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Bollettino U. M. 1.
(8) 9-B (2006), 371-395

On the Dynamics of Infinitely Many Charged
Particles with Magnetic Confinement

P. BUTTA - S. CAPRINO - G. CAVALLARO - C. MARCHIORO

Sunto. — Studiamo Uevoluzione temporale di un sistema di infinite particelle cariche,
confinate a muoverst in un conduttore cilindrico illimitato attraverso un campo
magnetico esterno e tra loro interagenti mediante un potenziale di tipo Coulomb.
Dimostriamo Uesistenza, l'unicita e la quasi-localita del moto. Forniamo inoltre
alcune stime non banali sul comportamento del sistema per tempi lungha.

Summary. — We study the time evolution of a system of infinitely many charged particles
confined by an external magnetic field in an unbounded cylindrical conductor and
mutually interacting via the Coulomb force. We prove the existence, uniqueness and
quasi-locality of the motion. Moreover, we give some nontrivial bounds on its long
time behavior.

1. — Introduction.

The description of Nonequilibrium Statistical Mechanies by an Hamiltonian
model is an appealing but very difficult task. A natural model arises by con-
sidering infinitely many particles evolving via the Newton law:

(1) %i(t) =) F(xit) —x;), i€

A first step for a rigorous investigation of this model is to prove the ex-
istence of the time evolution itself. This means essentially to prove that a
quasi-local observable evolves remaining quasi-local. This is not trivial because
we can exhibit situations with an initial bounded density that after a finite time
produce infinitely many particles in a bounded region [11]. So we need a
careful choice of the initial conditions in order to exclude these bad data, but at
the same time to take into account all the relevant states in Nonequilibrium
Statistical Mechanics. The results depend in a very sensitive way on the di-
mension of the space in which the particles move and on the nature of the
mutual interaction. The first pioneering results have been obtained by
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Lanford [11, 12] many years ago, in one dimension for bounded and finite
range interactions. Then the cases in one dimension with singular interactions
[8, 15] and Coulomb force [16] and the case of positive or very singular in-
teractions in two dimensions [10] have been studied. A long period of silence on
this problem follows these results and only three years ago the three dimen-
sional case has been solved for positive, bounded interactions [5]. All these
results assume a finite range interaction, while in many physical systems this
assumption appears too drastic. We think of charged particles mutually in-
teracting via the Coulomb potential, which exhibits a long range behavior.
Actually the long range character of the Coulomb interaction in the whole
space does not allow a well defined Statistical Mechanics. Nevertheless there
are physical situations, for instance electrons moving in a neutral background,
in which a screening effect is present (the «Debye screening»), weakening the
very large distance interactions. Hence, it is meaningful to consider long
range, fastly decaying potentials, as it is done in [2], where the authors gen-
eralize the results in [10], assuming a singular, superstable, subexponentially
decreasing at infinity potential.

The above quoted papers exhibit explicit sets of initial conditions. Indeed
there are other works regarding the Equilibrium (or Stationary) Dynamics, in
which the initial data are full-measure with respect to the Gibbs (or Stationary
Non Equilibrium) measure, but they are not costructively specified [1, 13, 14, 17,
20, 21, 22]. Let us also recall some papers dealing with the time evolution of
special states [7, 18]. Up to now, there are no results for three dimensional
systems, in case of a singular, long range inter-particle force.

A natural step forward would be to investigate in more detail the long time
behavior of the dynamics. Unfortunately, in this kind of approaches the bounds
one gets on the local density and energy are generally bad-behaving in time, so
that it is difficult to say anything about the time asymptotics of the system. On
the other side it is in this regime that many physical laws can be reproduced.
Recently some results in this direction have been obtained in [3], [4] and [6], for
some particular one-dimensional systems.

In the present paper we discuss a physical system consisting of infinitely
many charged particles with the same mass (m = 1) and the same electric charge
(@ = 1), confined by an external magnetic field in an unbounded cylindrical
conductor in Rg, with radius L*, infinitely extended in the direction of its sym-
metry axis, which is made of a thin shell of conducting material empty inside. We
assume the conductor is kept at fixed potential (say V = 0). This means that the
charged particles mutually interact via the Coulomb force

(2) F=-VG

where G is the Green function of the Laplace operator with Dirichlet boundary
conditions. As it is well known (see Section 4 below) this force is singular at small
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distances and, due to the presence of the conductor, it decreases exponentially at
large distances (see Definition (3) below).

We prove existence, uniqueness and quasi-locality of the motion and give a
non-trivial bound on the growth of the velocity of each particle.

The new aspects presented by this problem are the following ones: particles
move in a three dimensional domain; moreover, the magnetic field confining the
particles in the cylinder is singular and so it could in principle affect very much
their motion. Finally, we refine the usual time estimates on the velocities, ob-
taining a linear time behavior.

The plan of the paper is the following. In Section 2 we present our results on
the dynamics. The proofs are given in Section 3. Some comments on the plau-
sibility of our assumptions on the interparticle force are in Section 4, while some
technical results are in Appendices A and B.

2. — Results.

Let us introduce notations and definitions we will deal with from now on.
Let v be a fixed unit vector in R®. For any ¢ € R?, we denote by &t =&~ (&-v)v
its orthogonal projection. Given L >0, L < L*, let Q = {¢e R®: |¢'| < L}
be the infinite cylinder of radius L and symmetry axis v. This «mathematical»
cylinder has the same symmetry axis as the cylindrical conductor, but
L <L

The charged particles interact among themselves by means of a two-body
potential of the form

a
3) $(&) =1 Il
So(lehe M if ¢ > 1

where a > 0, y > 0. The functions ¢,,¢, are bounded functions, together with
their first and second derivatives, such that ¢ is non-negative and twice differ-
entiable for all values of |&| > 0.

Moreover we assume that a magnetic field acts on the particles, in order to
keep them inside the cylinder. Assuming the symmetry axis of the cylinder to be
coincident with the z-axis of a Cartesian coordinate system in IR3, we define this
field by

+o () if g <1

(4) H(x,y,2) = (0,0, H@” + %))
and
2 2 ha? + o)
(5) H@x +y°) = a>1.

= )"
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The function & is a positive, differentiable function, such that h = 1 if L? — 5
<at4y% < LA h =0if 2% + % < L? — 26 and it satisfies 0 < /() < 2/6% ; thus
0 is a (small) number such that the magnetic field is different from zero only near
the border of the cylinder.

The state of the system is determined by the positions and velocities
x; = (rj,v;), © € N, of the charged particles. Let us denote by X = {x;},., the
state of the infinite system, which is assumed to have a locally finite density and
energy. It is thus well defined, for any 1 € R and R > 0, the function

2
(6) QUX; i R) = ;xiwﬁ){%g > ¢lri— 1) +1}7

JU#L

where y; (1, RB) = y(|ri - v — 1| < R) and y(A) denotes the characteristic function
of the set A.

In order to consider configurations which are typical for thermodynamical
states, we allow initial data with logarithmic divergences in the velocities and
local densities. More precisely, by defining

) Q) =sup  sup L)
4 RR>logle+l) 2R

the set

(8) EY = {X : QIX) < 400}

has a full measure w.r.t. any Gibbs state [8].
The time evolution ¢ — X(¢) is defined by the solutions of the Newton equa-
tions:

©) Fi(t) = F;(X(2)), 1 e N,
X(0) =X,
where
(10) Fi(X) ==Y V¢, —r)+r AH@r;) i€
Jij#
and
(11) X cEV A5
where
(12) EP=SX:3A>0: (LP-r) > L :
5 o@D
[Alog® (e + |r; - v|)]

Here r; = |r; — (r; - v)v| and a is the one in (5). Condition (12) means that the
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particles cannot be distributed arbitrarily near the border at the initial time; on
the contrary they can start as closer to the border as farther they are from the
origin, in accordance with (12). This condition intuitively is due to the fact that
the magnetic field becomes infinite on the border, so that taking particles which
are initially too close to it could make the force in (9) too large.

The solution of (9) is constructed by means of the following limiting proce-
dure.

Given X € ZVNE? and n € N, let

(13) I, = {i e N:iri € Q0,n)},
where Q(u, R) = {£€ Q: | -v—u| <R}.
We deﬁne the n-partial dynamics ¢t — X" (t), X" (t) = {r}'(t),v} (D)}, ;> as the

solution of the differential system:

{r:“(t) = Fi(Xn(t)), 1€l
(14)

Xﬂ(o) = {rivvi}ielﬂ'

Our main result is the following:

THEOREM 2.1. - If Xe FVNE® there exists a unique flow t— X(t)
={rit),v;)};cnE E = N 5@ satisfying:
{nwmamx ieN

1
15) X(0)=X.

Moreover, for any t > 0 and i € I\,
(16) lim r} ) =ri@), lim v} @) =),

n——+00 N—r+00

the convergence being uniform on compact sets.

The growth of the velocity of a particle can be bounded as established by the
following

THEOREM 2.2. — For any X € Y N 5@ there exist two positive constants Cy,
Co, such that

(17) |Uz(t)| < Ci1v/ log (e + |ri . l)|) + Cot, t>0.

From now on C;, i =3,4,... indicate positive constants whose numerical
value may possibly depend on the interaction ¢, on the magnetic field H and on
the initial state X of the system.

We remark that the previous bound implies that the effective force acting (in
average) on a very fast particle is bounded by a constant, in spite of the fact that
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the infinite size of the system can produce, a priori, large concentrations and
then large forces.

We point out that the global solution to the finite system (15) does exist, as it
can be easily seen by the conservation of the energy and estimates analogous to
those of Appendix A.

3. = Proof of Theorem 2.1.

To prove a theorem of existence and uniqueness for the infinite system (15)
we should be able to control the dynamics of system (14) uniformly in the number
of particles. In other words we should be able to prove that the motion of a
particle is not much influenced by far away particles. This is what we expect also
from a physical point of view. Thus our proof is constructive. We prove some
bounds on the partial dynamics (14), which are «weakly» depending on n. This
allows us to construct an iterative scheme, analogous to the one used in [5], and to
perform the limit as n — oc.

Before going into the proof of the theorem, we state some preliminary results.
A basie tool is an estimate on the growth in time of the local energy, which is the
content of the following Proposition, whose proof is given in Appendix B:

PROPOSITION 3.1. — For each X € Y N E? there exists a constant Cs > 0
such that, ¥ n € N,

(18) sup QX" (t); i, R (1)) < CsRy(2)
"
where
¢
(19) R,(t) =log (e +mn) + f ds V,(s)
0
and
(20) V() = max sup |v}(s)].
1€l sef0,¢]

REMARK. — Let us note that in Ref. [4] the function R, (t) was erroneously
defined with V() = max;cs, supcpo [} (s) - vl.
We also state the following Proposition (proved in Appendix B):

PROPOSITION 3.2. — For each X € Y N E? there exist Ci,C5 > 0 such that,
foranyn € Nandie€ I,,

(21) [P ()] < Cy/logle+mn) +Cst  VE>0.
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After these preliminary results, we start with the proof of Theorem 2.1. In
order to compare different partial dynamics we define the quantity

(22) S, t) = [r @) —r 1) + o) — v @)

)

From the equations of motion in integral form we have:

t
o (t) = v; + [ ds F,X"(s)
(23) 0
PO =i+ ot + [ ds (t— ) FiX"(5),
0

From (22) and (23) it follows that, for any i € I,, 1,

(24) oin,H) < (1 +t)de|F1:(X"(S)) —F; X" (s))|
0

1+tj}w)§:[v¢ —1(s)) — Vg0 (s) — 14 (s))]
0

JJ#

1+tfds\v ) ANHENs) — v Ns) AHE N (s))].

Let us estimate now the two terms which appear in (24). Let us begin with the
second one. Omitting the dependence on s and simply putting H" = H(r!!) we
have:

25) Wi AH" —v P AHTY < ot — oY | HY| + ol [ HY - H

< fo} — oy "+ oy L) e -

7.’L

where the «Lipschitz constant» £ of the magnetic field depends on r? and r?~!
and it diverges when r? or r’~! goes to the border of the cylinder, as the magnetic
field H" itself. We show, however, that along the solutions of the equations of
motion H ( ’(s)) and ﬁ( ‘(s),r} 1(s)) are controlled by the energy of a region
containing the particle i. More precisely, we have the following estimate, whose
proof is given in Appendix A:

(26) H ()| + L7 (s), 1777 1(s)) < Collog® (e +m) + s°T 1.

Z

Recalling Definition (22) for d;(n,t), the quantity appearing in (25) can be
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bounded as follows (see Appendix A):

@7) Jof —of "+ oL () I =

1

< Cillog (e + n) + 21576;(n, s).

Let us now consider the first term appearing in (24). Due to the long range of
the interaction, the sum involves infinite terms as n — oo. In order to handle this
sum we decompose it in the following way. Put

min{|r1(s) — r] (S, [r7(s) —ri(s)[} = my(s)

and, fixing a particle ¢, consider the following sets of indices:

(28) Al(s) = {j #1:mj(s) <log(e+n)}
(29) Bi(s) = {j #1i:log(e+mn) < myl s) < vn}
(30) Ci(s) = {j # i : mii(s) > v/n}.

Before going into the computation of the sum appearing in (24) by means
of the above sets, we observe that, by (3), the Lipschitz constant of the
force is not finite in the set AY(s). Nevertheless, we have for some con-
stant Cs:

(31) [Vé(x) — Vé)| < Cs{¢x)® + ¢@)*}x —y|.

Then, we can write:

(32) ] STV (s) — ri(s) — Vet M) — i L(s)]

Jig#l

< ) G Es) —19) + S Hs) — 1)

JeAl(s)
x (0;(n,s) + 0j(n,s))

+ Cye™ 5T N " [5;(n,5) + j(n,5)]
B (s)

+Croe V" N (rHs) = )| + Iy s) — 1 H(s))
JECT(s)

where Cye~ 8@+ and Cipe~V" are bounds for the Lipschitz constants of the
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potential in the sets B} (s) and C}'(s) (without loss of generality we take in Eq. (3)
y=1).
Working out the r.h.s. of (32), this is bounded by

" 3
(33) Cni Z sup Q (X“(); 1, 1) Z (0i(n,s) + 0(n,s))

t=n-1 # JEAL(s)

+Crae B N5, 8) + 65(n, 9)]
JEBs)

+Ciz e V"QX)n?

where in the last term in (33), nQ(X) is a bound for the total number of particles
in 2(0,n), as it follows from Definitions (6) and (7), while the difference
[ri(s) —rj(s)| has been roughly bounded by n, for £ =n — 1, n.

By (21) the quantity

(34) D(n,s) = Cys+/log (e +n) + Css®

represents a bound for the maximum displacement that a particle can undergo
during time [0, s]. Hence the number of particles belonging to a set Q(u, R) at
time s in the n-th dynamics is at most the number of particles belonging to the set
Q(u, R+ D(n,s)) at time 0. Moreover, this number can be bounded by the
quantity Q(X)[log (e + n) + R + D(n, s)]. This observation enables us to go on in
the proof. Let us set

(35) pPn,t) = 2log (e +n) + 4D, t)

(36) p?(n,t) = 2/n + 4D(n,t)

and

(37) g"n,t) = QX)(log (e + ) + p"(m,1),  h=1,2,
and define

(38) u(n, t) = sup di(n,t).

Now, fix an integer ky and for n > k let

ke = Int [ko + p® (n,1)],
where Int[{] denotes the integer part of {. From (24), (33), (35), (36), and (27)
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we get:

n

3
(39) gy (m, 1) < (14 t){Cn [ > sup QX' (®); 1)] g (n,t)

t=n—1 H
+ Chp ¢ log (e+n)g(2) (,n, 1)

t
+Cr[log (e +mn)+ tz]%}fds Uk, (1, S)
0

+(1+tCzeV"QX )02
Now, by (18) and (21), we have
(40) sup Q(X"(s); u, 1) < Cs[log (e + m) + Cys/log (e +n) + C5s%]
u

so that from (39) and the definition of ¢ (n,t) we get
¢
(41) ug,(m, 1) <Cra{t® + (1 + ) log (e +n) + tz]ﬁ%}f ds uy, (n, s)
0

+C15(1 + DIQX) e V2,
Let us set
(42) q(n,t) = C14{t9 + 1+ t)llog(e+mn) + tz]s,i‘%f‘}.
We now iterate (41) m times, where m is

n— I{J()

In this way we obtain

(44) gy (n,8) < Crg aln, 8)(qln, t))”%
Ci7(1 + QX)) & oyt
L/ A h;( (n, 1)
where
(45) aln, t) = [C4x/log (e +n)+ Cg,t} (t+1)

is a bound (by (21)) for

U, (n,s) < supd;(n,s).
i€l
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We choose n* sufficiently large such that, for a fixed value of ¢ > 0,

n*—ko

in accordance with Definition (43). Therefore (42), (43), and (36) prove that the
series

o0
(46) > gy (1)
n=n*

is convergent, i.e. for any ¢ € N and ¢t > 0 {r(¢),v!(t)} are Cauchy sequences,
hence they converge, as n — oo, to a limit {r;(t),v;(¢)} which turns out to solve
Equations (15). Uniqueness can be proved by exactly the same techniques. The
remaining part of the proof, ie. the fact that X(t) € 5V N =@, is shown in
Appendix A (X(t) € 2?)and B X(t) € ZV). O

Proor oF THEOREM 2.2. — Fix 7 € N and choose k( such that kg — 1 < |r; - 0]
< ko. We observe that the behavior of the system for long times can be controlled
by a different choice of n*, i.e. it is sufficient to admit a dependence of #* from ¢ of
the form

(47) n* = Intle' (k§ + Cis)]
in such a way that, for n > n*
(48) t <log(e+mn).

The dependence from kg in the r.h.s. of (47) is chosen in order to have a uniform
convergence of (46) for kg € R" (as it appears evident from (43)).
Now we have, by (38),

(49) i) — vf O <> g, (n,1)
n>n*

hence,

(50) oi(t)] < o} (t)] + Cig

where by (47) the constant Cyg is independent from ¢ and k(. Then from (21)
(51) " (t)] < Cy/log (e +n*) + Cst
< C4\/10g(e + et (k% + C17)) + Cst

< Cop/ log(e + |r1~ . v|) + Cort,

so that from (50) and (51) Eq. (17) follows. O
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4. — Some final comments.

We discuss in some detail the nature of the interaction. The assumptions we
do, in particular its exponential decay, are valid in some physical systems. We
have already mentioned in the Introduction the Debye screening effect, which
gives rise to this behavior at large distance. Moreover in our model, due to the
fact that the particles are confined in a cylinder, the inter-particle force is of the
type we have considered, as we will see at a heuristic level, without going into
rigorous proofs.

We recall that the domain D in which the charged particles move has the
form:

(52) D={x=(x,y,2) e R®:a? +9 < L?}.

Let us consider the Green function G(x — x’) of the Laplace equation with
vanishing boundary conditions on 9D and at infinity. We study G(x —x/)
where x’ is the position of a fixed charged particle and x is a generie point
belonging to D. For x close to x’ it is well known that G behaves as in the
Coulomb case, i.e. it exhibits a singularity like |x — x’ |_1. The positivity of G
follows from the maximum principle. It remains to prove that it decreases
exponentially as |x| goes to infinity. A way to see this fact is to use the well
known probabilistic interpretation of the solution of the Laplace equation (see
for instance [9]).

Let u(x) be the solution of the Laplace equation Au = 0 with the boundary
conditions u(x) = f(x) for x €0D. Then:

u(x) :fP(z,x)f(z)dz
aD

where P(z,x) is the probability that a Brownian motion starting from x reaches
z € 0D the first time, while the integral represents the average on all possible
exit points z € 9D. Having this in mind, the exponential decreasing of G becomes
evident. Indeed, let us consider a small sphere S around x': then, the value of G
on 98 is large but bounded. We cover D by the union of D;, 2 =0,1,2, ..., being
D;={(x,y,2) e R®: a2+ 92 <L? i<z<i+1}. Without loss of generality
we take S C Dy. Now, choose x far from the origin, i.e. belonging to some D; with
a large ¢ and consider the Brownian motion starting from x. Notice that when it
hits the boundary, by the boundary conditions it does not contribute to G, so that
the only possibility to have a nonvanishing contribution is to arrive to 0S.
However, in this case it must pass through D;_; without reaching the border and
the probability to do this is less than 1. Then it must pass through D;_» without
reaching the border and so on up to Dy. The probability for this to occur is the
product of ¢ — 1 numbers strictly less than 1, that is exponentially decaying. The
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study of the behavior at large distance of the derivatives of G can be done in a
similar way.

Another physieal situation in which the choice (3) for the potential is the right
one is the following one. Consider a system of charged particles, confined by an
external magnetic field to stay at any time within a layer, that is a domain D of
the form:

(53) D={x=(y2ecR:0<z<L}.

For analogous reasons to the ones described before, the Green function of the
Laplace equation with vanishing boundary conditions on the plains z =0,z = L
and at infinity, has the same behavior as in the cylindrical case. Moreover, by a
straightforward generalization of our techniques, we can obtain existence and
uniqueness of the time evolution, relative to a set of initial data belonging to
FVNE@ where £? is a set slightly different from =@, suitably defined ac-
cording to the different geometry of the problem.

To conclude, we remark that our approach also works with any kind of domain
having smooth boundaries and possibly unbounded only in one or two dimen-
sions. The magnetie field component parallel to the boundary has to diverge at
the boundary itself in order to confine the charged particles inside the domain.

Appendix A.

In this appendix we prove a) the estimates (26) and (27), and b) that
X(t) € 9.

a) Firstly, let us start with a rough proof of the fact that the magnetic field
confines the system. Consider one particle alone subject to an external electric
field E(t) (which simulates the effect of the other particles) and a magnetic field
like (5). If the electric field pushes the particle close to the border, the magnetic
field obliges it to turn around fastly and, in average, the motion becomes parallel
to the border. Mathematically this effect appears in the existence of the function
P (see below) that plays the role of a Liapunov function, slowly varying during
the motion and exploding on the border. As a consequence the boundary cannot
be reached at any finite time.

Now we give the rigorous proof. For the sake of conciseness, we skip the
dependence on n. For a generic particle with position r;(t) = (x; (%), %;(t), 2;(t)), the
equations of motion are:

(A1) Pi(t) = E;(t) +1;(t) AH(r;(t)),
denoting by
(A2) Ei(t) = (Ex®), Ex(t), Es®) = — > Vé(rit) —r;)).

Jg#
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The scalar form of (Al) reads as
&) = 4, OH@E) + y2 () + Eq(t)
(A3) §i(t) = Eipt) — @) H (@2 (t) + y3(t))
Zi(t) = Eis(?).

From (A3) we get, for a generic T' > 0,

(A1) [ Lt + GOy NH ) + y20) dt
0

T
= [ Gty — 2:03it) + OB ) — g OB 01,
0

and denoting by P(-) a primitive of H( - ) the Lh.s. of (A4) can be rewritten as

=D

(A5) det [2P +y2())}dt B ( +yl)}

=0

where 7;(T) = |/&2(T) + y3(T) is the radial position of the particle. Notice that
(A5) diverges to +oo for fr‘l( — L (as it comes from (5)) while the r.h.s. of (A4)
cannot diverge for finite times (as we are going to see), and this is the reason why
the particles remain inside the cylinder of radius L for any positive time.

By (56) and (A5), (A4) can be written as

(A6) JP(AT) — S P(%

0)

T
= [Tty = 2:(8) §u(t) + 2:() Eold) — ys0) B () .
0

After integration by parts of the r.h.s. of (A6) we can write

1

(A7) GP(AD) - 3P(H0)

LD + [&:00)] + [0 + 5:(0)) + L [ B 2] + 1B ®)]1d
0

Let us now give suitable bounds to each term in the r.h.s. of (A7): observe
that, by (6),

(A8) #(5)] < 2s5up QX" ();1,1)
I
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which implies (remember the omitted dependence on n)

(A9) ()| < 2sup QX" (T); 1, 1),
n

(A10) |%;(0)] < 2sup QX" (0); 1, 1),
n

and analogously for |¢;(7T)| and |¢;(0)|. Moreover:

T T
(A11) f\Ei(t)|dt§f ‘ =S Vet — ri)|at
0 0 Jij#L

and, by the form of the potential (3), for a positive constant Cog,

(A12) V(&) < Car(@(&) + ¢(E)).
Then the r.h.s. of (A11) can be bounded by:

(A13) fT |3 Coogtrt ) — v (et + fT |3 Cogtri )~ o) dt
0

Ji# 0 JuA

T T
< Zszf SUPQ(X”(t);Ml)dt-i-‘lszf
0o " 0
T 2
< 6Cs f <supQ(X"<t); u,l)) dt.
0 M

Putting (A13), (A10), and (A9) in (A7) we obtain:

1 1

1

(ALY GPOHT) =5 POTO) < 4Lsup QX" (T)s 1) +4L sup QX" (0): . 1)

T

385

2
(supQ(X”(t);u, 1)) dt
i

2
1210 f (supQ(X"(t); u,1)> dt.
"

0

In order to get an analogous bound for the magnetic field H, let us make the
following considerations. If both 7;(7T) and 7;(0) belong to the region in which
L2 — & <a?+y% < L? (let us call it region I), by the explicit form (5) of the

function H, we get immediatly

(A15) %P(W?(T))—%P(ﬁ(O)):% ! w11

o —



386 P. BUTTA - S. CAPRINO - G. CAVALLARO - C. MARCHIORO

so that, in this region, (A14) becomes

1 1 o1 1 1
(A16) S ——H((T) " —3

a=1
a

H(r;(0))

a—1
< 4Lsup QX" (T); 1, 1) + AL sup QX" (0); 1, 1)
i “

T

+12LCh Of (sgp QX" (1): 1, 1))2dt.

Define region II as the region in which 0 < a2 + y2 < L% — 6%, If r;(T) belongs
to region I and 7;(0) to region 11, we can use that
%P(V?(T)) — %P(Lz — &)< %P(W%(T)) - %P(ﬁ(O)),
to obtain (using (A15) for the L.h.s. and (A14) for the r.h.s.):

a—1
1 1 1 11 [1]@
(Mwéﬁim&mﬂﬁZjbﬂ

< 4L sup QX" (T); 1, 1) + 4L sup Q(X"(0); 1, 1)
Jz u

T 2
+ 12L022f (sup QX" (®); u, 1)) dt.
0 H
Finally, if #;(T") belongs to region II (wherever 7;(0) is), we have:
1

11 = 101 [17%
(A18) L) gza_l[}

1

Combining Eqs. (A16), (A17), and (A18), in order to obtain a condition which
holds for any »;(T') and #;(0) inside the cylinder, we get:

a=1

1 1 1]«
H(T'ZZ(O)) +§m {ﬁ} +

(A19) %alle(r?(T))%

1
< Z
—2a-1

+ 4L sup QX" (T); 1, 1) + 4L sup QX" (0); 1, 1)
u u
T

2
+12LCs» f (supQ(X"’(t); ,u,l)) dt.
"

0
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For what concerns the Lipschitz function £(r?,r?~!) that appears in (25), we
have

non—1 HW‘Z)
Loor™) < max—g

where A7 denotes the closed interval of extremes [r — (- v)o| and |r~!

— (r?*1 -v)v| (recall v is the symmetry axis of the cylinder). Consequently for

dH /dr we can apply the same argument used for H, hielding

dHO?)  d [ ho?)
(A20) =5~ =ar [ﬁ}
_ 2 —a-1 1 dh(r®) w1
= 2ar(L? — %) h(7”2)+m ar < CoyHA)T .
By (A19) we have:
dH(r?) 01

(A21) £(r’,r! ') < max

reA!

< Cgs max [H()]

i

n

<Cy > HH(@(O))% +8(a — DL sup QX' (t); 1, 1)
u

l=n—1

a—1

n [5” " 48(a — L sup QX (0); 11, 1)+
i

t

+24(a — 1) LCys f (sup QX“(s); , 1))2(13} ] .
u

0
Since X € Z® we have,
1
[Alog® (e + |r; - v|)](ﬁ)

(A22) (L% —1%) >

which implies

(A23) (L*—7%) > L : Vi€ I,.
[Alog® (e + n)]@)

Therefore

(A24) [HOZO0)]T < Alog? (e +n)  Viel,.

By using (A19), (A21), (40), and (A24), the bound (26) follows.
The estimate (27) is a consequence of (26), as it follows from (A8) and (40).
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b) We prove that if (A22) is satisfied at the initial time it will be satisfied
at any successive time. By the form of the magnetic field (5), from (A22) we
get

(A25) H(r2) < [Alog? (e + [r; - oI

which implies that at time ? it results, from (A19) and (40),

1

(A26) H2(t) < {A log” (e + [ri - v]) +%

a

+24(a — 1)LCo4t [t + log (e + 7 - v)]2}
Hence:

(A27) H(2(1) < {Ailog® (e + [ri - o))}

which is still a condition like (A25). It is immediate from (A27) to get

1

L? — 13 (1) > :
( ) [Aylog® (e + |r; - o)1)

which proves that X(¢) € 5@. O

Appendix B.

Proof of Proposition 3.1.

A notation warning: in the sequel we shall denote by C a generic positive
constant whose numerical value may change from line to line, possibly depending
on the interaction ¢ and on the initial state X of the system.

We introduce a mollified version of Q(X; i, R) by defining

2
(B1) WX;u,R) = Zﬁl’R{l;i“L;Z ¢(ri—rj)+1}
i e
where
R |ri *0— ,Ll|
()

and f € C*°(R ) is not increasing and satisfies: f(x) = 1 for « € [0, 1], f(x) = 0 for
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x> 2and |[f'(x)| < 2. Clearly:
(B3) Q(X; 1, R) < W(Xiu R) < Q(X; 1, 2R),
For 0 < s <t, we define

t

t
(B4) R, (t,5) =log(e+m) + [ dr Vo0 + [ de V(0
0 s

(note that R, (t,t) = R,(t) and R, (t,0) < 2R, (t)) and compute

(B5) AW (X" (8); i, Rt 9)) = D [rcilt, s)eils) + £ ii(s)]

i

where, denoting by ¢% (s) the sign of r;(s) - v — g,
K(t S) :f/ |r1( ‘0 — :u‘
v R,(t,s)

&(s)

(s)vy(s) - v OsR,(,s)
Rn(ta S) Rn(t, 8)2

| —ﬂ‘ ;

(s)) +1

] J#

and, to simplify notation, we have omitted the explicit dependence on » of r;, v;, x;
and ¢;.

By the properties of f, noticing that o,R,(t,s) = —V,.(s), and |v;(s)| < V,(s)
then x;(t, s) < 0. On the other hand, from the equations of motion it follows that:

v;i(8) + v;(s)
- ;#Vqﬁ(m(S) —ri(s) 5.

Notice that v;(s) - [v;(s) A H(r;(s))] = 0, so the magnetic field does not enter
into the proof of this proposition. Then, by (B5) and using the fact that V¢ is odd,

(B6) O (X" (5): 1, Ralt, ) < — 2 g
i#
xV(ri(s) —ri(s)) - vi(s).

Moreover:

B7) e ) < 2 2m) 1 2B,
From (3) we have

(B8) x| - Vx| < Clglx) + e ).



390 P. BUTTA - S. CAPRINO - G. CAVALLARO - C. MARCHIORO

Hence by (B8) and (B7) we have, putting 7;;(s) = [r;(s) —r;(s)|,

6Rq t,s) _
Zts Z[ 21](9‘*‘4””17

X {Zi(ﬂ)an(ta S)) + ;{j(/l,ZRn(t, 3))} =

(B9) WX (s); t, Ry(t, 9)) < —

0 Rn(t s)

_ _ZCW;[(Z 19 4 By ()] (1, 2R (2, 9)).
Clearly
> @)1 (1, 2R, 9)) < 2W (X" (s); 1, 2R, (1, 9))
1A
whereas

(B10) > e ?iy,(u, 2R, (t,5))

i#
+00 :
< ey xiw 2R, (4, 8) xm < r(s) < m+ 1),
m=0 A

Observe that, since the potential (3) is non negative and it is strictly positive
at the origin, there exist two constants By > 0 and B2 > 0 depending only on ¢,

such that for each finite configuration of particles {ry, ... ,ry} inside the cylinder
it results:
(B11) —qu i —1;) > B1Y N - BN,

i) k

where N, is the number of particles in the set {k <r-v<k+1}, ke Z
Let us examine, in (B10), the term

(B12) 1w, 2R, (t, )y(m < ry(s) < m+1)

i#j
=D %l 2R (4, 8)xlm < ryg(s) Sme 1) Y (i) (r(s)
i e s
denoting by

i9) =k <ri(s) v<k+1) ke

Consequently, the number of particles of the k-th cell is

N = Z)Ck(ri(s))
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In this way we can write

rhs.of BI2)< > NNg< > (NP+DN})

Y3 k!

|k—p|<2Rp (t,5) [k—p|<2Rp (t,5)
m<|k—k [<m+1 m<|k—k'|<m+1
2 2
D D N
" e W
|k—u|<2Rn  m<|k—k'|<m+1 |k—u|<2Ry  m<|k—k|<m+1

<5 Z Nl% + Z (lefmfl+Nl%7m+Nl%+m+Nl%+m+l)

I k
k—u<2Ry k—u|<2Ry

< 9C sup W(X"(s); 1, 2R, (¢, 5))
u

where we have used (B11) and the fact that Ny, is simply the number of par-
ticles in the «shifted» cell k + m.
Recalling (B10), we have

+00 K
> T 2R (¢,5) < 9C sup WX (s); 1, 2R, (t,5)) ) _ e
i# “

m=0

-sup W(X"(s); i1, 2R, (, 5)).
1—ez 4

Going back to (B6) we get

83R¢7,(t7 8) sup W(Xn(S), U, 2Rn(t7 S))

B13) AW (s)uRalt,s) < —Cpm p

Notice a «covering» property of W, that is

W(X;1,2R) < Y W(X; 1+ 2kR, R).
[k[<2

Then we have

(B14) sup W(X; 1, 2R) < 5W(X; R),
i

where we define

WX;R) =supWX; 1, R).
u

Hence (B13) becomes

OsRn(t,s)

(B15) W (X" (8); 11, R (t,8)) < ’CW

WQX"(s); Bi(t, 5))
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from which, by integrating and taking the supremum on g,

W' (5): R t,5) < WOE'(0) e f e 2B D gy oo R, )

ntr

which gives, by Gronwall’s lemma, remembering that C > 0 and R, (,7) =
~Vau(o),

C
(B16) WX"(5); Ralt, 5)) < [W( "(0);Rn(t,0))]<R”(t’0)> _

R,(t,s)

Putting s = ¢ and using that R, (t,0) < 2R, (t,t) = 2R, (), we get
W(X"(#); R, () < CW(X"(0); R, (2)).
Finally, by (B3) and (7) we have
QX" (1); i1, Ry () <CW(X"(0); R, (1))
<C'sup QX" (0); , 2R, (1))
gCQ?X )4R,,(t)

which ends the proof of the Proposition. O

Proof'that X(t) € zW,

We want to prove now that, if QX) < +oc, then QX (f)) < +00. We shall
prove in fact that:

(B17) QX (1) u, R) < CIR +1+ 7]

which clearly gives QX ()) < +o0 and it gives also its correct quadratic growth
in time. By (B3) it is enough to prove (B17) with QX (f); u, R) replaced by
WX ®); 1, R).

Given f > 1, u € Rand R > log (e + |u|) let

(B18) no = no(, R, t) = Int [fe?H].
Clearly log (e + ng) > R so that, by (B3), (18), (19), and (21),
(B19) WX @); 1, B) < QX™(8); 1, 2Ry, (1))
< CR,,(t) < Cllog (e + ng) + t*]
< CIR+1+#].
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On the other hand:

(B20) WX();p,R) < WX™ (), R) + Y [WX" - WX () 1, R)|

n>ng

and the sum on the r.h.s. of (B20), by the choice (B18) of 7, converges uniformly
with respect to u € R, R > log (e + |¢|) and ¢ > 0, so it is bounded by a constant
(this can be seen using the same techniques of Proposition 3.1). O

Proof of Proposition 3.2.

For any ¢t > 0 let N, (u,t) be the number of all the particles ¢ € I,, such that
ri(t) € Q(u, R, (t)) and |[v} ()| > b,(t), with

Va(®)
2 )

where Co; > 0 will be fixed later and V,,(¢) is defined in (20). Then:

(B21) by (t) = Co5+/log (e +m)

by (1)

QU (1)s 1, Rult)) > 73

Nn(ﬂ,t)

so that, by Proposition 3.1 and using Definitions (19) and (20),
log (e +m) + tV,,(t)

(20 /log e+ 1)+ V(1)

from which, after neglecting some positive terms,

Nn(ﬂ, t) < 803

2C 8Cst
3, 3

B22 N t) < 234 4t
(B22) W0 <2+ 30y, + Vo0

We now choose Co5 = 21/2Cs; by (B22), if V,,(t) > 32Cst then N, (u,t) < 1/2,
i.e. N,(u,t) = 0. The above argument is independent of y, so that V,,(t) > 32Cst
actually implies [v? (t)| < b, (t) for all ¢ € I,,. Since b, (¢) is not decreasing, we have
in fact V,,(¢t) < b,,(t) when V,,(t) > 32Cst. Thus

V() < b, (8) + 32Cst vt >0
and, by (21) it follows:

t) < 2Co54/ log (e +m) + 64Cst Vvt >0,

that is inequality (21). O
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