introduced in [6]. In that paper, an algorithm for switching between a Hilbert
function and its corresponding »-type vector was found. We will also need the
notion of k-configuration. In particular, given an r-type vector with r > 1, then
we can associate to it a k-configuration, see Definition 4.1 of [6].

In Section 5, since a k-configuration corresponding to a r-type vector with
(n > 1)is a particular r-partial intersection of P" we generalize the Theorem 5.11
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of [12] determining the conductor degree of any point in a r-partial intersection
in P".

In the rest of paper, Section 6 — 7, we study 0-dimensional subschemes on
P! x P! with particular attention to the separating degrees for the points of these
subschemes. This new investigation justifies the use of the name separating
degree of a point P on the 0-dimensional schemes X on a smooth quadric €. We
make first steps in trying to understand the situation in this environment and so
we give new results on the separating degree of a point P of X C Q.

2. — Preliminaries.

Denote P" the r-dimensional projective space over an infinitive field k& and let
S = k[xo, ..., 2] be the usual coordinate ring of P".

If I C S is the (saturated) ideal associated to a projective scheme X C P’
we will use the notation Hx to indicate the Hilbert function of S/Ix.

We recall now some known results from ([4]).

DEFINITION 2.1. — Let X be a set of distinct points in P". We say thatf € R is
a separator for P € X if f(P)# 0 and f(Q) =0V Q € X\ {P}. The minimal
degree of a separator for P is called the conductor degree of P in X; we denote it as
C.d@gjxp.
Thus
cdegs P=min{d | 3f €Ry: f(P)£0,f( @) =0V Q € X\ {P}}.
Let X! = X\ {P}. If a = c.degx P then
f e )y \ Ux)g-
So we get ([4], Lemma 2.3)
dim ([ X ) t< a
dim (o), = -
dim (Ix); + 1 t>a

and the Hilbert function of X’ is the following
Hx(®) t< a
Hx(t) =
H«(@)—1 t>a
ie.
AH/ t t a
AH () — <(t) a
AHAg(t) -1 t= a

This motivates the following definition, see [[4], Definition 4.1].



400 LUCIA MARINO

DEFINITION 2.2. — Let H = {b;}, 1 > 0, be a zero-dimensional differentiable 0-
sequence. We say that d is a permissible value for the conductor degree with
respect to H if the sequence H

o b; i<d
1) =
¢ bi—1 i>d

18 again a zero-dimensional differentiable 0-sequence.
The set of all permissible values for the conductor degree with respect to H
will be denoted Sy.

By the above observation

REMARK 2.3. — The conductor degree of P in X is a permissible value for the
Hilbert function of A = R/Ix.

First of all we recall some results on the conductor degree in P". We know
that the possible values of the conductor degrees of a set of points X, with
Hilbert function H, can be read from the first difference function AH .

Now, let H be the Hilbert function of a set of distinet points X in P", define

o(Hx) =min{n | Hx(n) = Hx(n + 1)}.

It is well known, see Geramita, Kreuzer and Robbiano ([3], Proposition 1.14),
that o(H ) is an element of the set of the permissible values of the conductor
degree with respect to H and moreover for every set of points X, with Hilbert
function H,

JPeX : C.degxP:O'(H‘}g).

For the reader ’s convenience now we define the partial intersection sub-
schemes of P and we state the main properties of these schemes that will be
frequently used in the sequel. For this reason, in the present section, we state
some results that have already been proved by Ragusa- Zappala [11].

Let (P, <) be a poset. We denote, for every H € P,

Sy={KecP|K <H}, Sy={KecP|K<H}.

DEFINITION 2.4. — A subset A of the poset P is said a left segment if for every
H e A Sy C A In particular, when P = N" with the ordering induced by the
natural ordering in I\, a finite left segment will be mentioned as a r-left segment.

Note that every r-left segment A has sets of generators and among those
there is a unique minimal set of generators consisting of the maximal elements of
A, which will be denoted by G(A).
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In the sequel, if
a;  N" —= N
for a r-left segment A, we set
a; = max{a;(H)| H e A}, for 1 <i<r.
The r-tuple
T=(ay,...,a,)

will be called the size of A.
If A is a r-left segment, 7(A) will denote the set of minimal elements of
N"\ A4, ie.

FA)={HeN"\A|Sy C A}.
If A is a r-left segment, consider » families of hyperplanes of P"
{rih <j<apy {r2ih <j<agr {rejh <j<ar

sufficiently generic, in the sense that {ry j, N1y, N...N 7, } are []7_; a; distinct
points of P". For every H = (ji, ...,j») € A, we denote

J— 7 .
Py = 0y17hj,-

With this notation the subscheme of P"

V=] Pu

HeA

is called a r-partial intersection with support on the r-left segment A.
In the sequel, if H = (my, ...,m,) € N", then we will write

v(H) =mq + ... + m,.

We recall how to compute the Hilbert function of a partial intersection V' of
codimension r in terms of its support A.

THEOREM 2.5. — If V C P" is a partial intersection of codimension r with
support on A, then the first difference of its Hilbert function is
AHy(m)=|{H € A| vH)=n+r}|

We recall how to compute a minimal set of generators of a partial intersection
scheme of codimension # of P". Now, set

I’Vﬁ = (](7‘,])3

where

fii € Bq
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for all 7,j. To every
H=(m,..,m,) €Sy

we associate the following form

THEOREM 2.6. — If V C P" is a partial intersection of codimension v with
support on A
Then a minimal set of generators for Iy is

{Py | H e FA }.
The previous theorem, in particular, shows that the the first graded Betti

numbers of partial intersections are determined by its support.

COROLLARY 2.7. - Let V be as above then its first graded Betti numbers
depend only on A and they are the following integers

dy =vH)—rVY H e F(A).

Now we recall how to compute the last graded Betti numbers of a r-codi-
mensional partial intersection in terms of its support.

THEOREM 2.8. — Let V C P" be a partial intersection of codimension v with
support A
Then the last graded Betti numbers of V are

sy =0H)V H € G(A).

3. — Permissible values S in P".
THEOREM 3.1. — Let X a finite set of distinct points in P* with minimal free
resolution
0 — &f'S(—s:) — &7 S(—g) — Ix — 0 (1)

then for every P € X the conductor degree of P in X is a permissible value for the
conductor degrees with respect to graded Betti numbers, i.e.

c.degx P=s;—2

for some 1.
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PROOF. — (see [1], Thorem 3.9).
In this section we can generalize Theorem 3.1 for distinct points of P".
If V c P" is a r-codimensional aCM scheme with minimal free resolution

0— EPS(—i)" — ... = @PS(=N™ — Iy — 0 (x%)

JjEB, jE€By

where Bj, = {j| aj; # 0} for every o =1, ..., and the integers {aij}j will denote
the 7 - th graded Betti numbers.

PRrOPOSITION 3.2. — If V' C P" is a set of points with minimal free resolution
(xx) for every P of V

3je€B, | cdegyP=j—r

Proor. — Here we repeat the same argument as in Proposition 3.1. Let C be a
separator of minimal degree of the point P € V, say

deg C = a;
when no confusion can arise we will not distinguish between the curve C and its

defining form.
We recall that

Uy:CO)=CL
is saturated thus this ideal is the ideal of the separated point P.
We will see that (Iy,C) is the saturated ideal of the remaining elements
V' =V \ {P}. In fact consider the following exact sequence:
0—-S/Uy:C)(—a) et S/ly — S/Uy,C) — 0

where the first map is multiplication by C and the second is the canonical map .
We know that (I, C) C sat(Iy, C). In order to prove the other inclusion, it is
enough to show that both ideals have the same Hilbert function.
By Lemma 2.3 of [4], we have
H V(t) t<a

Hy/satay, o) = Hy (1) =
S/sat(IV,C)) v (® {Hv(t)l t>a

On the other hand, from the exact sequence (1) we get that

Hy (@) t<a

H ty=Hy({t)—H;t—a) =
S/(IV,C)() v(®) £( a) {Hv(t)—l t>a

Hence the Hilbert functions agree, so the two ideals have to coincide. Then
the ideal (I, £) is the defining ideal of the remaining points V".
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Take minimal free resolutions for S/L(—a), S/Iy :

0
!
0 0 S(—a—7)
! ! !
S(—a—1) B, S(— )"
! 4 ! !
S(—a—@ -1 @y (=
! ! !
L ! !
S(—a-2)0) Bicp, R— ) S(—a -1 & @jp, S(— )™
! ! !
S(—a—1) Bicn, S(—)  S(— )& @yep, R(— ™
! ! !
S(—a) S S
! ! !
0  —S/C(—a) € s/ — S/Iy,C) — 0

Applying the mapping cone construction ([8]) to the resolutions of S/Iy and
S/(y : C)=S/L, from the sequence (1), we get a resolution for the ideal
S/y, O).

The following construction gives a resolution that, generally, is not minimal,
but since (Iy, £) is saturated, the resolution of (I, £) must have length ». As it is
been observed in [2], using a result of [10], the term S( — a — ) must cancel with
something in

S(—a—(r— ) @iep S(—j),

that is
—a—r=—j
for some j, i.e.
cdegyP =7 —r
for some j € B,. O

According to this result it makes sense to give the following definition in P".

DEFINITION 3.3. — We define the set of permissible values for the conductor
degrees with respect to given graded Betti numbers B and will be denote by Sp, the
Sfollowing set

Sp={j—rljeB,}.



CONDUCTOR AND SEPARATING DEGREES FOR SETS ETC. 405

Following [4], we can see that if B is the set of graded Betti numbers whose
corresponding Hilbert function is H, then the set of permissible values for the
conductor degree with respect to graded Betti numbers S is contained in Sy, i.e.

Sp C Sy.

4. — Permissible conductor values for a particular set of distinct points in P’

Question: Given a zero-dimensional differentiable 0-sequence H = {k;} with
hy <r+1,i.e. a possible Hilbert function for a set of distinet points X of P’,

is it possible to find a configuration X C P" with HF(Y) = H such that for
everyd € Sg AP €Y withd = c.degy P?

In this section we will give an affirmative answer to this question. Let S,
denote the set of all Hilbert functions of finite sets of points in P". It is introduced
a new character (the r-type vector), which is an alternative to the Hilbert
function for the set of points X. This was done by Geramita, Harima, Su Shin
([6]) which showed that this new character is equivalent to the Hilbert function as
a tool to describe finite sets of points in P". Moreover, they showed how to as-
sociate, to any Hilbert function H € S,, a special point set in P" said k-config-
uration which, naturally, has Hilbert function H and is extremal with respect to
the graded Betti numbers (see [6], Theorem 3.7).

In [12] Theorem 5.11, the author computes the conductor degree of each point
of a k-configuration; by this result, we can observe that if d € Sy, considered the
truncation to d of the first difference of Hilbert function H, and the k-config-
uration X” corresponding to such a truncation one gets

AP € X" C X : e.degsP = d and c.degsrP = c.degxP.

This shows that a k-configuration of points of P" associated to the given
Hilbert function H furnished a positive answer to the question posed at the
beginning of this section.

ExampLE 4.1. - Let H be the following 0-sequence differentiable 0-
dimensional, i.e. a possible Hilbert function of 37 distinct points of *

H: 14101926 33373737 ...

AH: 13697740000000 ...
It could be observed that the set Sy is
SH = {3343536}
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Now we build a k-configuration of points of P®, X with the given Hilbert
function H.

For this reason we begin writing the maximal 0-sequence in codimension 2
less than o equal to AH and there exists a scheme of distinet points with the
given maximal 0-sequence which will admit all elements in Sy as conductor de-
grees:

AH;: 123456400 ..

after subtraction we have:
D;:135210000...

Now, we repeat the argument on D; and we get AHs :
AHy: 12321000...

after subtraction we have:

D;:120000..

And again maximal AH3 from D; is :
AHs: 1200 ...

after subtraction we have:

D3:000 ...

Consider a partial intersection whose support A is given by A U A" U A"
where

A =<(1,1,7,1,2,6),1,3,5),1,4,4),1,5,2),1,6,1) >
A” =< (27 17 5)3 (2a 27 3)7 (27 3a 1) >

A" =<(8,1,2),3,2,1) >

It could be observed such a partial intersection can be seen as a k-config-
uration associated to our Hilbert function.

On the other hand,by [11], the point P corresponding to the element
(a1, az,ag) has conductor degree

a; +ag +ag — 3.

Then the points corresponding to the generators have conductor degrees in
X, respectively

6,6,6,6,5,5,5,4,3,3,3.
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5. — Conductor sequence of partial intersections of P".

In this section, we generalize a result of the work of [12] (Theorem 5.11).
Precisely, we determine the degree of each point of any »-partial intersection in
IP", observing that a k-configuration is a particular »-partial intersection.

Let

G(A) = {H1,Hy,...,H}
be the minimal set of generators for A where we denote
Hi= (a1, aiy)

for 1 <1 < s. In the sequel we will use the above notation and will denote the -
tuple (1, ...,1) by 1.

LEMMA 5.1. — Let V C P" be a r-partial intersection with support on the r-left
segment A. If
H= (jl, 7]7) eA
and

.
Py =7,
=1

then
c.degy Py =max{vK)—r VK e GA),K > H}

Proor. — Denote
Ty ={H € Al H<H'}.
and
A={K+I-H|VKeTy
We show that if J/ € A’ and J’ < J then
Jed,

thus A’ is a r-left segment with the order induced by the natural order on N. In
fact if J € A’ we can write
J=K+I1-H

where K € A and K > H. Moreover J' < J, thus exists a r-tuple (dy, ..., d,) such
that

J=J +y,...d).
So that
K+I-H=J +(d,...d),

K—(dy,..d)+1—H=J.
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To show that J' € A’ it is sufficient to prove that
K —(d,....d,) > H,
ie.
K—(dy,....d)+1—-H>1.

This is obvious since it is always true that J' > I.
Consider the r-partial intersection with respect to » families of hyperplanes of P"

{bl,s}lgsgw {bZ,s}lgsgw ey {bT,S}lgsgr

where
b = T iy k—1-

We denote V’ be the partial intersection of P” with support on A’'.
Note that

PH EV<:>PI§, S V/,
where
H=H~+I-H.
Thus our point Py of V becames

P; e V.

By Cayley- Bacharach theorem we know that the point P; has conductor degree
(as point of V') such that

c.degy Pr > oK) —r ¥V K € G(A).
Then we have that
c.degy Py > max{v(K) —r V K € G(A)}
ie.
c.degy: Py = max{v(K) —r V K € G(A)}

in the partial intersection V. 3

Let M’ be such a maximum. This means that exists a separator C of P; of
minimal degree M’ in our partial intersection V'.

Let

M =max{v(K)—rV K € G(A),K > H}.
Our aim is to show that
c.degy Py =M.
To do this, it could be observed that
V o Cl(a1, ..., aj,) VE=1,..,1
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where CI((a;,1,...,a;,) is the left segment generated by {(a;1,...,a;,}. This
means that for Cayley- Bacharach,

c.degy Py > M.
To show that
cdegy Pu=M

it is sufficient to find a separator of Py of degree M.
Now such a separator is

C=C-Ryy-..-Rijy 1 Rex-.. Rojy1-Rey-oo Ry
Note that
deg C =M +vH)—r=M,

as we required. O

6. — Generalities for subschemes of smooth quadrics.

Here we first collect some terminology (see [5] for details). Let @ = P! x P!
be a quadric and let Og be its structure sheaf.
If D C @ is any divisor of type (a,b) we denote by

Oq(a,b)
the associated sheaf.
The k-algebra
S = P H@, Oqa, b))
a,b

is the coordinate ring of Q.
For any sheaf F on Q, we set

F(a,b) = F ® Og(a,b).

Note that
S = Ha,b) = P H'@a,b)

a,b>0

where H%a,b) = H(Q, Og(a,b)). S is, in a natural way, a k-algebra using pro-
duct of sections. It is easy to check that S is generated, as a k-algebra, by H’(1, 0)
and H°(0,1) (both vector spaces of dimension 2) since for every a,b > 0 the map

H'a,b) @ H'(1,0) @ H°(0,1) — H%(a + 1,0+ 1)

given by the product, is surjective.
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S is a bi-graded k-algebra taking H(a,b) = S(44 as the homogeneous com-
ponent of degree (a, b).
When

s e H'a,b)

its zero locus (s), will be called a curve of type (a, b).

In particular L = (I); and L' = (I)y, with [ € H°(1,0) and I’ € H°(0, 1) will be
mentioned as lines of type (1, 0) or (1, 0)-lines, and lines of type (0, 1) or (0, 1)-lines
respectively.

When no confusion can arise we will not distinguish between curves and their
defining forms.

Let u, %' and v,7' be bases for H(1,0) and H°(0, 1); then we have a bi-graded
ring isomorphism

S = klu,u']® k[v,v].
We use the above isomorphism to identify elements of S and elements of
klu, '] ® k[v,v']. We deal only with bi-homogeneous ideals of S, i.e. ideals gen-
erated by elements which are homogeneous both with respect to «, %' and v, v'.

Let X C @ be a 0-dimensional subscheme, i.e. a subscheme associated to a
saturated ideal in S of height 2.

In this paper we shall, for simplicity, concentrate on the case when X consists
of distinet points.

We can associate to any 0-dimensional subscheme X of @ the bi-graded S-
algebra

Sx =8/Ix,

where I« is the homogeneous saturated ideal of X in S.
By analogy with the definition of Hilbert functions for graded modules, we
can define the function

by
M« (i, j) = dimy(S<) ) — dim(I),

where for every bi-graded S-module N we denote by (N); j the component of N
of degree (1,)).

DEFINITION 6.1. — The function M« produces a matric with integer entries,
My = Mx(,7)
which will be called the Hilbert matrix of X.
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REMARK 6.2. — Note that
M~ (1,7) =0 for i <0 orj<D0.

So, from now on we restrict ourselves to the range 7 > 0,5 > 0.

When no confusion can arise we will use the notation
M« = (my).
From the defining exact sequence
0—-2Zx = 09— 0x—0
taking cohomology we have for 2,5 > 0:

RN T <(0,)) = KT <@,)) = K6, ) + h(Ox(i,)) = degX — my;

RA(T <(i,5) = 0
since
RN Ox(i,5) =0
and in that range H'(¢,7) = H%(1,5) = 0.

It will be useful in the sequel to consider in Z x Z the partial ordering in-
duced by the usual one in Z; we will denote it by <.

REMARK 6.3. — Thinking of @ as a subvariety of ’® by the Segre embedding, X
becomes a subscheme of 2. In this case, if HF (X, —) is the Hilbert function of X
in %, one has

HF(X,1) = my; for > 0.

This easily follows taking cohomology of the defining exact sequence of @ in
P® and of the exact sequence

OHIQHIIXHIXHO

where Z and 7'« are the ideal sheaves of @ and X in P2,

Let M = (my;) be a matrix, with ¢, j € 7; we will use the following notation: we
set
AFM = (ay), LM = (by)

for the matrices of differences by rows and by colummns of M, respectively. Thus
we have

Qij = My j — My j-1

bij = mij — My
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It is easy to check that
ARACM) = ACAEM).
This matrix will be denoted by
AM = (cy)

and referred to as the first difference matrix of M.

DEFINITION 6.4. —- Let M' = (mg-j) be a matrix such that m;7 =0fori<0or
J < 0. We say that M' is admissible when its difference AM' = (c};) satisfies the
following conditions:

1) c;j <1 cmdc;-j:Ofori>>0mﬂj>>0;
2) if ¢; < 0 then c,; < 0 for any (r,s) > (i, j)
3) for every (1, 5)

and

When M’ is an admissible matrix the non-zero part of AM’ is contained in a
rectangle with opposite vertices (0,0), (a,d) and the elements of the first row
(resp. of the first column) are c{)j =1ifj <band c()j =0if j > b (resp. ¢f, = 1if
t < a, and ¢}, = 0 if ¢ > a). In this case we say M’, or AM’, has size (a,b).

Not every admissible matrix is the Hilbert matrix of some 0-dimensional
subscheme of Q.

Let X C @ be a 0-dimensional subscheme and I C S the saturated ideal of
X. Note that

1 < depthSx <2:

in fact I contains an S- sequence of length 2, and in Sx there is a regular ele-
ment (it is enough to take an element of S which does not vanish at any point of
X). Therefore I« has an S-free minimal resolution of length < 38 with morphisms
of degree (0, 0).

If this resolution has length 2, X is called arithmetically Cohen-Macaulay
(ACM for short).

PROPOSITION 6.5. - Let X C Q be a 0-dimensional subscheme and let

P n m
0— @D S(— as;, —as)— €D S(— azi, —ab) — @ S(— axi, —ay,) — I(X) — 0 (1)
i=1 i=1 i=1
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be the minimal free resolution of Ix. Then we have:
Dn+1=m+p;
2) oty an = Yoy e+ 2 as = 30 ay — Doy a0 ag; = 05
3) deg X = — 37" anjay; + D01 mity; — D07 Usiy;3
4) for every v = 1,2, ..., m there exists j (1 <j < n) such that
(azj, ag) > (a1, ay);
5) The following relations between the given resolution of Ix and the matrices

My = (my), AMx = (¢cij), A2Mx = (dy) hold:
Mys = (r+1D(s+1) — Z (r+1—h)s +1—k)Xaw — Bu, + Vi)

(h,k)<(r,s)
Crs =1— Z (ane — B + vuie)
(h.k)<(r,s)
doo = 1,

and for every (r,s) > (0,0)

Ars = —0rs + Prg = Prsi
6) if AMx 1is of size (a,b) then for every

(i, 5)>@+2,b+2)

one has a;; = fi; = ; = 0.
Proor. — See [5], Proposition 3.3. O

With the notation of resolution (1), we set the following:

ape = #{(ari, ay;) = (b, k)}
B = H{(ag;, as;) = (b, k)}

e = #{(asi, a5;) = (. k)}

As we know not every 0-dimensional subscheme X C @ is ACM. There is a
very simple characterization of the ACM 0-dimensional subschemes of @ in
terms of their Hilbert Matrix.

An admissible matrix M’ will be called an ACM matrixz if AM' has only
nonnegative entries.

If an ACM matrix M’ of size (a, b) is such that AM' has entries

I
cij—l
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for every (i, j) < (a, b), it is trivial to verify that M’ is the Hilbert matrix of a
complete intersection of type

(@+1,0), (0,0+1).

Let M’ be an ACM matrix of size (a, b).
We say that (¢, j) is a corner for AM' if

@, J) =(0,0+1)

or
(t,7) = (a+1,0)

orevenifc¢; =0andc; ; ; =c¢;; ; =1. We say that (3, j) is a vertex for AM" if
Ci1,j = Cj-1 =0

and

/ 1.
€11 =1

in this case, of course, C%i =0.
One can check for an ACM matrix M’ that the entries of A2M' = (d;j) are:
1 if (2,7) =(0,0) or (1, j) is a vertex
dgj =< -1 if (i, ) is a corner
0 otherwise

Recall that X C @ is an ACM 0-dimensional subscheme if and only if the minimal
free resolution of I is of type (1) with y; = 0 for all (z, ).

THEOREM 6.6. — Let X C @ be a 0-dimensional subscheme, and let M« be its
Hilbert matriz. X is an ACM scheme if and only if Mx is an ACM matrix.
Furthermore, in this case, the minimal free resolution of I« looks like

m—1 m
0 — P S(— asi, —ay) — P S(— ari, —ay) — Ix — 0
=1 =1

where (ag;, ay;) runs over all the vertices and (ay;, ay;) runs over all the corners of
AMyx.

PrOOF. — See [5], Proposition 4.1. O

Note that the Hilbert matrix of an ACM 0-dimensional subscheme of @
completely determines the graded Betti numbers of this ideal sheaf, although
this is not true for 0-dimensional subscheme of P".

As it is known (see [5] Example 2.14), not every admssible matrix is the
Hilbert matrix of some 0-dimensional subschemes of @, but every ACM matrix is
the Hilbert matrix of an ACM subscheme of Q.
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7. — Separating degrees for 0-dimensional subschemes of Q: the ACM case.

We are ready to generalize the definitions given for points in a projective
space to the case of points on a smooth quadric. Let @ = P! x P! be a smooth
quadrie, and S = k[u,u'] x k[v,v'] its coordinate ring.

DEFINITION 7.1. — Let X C @ be a 0-dimensional subscheme.
We say that a form feS is a separator for Pe X if f(P)#0 and
f@=0vVQeX\{P}L
The set of minimal bi-degrees of separators for P, with respect to the partial
ordering induced by the usual one in 7, is called the separating degrees of P in
X; we denote it by
s.deg;xP .

We should be observe that the cardinality of this set is not always one: thisis a
very big difference with the conductor degree of P in a scheme of distinct points
of P,

THEOREM 7.2. — (Cayley-Bacharach on Q). Let

be a complete intersection on Q and let P be a point of Y and X' = Y \ {P} for

Pey.
Then
AM+(, 5) —1 if G, )=@—-1,b—1)
AMy, — 72,7 if (] '
AMy otherwise
PRroOF. — The proof is trivial. O

Before stating the following result we need some terminology. Let A be a 2-
left segment
A=< (a1,b1), ..., (@y-1,b,-1) >

with

a < ag < ...<0Op-1
and

by >bs>...>b,_1.
Consider

{Li}lgiSan,l
which are a,,_; lines of type (1,0) and

{R.i hgjgbl
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b1 (0,1)-lines. For every H = (i, j) € A we denote

P'L:f = Lz n R;
With this notation
X= U Pij cQ
HeA

is an ACM 0-dimensional subscheme with support on A. (Indeed every 0-di-
mensional ACM subscheme of @ can be obtained in this way).
Then every pair

H=(@0jeA
will determine two positive integers % and k such that
<. .<op1<t<ay<..<0y1
and

by >...>by_1>j>by,>...>by 1.

REMARK 7.3. — With the above notation, note that 2 < k. Namely, since ¢ < ay,
thus j < by; so by j > b, we get

PROPOSITION 7.4. — Let X C Q be an ACM 0-dimensional subscheme with
support on

A=< (ay,b1),...,(@n-1,bp—1) >
then the separating degrees of its points is given by

s.degx Py = {(ax — 1,b, — 1)}
Y(i, j) € A

PrOOF. — Take P;; in the ACM 0-dimensional subscheme X C Q. Now let &
and k be the two integers described above and let

1y, = C.1.((ay,0),(0,by))
Yh+1 = C~[-((a}z+1, 0), (07 bh+1))

Y = C.I.((a,0), (0, b)).

Thus, in particular the point P;; of the ACM 0-dimensional subscheme X is a
point of the complete intersections Y, Y541, ..., V.
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By the Cayley- Bacharach theorem 7.2 we know that
s.degyh Plj = {(ah — 1, bh — 1)}

s.degy,,, Py = {(@p1 —1,bp01 — 1D}

s.deg\yk ij = {(CLk — 1, bk — 1)}
Consider
(ak - lab}’b - 1))

from the previous equalities we have that any element of s.degx Py is
> (ar — 1,0, — 1). Now to show that

S.d@gx P“ = {(a/k - la bh - 1)}5

it is sufficient to find a separator for P;; of bi-degree (a;, — 1,b; — 1). Now such a
separator is given by

C=Rip-....Ri_19- Ez\() “Ri10- ... Rro-RoiRoz2 - ... - By j_1 150\; “Ro 1. - Roy
one notes that
deg C = (a, — 1,b;, — 1)

as required.

COROLLARY 7.5. — Let X C Q be an ACM 0-dimensional subscheme then

|s.degx P| =1

for each point P of X.

Then Corollary 7.5 states that the definition of separating degrees of a point

of an ACM 0-dimensional subscheme of @ looks like the definition given for 0-
dimensional subschemes of P".

EXAMPLE 7.6. — Let us consider the following diagram, when L; are lines of
type (1,0) on @ and R; lines of type (0,1).

R, R, R3 Ry Rs

L,

L,

L;
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The 0-dimensional ACM scheme X represented by the marked points has
Hilbert matrix

Let
Pij =L;N Rj

be the points of X.
If, for example we consider the scheme X’ = X'\ Pgs, then its matrix is

We see that
s.degsPaz = {(1,2)}.

In the following diagram we give, for each point, a pair of numbers that re-
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presents that its separating degrees.

Ry, R, R3 Ry Rs

@b e e (o 0

2 12 (L2 L2

(2,0) Ls

EXAMPLE 7.7. — In this example we consider an X non ACM 0-dimensional
scheme. We see that the set s.degx P of particular points P of X has (at least)
two pairs of numbers. Let us consider the following diagram, with the above
notation

R1 Ry R;

L

Ly

L3

The 0-dimensional ACM scheme X represented by the marked points has
Hilbert matrix
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Let
Pij =L;n Rj

be the points of X.
If, for example we consider the scheme X’ = X'\ Py3, then its matrix is

o 1 2 3

of1]2 @] 2
11214 4| 4
203 |(@D] 4| 4

3 3 | 4] 4| 4

We see that
s.degx P13 = {(0,2),(2,1)}.
In the following diagram we give the set of separating degrees of each point in X

R Ry R;

{(1,2),2.1)} {(0,2)}(2,1)}

(@2p@n} o} b

L

{(1,2)4(2,0)}



CONDUCTOR AND SEPARATING DEGREES FOR SETS ETC. 421

Acknowledgements. The author wishes to thank Prof. A. Ragusa for having
greatly improved this paper with his comments and his careful reading.

REFERENCES

[1] S. ABRESCIA - L. BAzzoTTI - L. MARINO, Conductor Degree and Socle Degree, Le
Matematiche, vol LVI- Fasc. I (2001), 129-148.

[2] L. BazzorTi, Doctoral Thests, Florence, 2003.

[3] A.V.GERAMITA - M. KREUZER - L. RoBBI1ANO, Cayley-Bacharach Schemes and their
canonical modules, Transactions of the American Mathematical Society, vol 339 (1)
(1993), 163-189.

[4] A.V.GERAMITA - P. MAROSCIA - L. G. ROBERTS, The Hilbert function of a reduced k-
algebra, J. Lond. Math. Soc. (2), 28 (1983), 443-452.

[56] S. GIUFFRIDA - R. MAGGIONI - A. RAGUSA, On the postulation of 0-dimensional
subschemes on a smooth quadric, Pacific J. of Mathematics, 155 (1992), 251-282.

[6] A.V. GERAMITA - H. TADAHITO - S. YONG SU, An alternative to the Hilbert Function
for the Ideal of a Finite Set of Points in P", to appear: Illinois Journ. of Math (28
pages).

[7]1 R. MAGGIONT - A. RAGUSA, A classification of arithmetically Cohen Macaulay
varieties with given Hilbert Function, unpublished.

[8] J. C. MIGLIORE, Introduction to Liaison Theory and Deficiency Modules, Birkhéu-
ser, 1998.

[9] F. OrRECCHIA, Points in generic positon and conductors of curves with ordinary
singularities, J. Lond. Math. Soc. (2), 24 (1981), 85-96.

[10] I. PEEVA, Personal communications.

[11] A. RAGUSA - G. ZAPPALA, Partial intersection and graded Betti numbers, to appear
on Beitrédge zur Algebra und Geometrie.

[12] L. SABOURIN, N-type vectors and the Cayley-Bacharach property, Comm. in Alg. 30
(8) (2002), 3891-3915.

Pervenuta in Redazione
il 23 gennaio 2004

Department of Mathemathics, University of Catania,
Viale A. Doria 6, 95125 Catania, Italy
E-mail address: Imarino@dmi.unict.it






