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Bollettino U. M. 1.
(8) 9-B (2006), 327-369

On the Lower Semicontinuity of Supremal
Functionals Defined on Measures.

MICHELE GORI

Sunto. — In questo lavoro si considerano due particolari classi di funzionali supremali
definiti sulle misure di Radon e si determinano alcune condizioni necessarie e suf-
ficienti alla loro semicontinuita rispetto alla convergenza debole*. Vengono succes-
stvamente presentate alcune applicaziont di questi risultati alla minimizzazione di
opportuni funzionali definiti su BV.

Summary. — In this paper we consider two particular classes of supremal functionals
defined on Radon measures and we find necessary and sufficient conditions for their
lower semicontinuity with respect to the weak™ convergence. Some applications to the
minimization of functionals defined on BV are presented.

1. — Introduction.

The study of integral functionals defined on Radon measures was first ap-
proached by Goffman and Serrin in [21] and subsequently many authors devel-
oped this argument (see [4, 11, 15, 16, 18]). The simplest type of such functionals
takes the form

(1) [ree@pde + [ (% (x)) d)|@),
Q Q

where Q C R" is an open set, 1 € M(Q,R™), f* is the recession function of f
and /= 2% £" + 7’ is the Radon-Nikodym decomposition of / with respect to
the Lebesgue measure £".

As concerns the functionals of the form (1), it is well known that the convexity
and the lower semicontinuity of the function f are necessary and sufficient con-
ditionsin order to have the lower semicontinuity with respect to the w*-M(Q, R™)
convergence; moreover, in these hypotheses, (1) is also convex on M(Q, R™).

When £ is the gradient Du of u € BV (Q), the functional (1) can be written as

w( AD*u o
@) ([ FVul)dr + [[ f ( D% (x)) d|D%u) (),




328 MICHELE GORI

where Vu and D*u respectively are the absolutely continuous and the singular
part of the decomposition of Du with respect to £”. The lower semicontinuity
results proved for (1) allow to apply the direct methods in order to prove the
existence of solutions of several minimization problems involving (2).

However, a great class of interesting functionals presents relevant effects of
non convex terms so that they cannot be treated with functionals of the type (1)
and (2). The typical example is given by the the functional

3) f \Vu(@)|2de + f A" (@) + f () — g(@)Bd,
2 S, 2
that occurs in the theory of mechanics of fractures and in problems of computer
vision (for further details see [3, 17]). Here u € BV(Q), g € L*(Q), S,, is the set of
the jump points of u and H" ! is the (n — 1) dimensional Hausdorff measure.

Moving from these considerations Bouchitté and Buttazzo proposed a gen-
eralization of (1) given by

@) [roe@pde + [ @zc' (x)) dicl@) + 3 g0t @),
Q Q

%‘EA,'_

where A = 2% £ 4+ ¢ + A*, ¢ L A%, ¥ is purely atomic and A; is the set of the
atoms of 1, and they were able to find necessary and sufficient conditions for its
lower semicontinuity with respect to the w*-M(Q, R™) convergence (see [12, 13,
14]). Clearly, when the one dimensional case is considered, the results proved
for (4) gives information on (3) too.

In the last decade, other types of functionals that show a non convex behavior
have been studied by considering the sup norm: sometimes they are called su-
premal functionals (see [1, 2, 9, 10, 23]). The main example of such functionals is
given by
(5) esssup f(Vu(x)),

xeQ
where u € W1(Q) and the essential supremum is considered with respect to £".

As shown in [9], the lower semicontinuity of (5) with respect to the w*-W'>°(Q)
convergence is equivalent to ask the lower semicontinuity and the level convexity
of f; we remember that f is level convex if every sub-level set of f is a convex set.

It is worth noting that, supposing the lower semicontinuity of (5), the
Dirichlet problem

(6) min{ esssup f(Vu(x)) : u € Whe(Q), u = @ on 8.(2}
xeQ

can be solved provided f is coercive, that is, there exists 6 : [0, 00) — [0, c0) such

that

f© >0(¢) and tllglo A(t) = oo.
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The celebrated problem to find of the best Lipschitz extension of a function
defined on 92 has clearly the form (6) with (&) = || (see for instance [8, 25]).

Having in mind the results proved for the integral case, in this paper we
approach the problem to find suitable supremal functionals defined on M(Q, R™)
that satisfy the property to be lower semicontinuous (briefly l.s.c.) with respect
to the w*-M(Q, R™) convergence.

After several preliminary results presented in Section 2 and extensively used
along all the paper, in Section 3 we consider the functional

(7) F(,Q) = {ess sup f(l“(w))} % [)ﬂ—ess sup f* (%(w))},
xeQ 0

re

where the function f? is defined as
& = inf{ li]rln inf f(t,&,) : &, — E b 1 oo}.

Using techniques similar to the ones used in [21], we prove that F' is l.s.c. with
respect to the w*-M,.(Q2, R™) convergence if and only if f is ls.c. and level
convex (see Theorem 23), and that, under these hypotheses, F' is also level convex
on Mie.(2, R™), finding in this way a complete analogy between the integral and
the supremal settings.

In Section 4 we carry on the study of another and more general type of
functional, given, for every / € M,.(2, R™), by

F(A, Q) = {ess sup f(l“(ac))]

reR

di’
¢ - h [
(8) \/[M | essesup f ( a7 (x))] v l\/ (4 (x))].

xeAZ

Note that, even if f is Ls.c. and level convex, in general F fails to be level convex
on M,(2, R™), because of the dependence on ¢.

After having proved that in fact ' generalizes F' (that is, I = F' whenever
¢ = f1), we approach the problem to find necessary and sufficient conditions for
the lower semicontinuity of F' with respect to the w*-M,.(Q, R™) convergence
(see Theorems 6, 8 and 9).

Finally, Section 5 is devoted to some simple applications of the results ob-
tained in Sections 3 and 4 to the BV setting. In particular, by means of the results
about F', we propose a generalized version of the Dirichlet problem (6) defined on
BV (Q) and, even in the case in which f is not coercive, we find conditions for the
existence of a minimum point.

Subsequently, thanks to the results proved for I, we prove the existence of a
minimum point also for a particular class of one dimensional functionals defined
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on BV and similar to (3). We point out that this topic has been already ap-
proached by Alicandro, Braides and Cicalese [2].

Acknowledgment. The author wishes to thank Prof. Giuseppe Buttazzo for his
precious advise and the referee for useful suggestions which allowed to simplify
several parts of the paper (in particular Propositions 7 and 14).

2. — Notations and preliminary results.

2.1. Some tools from measure theory.

Let us consider the measurable space (Q, B(Q2)) where Q C R" is an open set
and B(Q) is the o-algebra of the Borel subsets of Q.

We say that K is well contained in Q (briefly K CcC Q)if el(K) C Q, that is, the
closure of K is a subset of Q. Moreover, for every x € R" and p > 0, we set

B, p)={yecR":|x—y|<p} and S"'={recR":|x]=1}.

If u:B(2) — [0,00] is a positive measure such that, for every K € B(Q),
K cc Q,itis (K) < oo, then u is called a positive Radon measure on Q: the set
of the positive Radon measures on Q is denoted by M™(2). Obviously the
Lebesgue measure on R", denoted with £", belongs to M*(R") so as the stan-
dard Dirac measure centered on x € R" denoted with J,.

Letus fixm € N:if 4 : B(Q) — R™ is a vector measure then it is called a finite
Radon measure on Q while if 1: {K € B(Q): K cc 2} — R™ and, for every
K e B(Q), K cc Q, 1 is a vector measure on B(K) then it is called a Radon
measure on Q. We denote the set of Radon measures (resp. finite Radon mea-
sures) with M,.(2, R™) (resp. M(Q,R™)).

Let us consider now A € My,.(Q, R™) U MT(Q). For every B € B(Q) the total
variation of A on B is defined by M.

(9) |2|(B):sup{z |A(B))|:B;€ BQ),BjccQ, | JBjCB,B;NB;=0, w;&j}.
=1 i=1
It is well known that || € M*(Q), that 1 € M(Q,R™) implies
that if 2 € M™(Q) then || = /.
Given now 4 € Mj(2, R™) U MT(Q) we say that 1 is concentrated on a set
B € B(Q) if |A|(Q\ B) = 0. If A1, 42 € My (2, R™)U M (Q) we say that /; is
singular with respect to /g (briefly A; 1 Jg) if there exist By, By € B(Q) such that
A1 1s concentrated in By, Js is concentrated in Bs and B; N By = 0.

() < oo and

(") When x € R”, || means ||%|/x» the standard Euclidean norm on R".
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If now we consider 4 € M,.(2, R™) U M*(Q2) and u € M™(Q) we say that /is
absolutely continuous with respect to u (briefly 2 << w) if w(B) =0 implies
|2|(B) = 0. Moreover, fixed £ € B(Q2), we denote with 1| £ the restriction of 1 to
E, that is, the element of M,.(Q, R™) U M™(Q) defined, for every B € B(Q)
(when 1 ¢ M(Q,R™) U M™(Q), we need B CC Q too), as ()LLE') B) = ENB).
For every E € B(R") we will always denote with £" the measure £"| E.

We write for short A(x) instead of A({x}) and we denote

Ay ={x e Q: Ax) #0},

the set of the atoms of /. Finally, if u € M™(Q), we define the support of u as the
set

spt(u) = cl({x € Q:Vp>0,uB,p) > 0}>7

while, if 2 € Mo.(Q, R™), we set spt(4) = spt(|4]): note that / is concentrated on
spt(4).

If we consider now p &€ M*(Q) and a function u € LL(.Q, R™) (resp.
LIIOC’ (2, R™)) we denote with u - x the element of M(Q, R™) (resp. Mi,(Q, R™))
defined, for every B € B(Q) (resp. B € B(Q), B CC Q), as

- 0B = [ u@du)

B

we have |u - u| = |u| - wand u - © << p. A standard result of measure theory (see
[6] Theorem 1.28) says that, given u € M™(Q), we can decompose in a unique way
a measure 4 € M,.(Q,R™) as

(10) A=At R,
where 2% € Ll (Q2,R™) and A* € My,(2, R™) with 2* L u: we call 2% u the

loe,u
absolutely continuous part of 2 while A° its singular part. With the notation

quoted above, we can also write
(11) A=y 40+,

where 1° = 2*| (Q\ A4)) is said the Cantor part of /. while 2* = J*| A; is said its
atomic part. These decompositions of / obviously depend on x even if in the nota-
tions 2%, /%, J° and A* the measure 1 is not expressly named: however, every time
one of these decompositions is used, the measure u will be clear by the context.
Finally note that, if A € M(Q, R™), then 1* € L}t(Q7 R™yand /%, 2°, 2% € M(Q, R™).

Let Ay, A € M(Q,R™) (resp. Mio.(Q, R™): we say 4, — A in w*-M(Q, R™)
(resp. w*-M(Q, R™)) if

lim Qf @)y (@) = Qf p(@)d i),
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for every ¢ € Cy(Q), that is, the set of the continuous functions on Q with the
property that, for every & > 0, there exists a compact set K, C @ such that, for
every x € Q\ K;, |p(x)| < ¢ (resp. for every ¢ € C.(Q), that is, the set of the
continuous functions on 2 with compact support).

The compactness theorems about this kind of convergence are considered
known (see for instance [6] Theorem 1.59 and Corollary 1.60).

It’s suitable at this point to introduce also the following notion of convergence.
Let {Q},2, be a family of open subsets of R" and let 4, € Mi,(2;, R™),
A€ Mipe(2,R™): we say 4, — A in w*-M( | Q,R™) if, for every K CC Q, we
have K C Q) when £ is large enough and, for every ¢ € C.(Q),

Tim [ p@din@ = [ p@di@.
Q Q

Given a measure A € M,.(Q2, R™) and p > 0, we define the convolution of 1
with step p as

(12) Jp(a) = f ok <u> diy) : Q, — R™.
B(x,p) P

In the previous definition k: R" — [0,00) is a convolution kernel, that is
k € C(R™), for every « € R", k(x) = k( — ), spt(k) € B(0,1) and [ k(x)de =1
(we require also that £(0) # 0), and R"

Q,={x e Q:dx, 0Q) > p},

where d(x, 0Q) = inf{|x — y| : y € 02} and 0L is the topological boundary of Q.

It is well known that 1, € C*(2,,R™) and it can be simply proved using
Fubini’s Theorem that 4, - £" — 1 in w*-Mj(] 2,R™) as p— 0 (see [6]
Theorem 2.2). In the following, referring to a convolution kernel &, we will set
ky() = p~"k(p~ ).

Now we propose a theorem on measures that describes the point-wise be-
havior of the convolutions of a measure and that will be fundamental in proving
some results of the following chapters. The principal tools used in its proof are
the Besicovich’s Derivation Theorem for Radon measures and the Lebesgue’s
points Theorem (see [6] Theorem 2.22 and Corollary 2.23). This theorem gen-
eralizes Theorem 3 in [22].

THEOREM 1. — Let /. € My,(Q, R™). Then, referring to the decomposition (10)
with respect to L", we have

@) for L"-a.e. x € Q, ,1im |Ap() — A% ()| = O;
n— 00

(i) for |A’|-a.e. x € spt(A®), there exists a sequence of positive numbers
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{py )., depending on x and decreasing to zero, such that (%)

i Iy, @)

(13) lim |—— (%) —
h—o0 d i
el d| ] f ke, (& — )| (p)
B(x;ﬂh)

=0.

For simplicity we prove Theorem 1 by means of two lemmas that, in our
opinion, are interesting on their own. The first lemma is a simple fact from
measure theory and, in this form, can be found in [5], Theorem 2.3.

LEMMA 1. — Let u € M (Q) such that uLL". Then, for u-a.e. x € spt(u) and,
for every o € (0,1), we have

. wB(x,ap))
"< = P <.
= m;lfélp w(B(x,p)) ~

PRrROOF. — Let us set

(14) Q) = {m € spt(y) : lin%@ - oo} :
/}—>

since (2 \ Q(w) = 0 and L™"(Q2(w)) = 0 (see [6] Theorem 2.22), we achieve the
proof showing the wanted relation for every x € Q(u). Let us suppose, by con-
tradiction, there exist xy € Q(u) and o € (0, 1) such that

) u(B(xo, a9p))
o > hm sup ————mm——.
0 = SR (B o, p))

Then there exists p, such that, for every 0 < p < py, u(B(xg, aop)) < o u(B(xo, p)).
If we call w(p) = u(B(xo, p)) we have that, for every 0 < p < p,, w(gop) < ayw(p).
Then, for every h € N, oy w(alp,) < w(p,), thus

1(B(o, alpy))

Py < w(py) = By, py)) < 0.
(agpo)

If now h — oo, then ajp, — 0 and the left hand side of the previous inequality
tends to infinity: thus the contradiction is found. O

In particular, fixed o € (0,1), for p-a.e. x € spt(u), there exists a sequence
{pn}1=1, depending on x and decreasing to zero, such that, for every i € I\,

(15) w(B,apy)) > " (B, py)).

(%) We point out that, for |1*|-a.e. & € spt(1®), d%il @eS™Yand [k, (x—y)d|A’|(y)#0.
B(w,p;)
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LEMMA 2. — Let 2° € Mype(Q2, R™), u € MT(Q) such that 2’ LL" and u << L".
Then, for |7°|-a.e. x € spt(2®), there exists a sequence of positive numbers {p; }- 1,
depending on x and decreasing to zero, such that

[k, (@ —yduty)

(16) lim 22 -0
oo [k, (e — d|2°|(y)
B(w,p)
and
) kﬂh(ac Y) dm(y) dw(w) d|2*|(y)
(17) lim 22 = 0.
h=oc |k, —d| 2| )
B(x,py)

PROOF. — Obviously 4° L x. Thus, let us consider €(|4*|) defined as in (14), and
the set

=Q(Xhn {ac € spt(A®) : hm HB@,p)) 0}

0|A%|(B(x, p))

ﬂ{x € spt(2®) : xis a Lebesgue’s point for CZ/}S|}
Clearly |2°|(Q\ ©y) = 0: then the proof is achieved if, for every x € €, (16) and
(17) hold. By the properties of the convolution kernel k, we can find ¢ € (0,1) and
¢,M >0 such that, for every x € R", k(x) <M and, for every x € B(0,0),
k(x) > ¢ (remember that we suppose k(0) # 0). Thus, let us fix « € £, and, since
Qy C Q(|2%)), let us consider, with respect to |4%|, the sequence {p,},~; (p, < o)
given by (15). Then we have

[ k@ —yduty) [ k(5Y)duw)
0 < lim B,py,) — Iim B(w.p)
[ k- pdZ) T k(5 )
B(x.p) B(x,py)

< lim% ,g(B(x,ph)) _ lim % ,LtS(B(%ph)) ' \A};KB(%’P;J)
h—oo € |X|(B(x,ap,)) h—oo ¢ |2°|(Bx,py) |A°|(B@,ap,)

im M ,u(B(ﬁC,ph)) _
T h—oo CO'nJrl |/‘LS|(B(90,,0}L)) ,

that proves (16). A similar computation allows to achieve (17). |
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Proor (of Theorem 1). — (7). See for instance [27] Theorem 2.

(7). Let us fix 1 € Mp(2,R™) and consider A* and u = |1%(x)| - L": since
A LL" and u << L£" we can apply Lemma 2 to 2° and u. Thus, we can find M C Q
with |4°|(M) = 0 such that, for every x € Q \ M, there exists a sequence {p;, },”;
satisfying the conditions (16) and (17) of Lemma 2. Then we simply end since, for
every x € Q\ M,

Ap, () di
] m(%)
f k/)h(x - y)du |(?/)

B(x,py,)

[ k(=) "Wldy
< B(,py,)

Jr
|k, (@ —yd|2’|(y)

B(x,py,)

[ e = | @) — o @)|d2 )

B(x.p)
[k, (@ —yd|2|(y)
B(x,p;)
that goes to zero as i — oo by the conditions (16) and (17). O

We propose now two propositions.

PROPOSITION 1. — Let 11,2 € Mioe(Q2, R™) such that 2, L 1y. Then, for |1

di d(A1+729)
a.e € dlil\ () = d|11+/12\ ().

ProoF. - Let A € B(Q) such that |11](2\ A) = |22](4) = 0: clearly we can
prove the wanted equality only for |4|-a.e. © € A. Since |11 + 22| = |41 + |A2],
A << |A1| and 1, A2 << |41 + 2|, we have that, for every B € B(A),

d/Ll

4(B) = F

(@)d| A1 (),

and

a(B) = fﬂﬂ |mwm+@m)jafh @)d|s | @).

Thus, for |/;]-a.e. x € A, i ‘(ac) d\ﬂ +) |(oc) We end noting that, with a similar
argument, for [/;]-a.e. x € A, d|A1 Hz‘ (@) = O

Before stating the following proposition, let us introduce some notations.
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Given u € M*(Q) and a Borel function ¢ : Q — [0,00] we define the essential
supremum on B € B(Q) of ¢ with respect to u as

H-esssup ¢(x)
xeB

inf{ sup ¢(x) : A € B@Q),A C B, u(4) = 0} if u(B) #0,
= xeB\A

Cw if 4(B) = 0,
pointing out that, if x;, ity € M™(Q) with 1y << s, then

(18) py-esssup p(x) < po-esssup o).
reQ re
At last, for every a,b € R, we set a V b = sup{a, b} while a A b = inf{a, b}.

PROPOSITION 2. — Let A1, Ay € Moe(2,R™) such that A1 L Ay and let
o : Q — [0,00] be a Borel function. Then

|41 + Ao]-esssup ¢(x) = [Ml |- ess sup (p(m)} Vv [|/12|— ess sup (p(a?)} .
zeQ zeQR zeQR

PROOF. — Let A € B(Q) such that |21](2\ A) = |42|(4) = 0. Since |1 + 4| =
|41] + |22, we have

|41 + A2|-esssup ox) = [Ml + J2|-ess sup go(ac)] vV
reQ xrcA

|41 + A2|- ess sup go(ac)]
reQ\A

= [),1—ess sup (p(x)] v [|iz|—ess sup go(x)]
reA reQ\A

= [|21|—ess sup ¢(x)} Vv [|Xz|—ess sup gp(ac)}
reQ

re

2.2. Some tools from convex analysis.

Let f: R™ — [0,00]. We say that f is level convex if, for every & 5 e R™,
t€(0,1),

FE+ QA =8m <fQ V),

while we say that f is sub-maximal if, for every &, n € R™, it is

FCE+n <fEO VL.
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We define the domain of f as the set dom (f) = {& € R™ : f(¢) < oo}, and
when dom (f) # () we say that f is proper: in the following we will always deal
with proper functions. The sub-level set of f to level r € [0, oc] is defined as

Er(r) ={Ee R : f(©) <},

and it is well known that f is level convex if and only if, for every r € [0, co], E¢(r)
is a convex set.
We can also define, for every ¢ € R™,

£ = inf{ liming(15) & — &4 1 oo},
and

o= Sup{ 111}110 sup [, : 4, | 0},

and let us note that, for every & € R™, we can find suitable sequences &, — & and
ty 1 oo (vesp. &, | 0) such that f(£,5,) — f5(&) (vesp. f(E1&) — f2(E) O).

In the end we say that a function f : R™ — [0, oo] is positively homogeneous
of degree 0 if, for every & € R™, t > 0, it is f(t&) = f(&), while we say that f is
demi-coercive if there exist ¢ > 0, b > 0 and # € R™ such that, for every & € R™,
alé] <fE+ &) +0.

We list below several propositions involving level convex and sub-maximal
functions.

PROPOSITION 3. — Let f: R™ — [0, +oo] be proper and a positively homo-
geneous of degree 0 function: then f is level convex if and only if f is sub-
maximal.

PROOF. — In order to prove the if part, let &, € R™ and ¢ € (0,1). We have
that

f@+ A =0m <fE) VA =n) =fE) V@

(®) The definition of f11s analogous with the one recession function (see [26]. Definition
3.17 and Theorem 3.21) that can be defined also as follows: for every & € R",

£ = inf{lihnlirolf f(t#éh) L& —Et oo}

The definition of f* is inspired by [12] equation (2.7).
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In order to prove the only if part, let &, n € R™. Then
+
rern=f(55") <sovro,
and we end the proof. O

PROPOSITION 4. — Let f : R™ — [0, co] be a proper function. Then f° is L.s.c.,
positively homogeneous of degree 0 but not necessarily proper. Moreover, if f is
level convex then f* is level convex too.

PRrOOF. — Let us fix ¢, &, € R™ such that &, — &o. Then, for every h € IN,
there exist two sequences {t;}; C R, and {&}°; C R™ such that ; 1 oo,
& — & andf(t)E]) — f4(&,) asj — oc. Thus, for every h € N, there exists jj, such
that, t' > h, |&" — &,|< L and f (&) < f*(&) + 7 and, unless to extract a sub-
sequence, we can suppose that ¢;" 1 co and &' — &) as b — oo. Then

FiE) < limint £ (€)' < lim inf (f“(fh) + %) ~ liminf (&),

and the lower semicontinuity is proved.

The proof of the positive homogeneity of degree 0 is very simple and it can be
omitted.

Let us prove now the level convexity, that is, that for every r € [0, co) the set
{&:f%&) <7} is convex. If » < inf{f(¢): & € R™} there is nothing to prove.
Thus, fixed » > inf{f(&) : &£ € R™} and E/(r) = {& : f(&) < r} we have

{&:ffO<r= {f 3ty T 00, &, — &, such that hlim Ftnén) < 7'}

=N {g -3t 1 00, &, — ¢ such that Vh € N, f(t,&,) < 7 + g}

>0

= {&: 30 10,6, € Byr + ) such that 7,8, — ¢} = (VEF @+ ).

e>0 e>0

For every ¢ > 0, E¢(r +¢) # (¢ and by definition we have that EJ?O(V + ¢) is the so
called horizon cone of E¢(r + ¢) (see [26] Definition 3.3): since the horizon cone of
a convex set is convex (see [26] Theorem 3.6) we end the proof. |

PROPOSITION 5. — Let f: R™ — [0,00] be a proper, lLs.c. and positively
homogeneous of degree 0 function. Then f = f°.

PROOF. — Considering &, = ¢ and t;, T co we obtain f%(¢) < f(¢). In order to
prove the converse inequality we use the lower semicontinuity of f: indeed let
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&, — Eand t), T oo such that f(t,&,) — (), then
f < 1i}YLIli£ff(fh) = ﬁ}fgglff(thfh) =f49),

and we achieve the proof. O

PROPOSITION 6. — Let f: R™ — [0, 00] be a proper, l.s.c. and sub-maximal
fumction. Then f° is L.s.c., positively homogeneous of degree 0, level convex and,
for every & € R™,

£ = stuopf(tf).

ProoF. — We follow Proposition 2.2 in [12]. Clearly f° is positively homo-
geneous of degree 0. Fixed now & € R™, for every » > 0, we set

a(r) =sup{f&) : 0 <t <r}.
We have that a is non decreasing and f*(¢) = hn& a(r). However, by the sub-
maximality of f we have, for every » > 0,

a@r) = sup f(t&) = sup f(2tS) < sup f(EE) = a(r),

0<t<2r 0<t<r 0<t<r

that implies that a is constant on (0, co). Therefore

£ = stugﬂté),

thus, in particular, being f” the supremum of a family of 1.s.c. and sub-maximal
functions, it is also l.s.c. and sub-maximal. Finally, using Proposition 3, the level
convexity of f” follows too. O

PrROPOSITION 7. — Let f: R™ — [0,00] be a proper, Ls.c. and level convex
function such that, for every &€ R™\ {0}, f(&) =oc. Then there exists a
Sfunction 0 : [0, 00) — [0, 00) such that, for every £ € R",

(19) f@=0() and  lim () = oo

Proor. — 1t is sufficient to prove that, for every & € I, there exists 7, > 0
such that, for every ¢ € R™ \ {0}, |¢| > 7, we have f(¢) > h. Let us suppose by
contradiction that there exists &y € N such that, for every k € N, we can find
& € R™ || > k, with f(&,) < hy. Clearly |€x] — oo and, unless to extract a (not
relabelled) subsequence, we have also f" — v € 8™ 1. Then

00 = ff(u)<hmmff<§k| >§h0<oo

(94

which yields a contradiction. O
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PROPOSITION 8. — Let f: R™ — [0,00] be a proper, Ls.c. and sub-maximal
function such that, for every &€ R™\ {0}, f'(&) =oc. Then there exists a
Sfumction y : (0,00) — [0, 00) such that, for every & € R™ \ {0},

(20) J©© > (&) and }ijrgy(t):oo

ProoF. — It suffices to prove that, for every i € NN, there exists ¢, > 0 such
that, for every & € R™ \ {0}, || < &, we have f(¢) > h. Let us suppose by con-
tradiction that there exists iy € N such that, for every k € N, we can find
& € R™\ {0}, 1&] < k,vmthf(ék) < hy. Then |&;| — 0 and unless to extract a (not
relabelled) subsequence, \ékl —peS™1 Let {tr};—1 C (0,00) such thatt;, | 0and

Tim f(t0) =

For every h,k € N, there exists jj, . € N such that - Itf | <Jnk < ‘5 i+ 1 and since
t), B tyo as k — oo, then also jj ;& — o as k — oo. By the lower semi-
continuity and the sub-maximality of f, we have

Jhk

fw) < h]ﬂglff Un i) = ﬁgioglff (l_zl fk) < h}mglff (k).

Then, for every h € N,
f) < lilgn inf £ (&) < hy < 0.

Taking the limit as & — oo, we find a contradiction and the proof is achieved.
d

PROPOSITION 9. — Let f: R™ — [0,00] be a proper, l.s.c. and level convex
Sfunction. Let us define the function f: R™ x R — [0, cc] in this way:

) f(¢) ifr>0
(21) fE&D=1q 7 ifr=0,
%) if 7 < 0.

Then [ is proper, l.s.c., positively homogeneous of degree 0 and level convex on
Rm+1.

PROOF. — The functional f is clearly proper and positive homogeneous of de-
gree 0. In order to prove the lower semicontinuity we work in the following way.
Let us fix (&, 7,) — (&, 70): since f is lower semicontinuous both on R™ x (0, 0c)
(because of the lower semicontinuity of f) and on R™ x (— o0,0), the lower
semicontinuity inequality has to be proved only in the case in which 7y = 0. If this
is the case, we can find I1, I3, I3 disjoint subsets of N such that [y Ul U3 =N
and such that, if » € I; then t;, > 0,if h € I then 1, = 0 and if & € I3 then 7, < 0.
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Since
lim inf FE, ) = inf{hlim inf F@E,m) i€ {1,2,8), #U,) = oo},
—00 —00,heEl;

it suffices to prove the lower semicontinuity inequality of f only in the three cases
in which 7; = I\, 7 € {1,2,3}. However if, for every & € N, 75, > 0, by the defini-
tion of £,

0.0 = o) < it (1) = timint&,),
if, for every i € N, 7;, = 0, by the lower semicontinuity of f (see Proposition 4),
F&.0 = f(&) < liminf (&) = liminf f (&, 7).

and finally if, for every hAe N, 15, < 0 the inequality is trivially satisfied: thus the
lower semicontinuity of f is achieved.
Let us show now that f is level convex, that is, for every r € [0, c0), the set

(€0 :fE 0 <r)
={ED:t>0fEH<ru{E0:f(O<r}=AUB

is convex. We know that AUB is closed and, since f* is l.s.c. and level
convex, that B is a convex and closed set. We note also that A is convex since
A =0 or, if A # 0, we have that the convex set Es(r) = {£: f(&) <r} # 0 and
A = {{t 1) : & € Ef(r),t > 0} that is convex.

If A = () then A U B = B that is convex. If A # () we are going to prove that
A UB = cl(A4) that is convex since A is convex. Clearly cl(4) C A U B: to prove
the converse we only need to prove that B C cl(A).

In order to prove this let us fix (&), 0) € B and show that there exist two se-
quences (, — & and 7, | 0 such that, for every h € N, ({;,,1;) € A4, that is,
f (Chr,f) < 7. Since A # () there exists & € R™ such that f(&;) < r: we claim that
{& +1t&y:t >0} CEp(r).

If &) = 0 there is nothing to prove; instead, supposing &, # 0, let fix ¢ > 0 and
consider &, — & (&, #0), t;, 1 oo (|t,&,| > t&|) such that £(#,E),) — f5(&y): then,
for every h € N, by the level convexity of f,

1794
[thnl

f(él 11| ) < FltaE) V FED),

since the point &; + ¢|&) \ZZI belongs to the segment joining &; and ¢;,&;,. However

thén,
|théh|

hh_)r{)lc <§1 + t[&| ) =& + 1y,
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and then, by the lower semicontinuity of f,
J(& +1t) < li}an inf (f (&) VF(ED) <7,

that proves the claim.
At last setting, for every heN, (= % and 7, =1, we have
FChyt) =F(GrY) < 7, that is (§,, 1) € A, and moreover

hlingo (&, ) = (&, 0) € cl(A),
that ends the proof. O

ProPOSITION 10. — Let f: R — [0,00] be a continuous and sub-maximal
Sfunction and let s = sup{ f(&) : & € R}. Then, forevery & € [0, 00), f(&) = s o, for
every £ € (—00,0], f(&) =s.

ProoF. — First of all we prove that f(0) = s. Indeed, if this is not true then f(0)
is finite, there exists ¢ > 0 such that f(0)+2¢<s and & € R such that
f(&) > f(0)+ e Then, for every h € N, by the sub-maximality of f, also
f (3—3) > £(0) —&—vs. But %0 —0 as h— oo thus, by continuity of f,
f(0) = ]}LIEC f (ﬁ—f) > f(0) + ¢ that is a contradiction.

Let us suppose now, again by contradiction, that there exist &;, & > 0 such
that (&) Vf(— &) < s: by continuity of f, we can suppose also that &;,& € Q.
Writing g—z =k where ,k € N, we have h&; — k& = 0 and

s =f(0) =f(héy — k&) <fE) V(=) <s:

having found a contradiction, we achieve the proof. a

Let us point out that if f is only L.s.c. and sub-maximal on IR, then the thesis of
Proposition 10 is false: to verify this fact one can consider for instance the
function f defined, for every & € R\ 7, as f(&) = M > 0 and, for every ¢ € 7, as
f=0.

The proofs of the following two propositions are simple and then omitted.

PROPOSITION 11. — Let f : R™ — [0, 0o] be a proper, l.s.c. and demi-coercive
Sfunction, that is, there exist a >0, b>0 and n € R™ such that, for every
EeR™, f(&) > alé| — (n,&) — b. Then, for every & € R™, the following proper-
ties hold:

(i) f>(&) <[y
(i) ff1(E) < oo then fX(&) = 0;
(11) f&) > alé] — (1,&).
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ProposITION 12. - Let f : R — [0, 00] be a proper and lL.s.c. function. Then f
18 level convex if and only if f belongs to one of the three following classes:

(1) f is non decreasing on R;
(i1) f is non increasing on R;
(111) there exists xy € R such that f is non increasing on ( — oo, %] and non
decreasing on [xg, 0o).

In particular if f : R™ — [0, 0] is a proper, l.s.c. and level convex function,
then f(0) = inf{f(¢) : & € R™} if and only if, for every v € S™ 1, the function
t— f(uvt) is non decreasing on (0, co).

The two propositions below describe some properties of the composition of a
level convex function with an increasing one.

ProPOSITION 13. — Let f: R™ — [0,00] be a proper, l.s.c and level convex
Sunction, s = sup{f(&) : £ € R"}and O : [0, s] — [0, 5] be a continuous, increasing
Sfunction with 5 = sup{O(t) : t € [0, s]}. Then the composition @ o f : R™ — [0, 5]
1s proper, l.s.c. and level convex. Moreover (O o f)h =0o fl.

PRroOF. — Clearly O o f is proper and Ls.c.. Let &, 7 € R™ and ¢t € (0,1), then
(@ o)+ A =ty = O(ft + A — D)
<O(f(O V) =6(f()V OFh),

that is @ o f is level convex too. In order to prove that (@ o f)* = @ o f*, we point
out that O is bijective and @1 : [0,5] — [0, s] is still continuous and strictly in-
creasing. Let us fix & € R™ and let ¢, T oo, &, — & such that (O o /)(#,&,) —
—(@of )h(fo). Then, using the continuity of @’1,

O£ = Jim 0 u) = 0067 Jim 07616

= 0(}11310]”(15;0@)) > 0o fA(&y).

Conversely let ¢, 1 oo, &, — & such that f(£,,) — f*(&). Then, using the con-
tinuity of O,

©01) = 6(f") = 6 Jim £ (15)
— lim O(f(h:51)) = (O ()

and the equality is finally achieved. O
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PROPOSITION 14. — Let f: R™ — [0,00] be a proper, Ls.c and level convex
function, s = sup{f(&) : £ € R"} and K; = {¢ € R™ : fi(&) < s}. Let us suppose
that cl(Ky) does not contain any straight line. Then there exists a continuous
and strictly increasing function O :[0,s] — [0,00] such that the composition
Oo f: R™ — [0, 00] s demi-coercive.

PROOF. — First of all let us note that, by the properties of /7, cl(Ky) is a closed
and convex cone of R™. Moreover, it is quite simple to prove that there exists a
closed and convex cone C with non empty interior such that it does not contain any
straight line and cl(Ky) C C.

We claim that there exists 7, € R™, such that

(22) cl(Kp) \ {0} € C\ {0} S {&€ R™: (i, ) > 0}

Let us first note that if a convex cone K C R™ has empty interior, then its polar
cone

K ={neR":(n,¢) <0V¢c K}

contains at least one straight line: indeed K spans a vector subspace E of R™ with
dimension less then m, and then the orthogonal of £ contains at least a straight
line, which is then included in K*. Now consider the closed convex cone C of (22):
it is well known that C** = C (see [26] Corollary 6.21), and what precedes implies
that C* has non empty interior. Taking # in the interior of C*, clearly 5, = —#
satisfies (22): indeed, if £ € C'\ {0}, then (n,&) <0, and if we suppose (#,¢) = 0,
then we can find 5/ € C* in the neighborhood of # such that (#/, &) > 0, which is a
contradiction; as a consequence (7, ¢) < 0, so that (7, &) > 0.
Clearly (22) implies that there exists & > 0 such that

AE)\ (0} € {¢ € R\ 0): (5 ) > o},

where, without loss of generality, we can also assume |7y = 1.
Let us suppose at first s < oo. For every & € N, we set

ch—{af:f@ms(l—;)}

Dh:Chﬂ{éeRm\{O} : <%,n0> Ss}.

and

Obviously {Cj},-, and {D;},-, are two non decreasing sequences of sets.
Moreover we have that every D), is bounded. Indeed, if by contradiction there
exists hg € N such that Dy, is unbounded, we can find a sequence {¢;}2; C Dy,
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& _
such that |¢;| — oo and & — & € §”~. Then
=)

1 . Si
s(l h_0> > h}gglffofﬂ'f—ﬂ) > o),

but since &, € {f e R™\ {0} : <%7770> < e} it should be f%(&,) = s and the con-
tradiction is found. )
Let us define now

0(0) = 2sup{|¢| : £ € Dy},  (0(0) = 0 if Dy = 0),
and, for every h € N, t € (8(1 —%),S<1 —ﬁ)},

0@t) = 2sup{[¢| : £ € Dypa},  (0@) = 0if Dyyq = 0).

Then 6 : [0,8) — [0, 00) is clearly non decreasing and sup{8() : t € [0, )} = oc:
thus we can define also 6(s) = oo.

Let us fix now & € {5 e R™\ {0} : <%,n0> < a}; if £(&) = 0 then & € Dy
and

(00 f)&) = 000) = 2sup{[¢] : < € D1} > 2|
if 0 < f(&)) < s then there exists iy € N such that

o< (o))

and then &, € Dy, 41 and

(00 f)&) = 2sup{[¢| : € € Dpyy1} > 2/l
if at last f(&;) = s then

(00 f)(&o) = 00 > 2&).

Now we can prove easily that (0 o f) is demi-coercive. Indeed, fixed £ € R™ \ {0},
if <%7770> < ¢ then

00 f)E) + (& m) = 2I¢] — I<] = &,
while, if <‘—§| , ;70> > ¢, then

09O+ €)= (o il > sl
Thus, since trivially (0 o f)(0) > 0, it holds that, for every & € R™, (0o f)(¢&) +

+ (& 1mo) = €lE]-
We achieve the proof of the case s < oo choosing any function  : [0, s] — [0, oo]
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which is continuous, strictly increasing and such that, for every t < [0,s],
0(t) < O(t): in this way O o f is proper, L.s.c. and demi-coercive. The construction of
the function O is simple and it can be omitted.
In order to treat the case s = oo, we can use the same argument once s(l — %)
is changed with % and the definition given for 6(0) is used to define ¢ on [0, 1].
|

The two propositions below are based on the following simple equalities: if
ty,l € R, then

1i}rbn inf (¢, vVI) = (li}rlninf th> VI and limsup (t, V1) = (Hm sup th> VL.

h—o0 h—o0

PROPOSITION 15. — Let f: R™ — [0, co] be a proper and Borel function and
let 15,1 € R such that l; | L If, forevery j € N, f V1 isls.c. then fV lisl.s.c. too.

PRrOOF. — Let &, &, € R™ such that &, — &,. Then, for every j € N,
(VD) < (V)& < limint (v 1)) = (limint (& ) v
and, letting j — oo, we obtain
(v < (limint &) ) vI=Hmint (76 VD,
that completes the proof. O

PROPOSITION 16. — Let f: R™ — [0, co] be a proper and Borel function and
let 1 € R Then (fVI) =f V.

PRrOOF. — Let us fix & € R™. If we consider t; | 0 such that f(#,&y) — f°(&),
then

(f VI (&) > 111}{1 sup (f VvV Dréo) = (ﬁle sup f@hfo)) VIi=E) VL.
Conversely let £, | 0 such that (f V )(#,&) — (f V1)’ (&). Then

PEVLS (ur}? sup f(th«:o>> VI = limsup (f VD) = (F VI E),

h—o0

and the proof is achieved. O

At last we state now a Jensen type inequality involving level convex functions
and whose simple proof can be found for instance in [9], Theorem 1.2.
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THEOREM 2. — Let f: R™ — [0,+00] be a ls.c, proper and level convex
function and let © € MT(Q), W(Q) = 1. Let ¢ € L}I(Q, R™) be a given function.
Then

f ( / ¢(x)du<x)> < p-esssup f(p(a).
o) rxeQ

3. — Level convex functionals.

In this section we state and prove the lower semicontinuity results about the
functional F' given by (7). Before stating the main theorem, let us define, for
every A € Mi(Q, R™), the functional

F,Q) = inf{li}{n inf F(Ay,, Q1) : by € Mige(€2y, R™),

(23) In << L 3y — wt-Mige( ] Q,R™)}.

THEOREM 3. — Let f : R™ — [0, co] be a proper and Bovel function. Then the
two following conditions are equivalent:
(1) f is Ls.c. and level convex on R™,
(1) forevery Q C R" open set, the functional F is l.s.c. on Mi.(2, R™) with
respect to the w*-Mi(2, R™) convergence.

Moreover in these hypotheses, for every A € M (Q, R™),

(24) F(,Q) =FA,Q) = 1in(1) FQ,-L" Q).
p—

and F is level convex on Miye(2, R™).

PROOF. —- [Proof of Theorem 3 (ii) = (i)] Let &,,& € R™, &, — & and let
A =&, LY Ay =& - L. We have ;, — Ao in w*-M.(R", R™) and then

f&o) =F(,R") < li]gn inf F'(1;, R") = li}rbn inf (&),

that is f is Ls.c.

Let us consider now &, 7 € R™, t € (0,1) and a sequence {B;},~; C B(R")
such that 1p, (&) — t1(x) in w*-L>(R") (see [1] Proposition 4.2 Remark 4.3).

It ) = Elg, @) - £ + il g, @) - £ then 4y, — o = (& + (1 — ) - £ in w'-
Mie(R™, R™) thus

fES+ @ =) = F, R") < liminf F(2, R") =f©OV f),

that is f is level convex. O
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The proof of the implication (i) = (i7) of Theorem 3 is more difficult and for
this reason it is developed in three steps. In the first one we prove that, for every
A€ Mie(Q,R™), F(4, Q) can be computed considering only the convolutions of A
as in formula (24) (see Theorem 4). This fact implies, in a very simple way, the
second step that is the proof that F is Ls.c. on M,.(, R™) with respect to the w*-
Mioe(Q2,R™) convergence (see Proposition 17) and it is level convex on
Mie(22, R™) (see Proposition 18). At last, in the third step we prove the equality
F = F (see Theorem 5) that completes the proof of Theorem 3.

For an analogy between the integral and supremal cases compare Lemma 3
and Theorem 4 below with Lemma 1 and Theorem 1 in [27] (see also [22]).

LEMMA 3. — Let f : R™ — [0, + o] be a proper, Ls.c. and level convex func-
tion. Let 1 € Mioo(,R™), 4y, € Mioe(Ry,, R™), Ay << L such that 2y, — A in w*-
Mioe( T 2, R™). Then, for every p > 0, we have

F(iy- £",2,) < liminf F(iy, ).

PROOF. — Let us fixp > 0 and K CC Q,. We have that (4;), — 4, pointwise on
K as h — oc. Indeed if ¥ € K and & is large enough, we have K CC €, , and

(@) = 2@ = | [l =z — [ k- pdiw)
B(x,p) B(x,p)

that converges to zero as i — oo by definition of w*-Mp,( | 2, R™) convergence.
Let us fix . € K and apply Theorem 2 and (18) with u=k,(x —y)-
-L" << L", in order to get
f(2,@) < lilgn inff((ih)p(ac)) < li}rbn infesssup f(45(y)) < li}rln inf F'(J;, Q).
/=00 =X yeB(x,p) —00
Then
supf(4,(x)) < liminf F'(4y, 2,
xeK h—o00

and we can conclude by taking K T Q, and noting that, since the composition
fo4,isls.c. on Q,, the supremum considered in the previous inequality agrees
with the essential supremum with respect to £". O

By means of Lemma 3 we find a representation formula for F via convolu-
tions, proving in this way the first step of the proof of Theorem 3.

THEOREM 4. — Let f: R™ — [0, 4+00] be a proper, lLs.c. and level conver
Sfunction. Then, for every A € M(Q, R™), we have

(25) F(,9) =lmF(, - L")
/]—?

In particular the limit in the right hand side exists.
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PROOF. — For every 1€ M (2,R™), 4,-L" — A in w*-M( ] 2,R™) as
p—0and/,  L" << L" so that, by Lemma 3,

limsup (7, £',2,) < F(,Q) < Tminf FG, - £,2,),
p—0 P

and this end the proof. O

By means of Theorem 3 we are able to prove the two following propositions
that complete the second step of the proof of Theorem 3.

PROPOSITION 17. — Let f : R™ — [0, 4+-0c] be a proper, L.s.c. and level convex
Sfunction. Then F is Ls.c. on My(2,R™) with respect to the w*-Mi,(2, R™)
convergence.

PROOF. — Let 4,/;, € Mjo(2,R™) be such that 4, — 1 in w*-My,.(Q, R™).
Then, by Theorem 4, there exists a sequence p;, | 0 such that, for every i € I\,

i 1
(26) F ((ih)p,z, L"Q,) < F(n, Q)+ W
Now claim that (4;,),, - L — Ain w*-Miee( | Q, R™). Indeed, fixed ¢ € C.(Q),if h

is large enough such that spt(p) 4+ B(0, p,) C 2,,, by using the usual properties of
the convolutions (see [6] equation (2.3) page 42), we have

[o@in,, @z~ [ pwadie
Q Q

< +

[ o, @iz~ [ padin@
Q Q

f p()d Ay () — f p(a)d ()
Q Q

< [ lp,, @ — p@ldin @) +
Q

f @)y (@) — f p@)dA@)
Q

Q

Now the first term goes to zero as & — oo since ¢, — ¢ uniformly on 2 when
h — oo and there exists a constant M >0 such that, for every h € N,
|42 |(spt(e) + B(0, p,)) < M; the second term goes to zero by definition of {1}, ;.

Then using the definition of F and (26) we obtain its lower semicontinuity
since

F(, ) < liminf F((Za),, - £",2,,) < liminf (i, Q),

which ends the proof. O
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PROPOSITION 18. — Let f : R™ — [0, +oc] be a proper, l.s.c. and level convex
Sfunction. Then, for every Ay, /s € Mie(Q, R™) and for every t € (0,1),
f(tll + 1 —1)lg, .Q) < F(M,Q2)V F(s, Q),

that is, F is level convex on the linear space Mi,.(Q, R™).

Proor. -- Fixed p > 0, by the level convexity of f, we have, for every x € Q,,
F(@ha + (A = 8)22),(x)) = f(#(41),(x) + (1 — D)(42) ()
< f((A), (@) V f((Z2),(2)),
and so
F((th + 0 -822), L",Q,) <F((41),- L",2,)VF((J2), - L", Q).
Passing to the limit as p — 0 we complete the proof applying Theorem 4. O

We prove now the equality F = F. Theorems 4 and 5 together with
Propositions 17 and 18 complete the proof of Theorem 3.

THEOREM 5. — Let f : R™ — [0, oo] be a proper, L.s.c. and level convex func-
tion. Then, for every /. € My(Q,R™), F(1,Q) = F(A, Q).

PRrOOF. — Let us suppose at first that f is positively homogeneous of degree 0.

Let us fix 1€ M(2,R™) and show at first that F(1, Q) < F(1,Q). By
Theorem 1 (i) there exists N C Q such that £"(N) = 0 and, for every x € Q\ N,
Jp(x) — 2%(x) as p — 0. Then, thanks to Theorem 4, for every x € 2\ N,

fG° @) < liminf f(2,@) < liminf sup f(4, () = F(2, ),
p— p—

x€EQ,
and then

esssup f(A"(@) < sup f(2'(x)) < F(4,9Q).
reQ reQ\N

Thus it remains to show that

. N

|4°]- ess sup f“(d = (90)) < F(4, Q).
xeQ dM |

By Theorem 1(ii), there exists M C Q with |4°|(M) = 0 and such that, for every

x € Q\ M, there exists a sequence {p,},~,, depending on x and decreasing to

zero, such that

i )L’/)Iz (90)

[ koo — pdl )|

B(x,py,)

27 lim d

@ 0

),
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Then, using Proposition 5 and Theorem 4, for every x € Q\ M,
i dar’ .. p, (@)
b = — <1 f Ph
(@) = (g @) < mines

=00 [ k(@ —yd|¥|(y)
B(xvph)

= liminff (4, @) < lim F(, - £",2,) = G, 9.

In conclusion,

di’
s|_ i h ]
|4°|-esssup f (dm(x)) < sup f (dlﬂfl ) < F(4,Q),

reR reQ\M

and we achieve that F(1, Q) < F(4, Q).
In order to prove the converse inequality let fix p > 0. By Theorem 2,
equation (18) and Propositions 3, 5 we have, for every x € Q,,

O @) = f ( [ k- y)ou(y))

B(,p)

a di s
=f (B( f )kp(w — A (y)dy + f k@@ — )55 a7 ()d| A I(y)>
€x.p,

B(x.p)

<f ( f k(e — y)ﬂv“(y)dy) vf ( f ky(x —y);w| (y)dIASI(y))
B(x,p)

B(x,p)

yeB(x,p) yeB(a,p)

< lesssup f(,{“(y))] V |:|,13|—esssup f((;?j's'(y)f k,,(oc—z)dMﬂ(z))]
’ B(x,p)

< [esssup f(/la(x))} % [Mﬂ—esssup f <d|/18(x)>] =F(,Q),

reQ xeQ
thus
sup f(4,(x)) < F(4, Q).

reL,
The wanted inequality F(1,2) < F(/, Q) is achieved as p — 0, invoking again
Theorem 4.

In the general case, let us consider the function f defined in (21): by
Proposition 9 we know that f is l.s.c., positively homogeneous of degree 0 and
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level convex. Let now fix 4 € M.(2, R™) and consider (1, £") € M(Q, R™1): its
decomposition with respect to £" is clearly given by

n a n d//‘bs 18
(4, L") = (@), 1) - L + | 555 (@),0 ) - |A7].
dalz’|
We also have that the function (4,£"),:Q, — R™1 is given by
(4, L£"),(x) = (4,(x),1). Then applying the first step to f and (1, L") we have

F((4, LM, Q) = F(2, L"), Q),

where F and F denote the functionals (23) and (7) built up considering f and
defined on the space Moe(2, R"™*1). But now we have

F((A, L"), Q) = lim sup f (4, L") () = hm sup f (4,(®), 1)

p—0 reQ, —0 reQ,

= lim sup f(2,(@)) = F(, 2,

p—0 x€Q),

and, again by Proposition 5,

F((i, L, Q) = [ess sup ]A‘()V“(acx 1)} vV [Ms—ess sup f( dz — (1), 0)}
reQ xeQ d| |

= {esssup f(/l“(x))} v [MS—QSS sup f“(
reQ

reR

ar

This achieves the proof. O

4. — Non level convex functionals.

In this section we state and prove the results about the functional [ given
by (8). First of all we need to prove that [ is really a generalization of F'. This can
be proved noting that, when ¢ is positively homogeneous of degree 0, we have

Y
\/ ¢ () = |- esssup ¢<d|ﬂ#| )

Then, when ¢ =f* applying Propositions 1 and 2 we obtain, for every
5 € Mie(@,R™), F(4, Q) = F(4, Q). Let us note also that the value of ¢ for £ =0
does not enter in the computation of I thus ¢ could be defined only on R™ \ {0}:
moreover, to simplify several arguments we prefer to define ¢ on the whole space
R™ adding the condition ¢(0) =

Having in mind the theorems proved for the integral case, as for instance
Theorem 2.3 in [13] and Theorem 3.3 in [12], we propose some analogous results
about .



ON THE LOWER SEMICONTINUITY OF SUPREMAL ETC. 353
4.1. Necessary conditions.

THEOREM 6. — Let f,é: R™ — [0,00] be proper and Borel functions with
#(0) = 0. Let us suppose that, for every Q C R" open set, the functional ' is Ls.c.
on Mye(2, R™) with respect to the w*-Mn(2, R™) convergence. Then f is L.s.c.
and level convex on R™ and, defined | = inf{f(&) : £ € R™}, ¢V lisl.s.c. and sub-
maximal on R™. Moreover, for every & € R™ \ {0}, f(¢) = (Vv ).

ProOF. — The fact that f is 1.s.c. and level convex can be proved using the same
proof of the implication (i7) = (¢) of Theorem 3. In order to prove the other parts
of the theorem let us consider {77]-}]9’21 C R™ such that f () L L.

Let us study now the function ¢. Let 2y € R" and &, &, € R™ \ {0} such that
&, — &y and, fixed 5 € I\, let

;{h = ih ' 5900 + ;- En, and /10 = éO . 6900 + - Le.
Then A — o in w*’Mloc(Rn7 Rm) and

B0 V.f ) = ¥, R") < lm inf F(2, R") = lim inf ((5) v fGy).

This implies that, for every j € N, ¢ V f(;) is Ls.c. on R™ since also the lower
semicontinuity in ¢ = 0 trivially follows from ¢(0) = 0: by Proposition 15, we
obtain that the same holds for ¢ v I.

Let & ne R™\ {0} such that ¢ # —5 and wx;,20 € R", a), # x, such that
aj, — xo. Moreover, fixed j € I\, set

}Lhzé.gm_kn.ém +}7j,£72’ and )Vo :(f+;7).5x0+,7j_£n-
Since /5, — A in w*-M,.(R", R™) we have

$E+m V flny) = T, R") < lim inf F(4,, R")

= liminf ¢(C) vV () v ) = ¢ V () V. f ).

Then, since $(0) = 0, we have that, for every j € N, ¢V f(#;) is sub-maximal on
R™ that implies, as j — oo, that ¢ Vv [ satisfies the same property.

Let us prove now the inequality f* < (¢\/l)b. Let & € R™\ {0} and let
& — &, t, 1 oo such that £(£,E),) — f7(&). Thus we have that there exists a se-
quence of positive numbers {7}, such that, for every 2 € N, t;, L"(B(0,7,)) = 1.
Fixed j7 € N and setting

77‘ n n n
A =ty (fh - é) 1p@ny(@) - L +n;- L%, and g =&o - +1; - L7,
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we have 4, — Ao in w*-M(R", R™) and then

$(&y) V fgy) = T2, R") < lim inf F(Z, R")

= lim &) V.fO) =f (&) VI (py).

This fact proves, as j — oo, that, for every & € R™\ {0}, (¢ V D)(&) < fH(&y). If
now we consider a sequence s;, | 0 such that (¢ v l) &) = hm (@ Vv D(spéy), since
f%is positively homogeneous of degree 0, we have

@V &)= Jim (¢ D)(si8o) < liﬂgffj(shfo) = f* o),

and we find the desired inequality.

We end proving f* > (¢ V1)’. Let us consider & € R™\ {0} and let t, | 0,
t, < 1, such that ¢(t,&) — ¢b(fo). Let us fix Q = Q" =(0,1)" and define, for
every k € I\,

Gk:{ern: i—kj_l,qe{l k},?:E{l,...,’n}}:

note that #(Gy) = k". Fixed now M € N, we claim that there exists a sequence
{kn},—1 €N, depending on M and such that kj;, — oo and, for every h € N,
M < t,k; < 2"M. Obviously this happen if, for every & € I\, there exists kj, € N
such that

(Mt;1)'< by, < 2(Mt; )",

and since (Mt,;l)% > land (Mt,;l)%—> oo as b — o0, kj, can be found. Then, unless
to extract a (not relabelled) subsequence, we have that .k} — sy € [M,2"M].
Fixed j € N, set the following elements of M,.(Q", R™)

tukyy
;"h: Z I;Cn 50 5 +77] £Vl and )O—SMéO E +’7] £n
xeGk/ h

It is a quite standard result that 4, — g in w*-My,.(Q", R™), thus
SFlsulo +my) = (o, Q") < lilrln inf F(4,, Q")
= liminf $(tx&o) V£ 0y) = ¢'(G) vV f).
Then, letting j — oo and using Proposition 16, we have

f (sM (éo + S”—jw)) = flsméy +m) < PE)VI=(VID(&),

and since this relation holds for every M € N, taking the limit as M — oo also
sy — oo and then we obtain f%(&)) < (¢ V 1)’(&). O
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4.2. Sufficient conditions.

In this section we find sufficient conditions for the lower semicontinuity of F:
we treat here the more general case in which f and ¢ depends on & € Q too. The
following lemma is based on Lemma 3.6 in [12]: its simple proof is omitted and
left to the reader.

LEMMA 4. — Let k € N and
ME = {] e M(@Q,R™) : #(spt(D) < k}.

Then M" is sequentially closed with respect to the w*-M(Q, R™) topology.
Moreover if | € [0,00) and ¢ : Q x R™ — [0, 00] is a proper and Borel function
such that ¢V Lis l.s.c. on Q x R™ and, for every x € Q, ¢(x,-) V 1 is sub-maximal
on R™ and ¢(x,0) = 0, then the functional

(2,2 = \/ (gb(x, M) v l),

x€EA;

is Ls.c on M"* with respect to the w*-M(Q, R™) topology.
In order to prove the main result we need a weak version of Theorem 4.1 in [1].

THEOREM 7. — Let f : 2 x R™ — [0, co] be a Borel function such that, for £"-
a.e. x € Q, f(x,-) is l.s.c. and level convex on R™. Then the functional

esssup f(ax, u(x))
reR

is Ls.c. on L*°(Q, R™) with respect to the w*-L>(Q, R"™) convergence.

We can now prove the main result of the section. Note that, when we are
dealing with f : Q x R™ — [0, oo], then f*(x, &) means (f(x, -))*(&).

THEOREM 8. — Let f : Q x R™ — [0, 0o] be a proper and Borel function such
that, for L"-a.e. x € Q, f(x,-) is Ls.c. and level convex on R™ and there exists a
Sfunction 0 : [0, 00) — [0, c0) such that, for every x € Q and & € R™,

28) f@,9 =00 and Jim 0¢) = .

Moreover, setting | = inf{f(x,) : (x,&) € Q x R™}, let $: Q x R™ — [0, 0] be a
proper and Borel function such that ¢V 1 is Ls.c. on Q x R™, for every x € Q,
$(x, ) V1 is sub-maximal on R™ and ¢(x,0) = 0, and there exists a functions
7:(0,00) — [0, 00) such that, for every x € Q and & € R™ \ {0},

29) ¢, VI=y(e) and  limy@) = oo.
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Then the functional
F(A, Q) = {ess sup f(x, )N“(x))]
reQ

is Ls.c. on Mye(2, R™) with respect to the w*-Mi.(Q, R™) convergence.

PrOOF. — Let us suppose at first that Q ¢ R" is bounded and let us prove the
lower semicontinuity of I' on M(Q, R™) with respect to the w*-M(Q, R™) con-
vergence. Consider 4,7, € M(2,R™) such that 4, — A in w*-M(Q, R™): then
there exists L > 0 such that |1;|(Q), |A|(2) < L. Without loss of generality we can
suppose

li}{n inf B(Jp, Q) = hlim F(4p, Q),

and that there exists a constant M > 0 such that, for every & € NN, F(4;, 2) < M.
This fact and the coercivity conditions (28) and (29) imply that there exists M’ > 0
such that, for every h € IN,

@ 45, =
(i) for £” -a.e.x € Q, || <M,
(iii) for every x € A;,, |/1#(90)\ > &

By (ii) we obtain that {4, (®)},2; C L>(2,R™) and ||4,(®)||~ < M'. Then there
exists a (not relabelled) subsequence and a function u € L>(Q, R™), such that

381 Ap@) — w(e) in w'-L*(Q,R").

Moreover, smce for every h € N, |4,|(Q) < L, we have also |/1#|(.Q) < L thus,
writing now) = > )V#(ac) d, and using (iii), it follows, for every i € N,

x€A n

_ %:(;zf(x)) > A

Then there exists k € I\ such that, for every & € N, #(4;,) < k that implies that,
for every h € I\, }L}f € M". Thus there exists a (not relabelled) subsequence and
a measure v € M(Q,R™) such that

32) M=o in w-M@Q,R™).

By Lemma 4 we know that v € MF.
We claim now that the condition 4, — A in w*-M(Q, R™), together with (31)
and (32), gives that 2 = u - £ + v, that is 2% = w and 1* = v. Indeed, for every
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[ € CO(Q)’
[owane = [ o+ [ pasf @,
Q Q Q

and, by (31) (noting that Cop(Q) C L}(Q) since L"(Q) < oo) and (32) we have that
A — - L%+ v in w-M(Q, R™). The uniqueness of the limit allows to achieve
the claim.

By Theorem 7, we have

esssup f(x,A(x)) <liminfesssup f(x,4;(®)),
reQ h—o0 reQ

while, by Lemma 4, we have

X (¢, ##@) v 1) < liminf e\A/ (¢, @) v 1).

Then

liminf F(/,2) = lim inf {es:esgup f(x,/lz(m))] v L\Z (qb(m, if(m))\/l)}

> [ess sup f(x, /1“(90))} v l\/ (e, i#(x))\/l) =TI, Q),
xeQ

%EAZ

and we get the lower semicontinuity.

In the general case let us consider 4, 4, € Mio.(2, R™) such that 4;, — 4in w*-
Mie(2, R™). Then, for every Q' cC Q open set, 4;, — A in w*-M(Q',R™) and
then

F(1,Q) < li}rbn inf F(4,, Q) < li}rln inf B4y, Q).

At least, since
sup{F(1, Q") : @' cc Q} = F(4, Q),

the proof is finally achieved. O

A simplified version of the previous theorem is given by the following result
easily comparable with Theorem 6.

THEOREM 9. — Let f : R™ — [0, oc] be a proper, Ls.c. and level convex func-
tion, Il =1inf{f(¢): £ € R™} and ¢ : R™ — [0, o] be a proper and Borel function
such that ¢ Vv lis a L.s.c and sub-maximal function with $(0) = 0. Let us suppose
that, for every & € R™ \ {0}, f4(&) = (¢ Vv l)b(f) = oo. Then the functional Fis l.s.c.
on My (Q, R™) with respect to the w*-M,.(Q, R™) convergence.
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ProoF. — The proof easily follows from Theorem 8 and Propositions 7 and 8.
O

Our conjecture is that in Theorem 9 the condition f* = (¢ v l)b = oo could be
replaced with the weaker condition f% = (¢ Vv 1)’ that we know both, thanks to
Theorem 6, to be necessary and, by Theorem 4.4 in [2], to be sufficient at least in
dimension one.

5. — Applications to the BV setting.

As already stated, this section is devoted to some simple applications of the
results obtained in Sections 3 and 4 to the BV setting.

A Borel function % : Q — R is said to be a function of (resp. locally) bounded
variation on Q, or briefly u € BV(Q) (resp. u € BV, (Q)), if u € L1(Q) (resp.
u € L] (Q)) and there exists Du € M(Q,R") (resp. Mye(2, R")) such that, for

every ¢ € C°(Q),

[ owaut) = - [ u@vopwdz.
Q Q

Since Du € M(Q,R") (resp. M,.(£2, R™)), following (10), it can be decomposed
with respect to £" as

Du =Vu - L" + Du,

where Vu € LY(Q,R") (vesp. LL (2, R")), D’u € M(Q2,R") (resp. Mjpe(2,R™))
and D*u L L.
For the main properties of these functions we refer to [6, 19].

5.1. Level convex functionals: semicontinuity, relaxation and Dirichlet pro-
blem.

The following result easily follows by Theorem 3 and it provides an extension
of the supremal functional (5) on BV),.(£2). This theorem was proved for the first
time by Gori in [22].

THEOREM 10. — Let f: R" — [0, +0c] be a proper, l.s.c and level convex
Sfunction. Let us consider the following functional defined, for every u € BV,.(£2),
as

(33) F(u,Q) =esssup f(Vu(x)) V |Dsul-esssup f* ( D (90)).
reQ reQ d‘D?ul
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Then F is l.s.c. on BV),.(2) with respect to the w*-BV),.(2) convergence and, for
every u € BV,.(Q),

(34) F(u,Q) = Flu, Q) = Iim F(u,, ),
p—

where F is given by
Flu, Q) = inf{liin inf F(uy, Q) : wp, € Wl(@)),  wy, — uw*-BVie( | @, R’”)},

while u, denotes the convolution of u.

PRrOOF. — Since, when uy,, u € BV),.(2) and u;, — u in w*-BV),.(22), we have
Duyj, — Du in w*-M(2,R") and since, for every u € BVi,(Q), u, — u in w*-
BVie( ] @) (and then Vu, - £" = (Du), — Du in w*-M( | 2,R")) we end ap-
plying directly Theorem 3. O

Equalities (34) say that, in particular, for every u € BV (Q),
Fu, Q) < Rlw'-BV(F . ) @, 9,

where

R[w*-BV1(F ) ) 0, 2)
= inf{li}rbn inf F(uy, Q) : w;, € C*(Q), u;, — u w*-BV(Q, Rm)},

is the relaxed funectional of F‘C%@ on BV(Q).
The next proposition shows a particular case in which also the opposite in-
equality hold.

PROPOSITION 19. — Let Q = B(0,1) C R" andf : R" — [0, co] be a proper, L.s.c.
and level convex function such that f(0) = 0. Then, for every u € BV (Q),

F(u, Q) = Rlw*-BV] (F (u, Q).

o)
ProoF. — Let us fix u € BV(£), consider the convolution u, : B(0,1-p) — R
(with p < i) and define, for every x € B(0,1), ,(x) = u,((1 — 2p)x): clearly
u, € C(B(0,1)).
We claim at first that @4, —« in w*-BV(B(0,1)). Indeed we simply
have that, by means of the properties of the convolutions and the
change of variables formula, there exists a constant C > 0 such that, for
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every 0<p<i,

f i, @) d + f Vit @) dx

B(©0,1) B(0,1)

1 1
<— u(x)|de + ———— |Du|(B(0,1))dx < C
gy | 1M+ g iy 1DuBO, D)

0,1)
Thus, by the compactness theorem on BV (Q), there exists v € BV (B(0,1)) such that
%, — vinw*-BV(B(0,1)). We prove that, for £"-a.e.x € B(0, 1), u(x) = v(x) showing
that, for £"-a.e. « € B(0,1), u,(x) — u(x). Indeed, if M = sup{k(x) : ® € R"} we
have

@@ —u@| = | [ k(= 20w — puGidy - u)
B(1-2p)t.p)

< f k(1 = 2p)x — y)|uly) — u(x)|dy < M f Ju(y) — wx)|dy.

_—
B((1-2p)x.p) B(x,3p)nB(0,1)

Now if p is small enough (that is 3p <1 — |x|), B(x, 3p) N B(0,1) = B(x, 3p) and so

) 3'M
i, ) — (z)| < &, fg i () — w(@)|dy,

that goes, for L£"-a.e. x € B(0,1), to zero as p — 0 by the Lebesgue’s points
Theorem.

Once the claim is proved, applying Proposition 12 to f, we have that, for every
x € B(0,1),

F (V@) = £((1 = 20)Vau (1 — 2p)a0))

<f(Vu (1 =2p)x)) < sup  f(Vu,(x),
x€B(0,1—p)

and then

sup f (V@) < sup  f(Vu,(x).
x€B(0,1) xeB(0,1-p)

This allows to achieve the thesis since

Fu, Q) = lim Fu,, ;) = liminf Fi,, @) > Rlw'-BV(F o) ) (0, 2)
p— p—

and being the opposite inequality satisfied. O
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REMARK 1. — Itis quite simple to understand that the above proposition holds
also if we set Q to be a bounded convex set. We have written down the proof for the
unit ball in order to simplify many technical details.

Following the work of Anzellotti, Buttazzo and Dal Maso [7] in which the same
problem is considered for the integral functionals, we shall consider a general-
ized Dirichlet problem for supremal functionals defined on BV (£2). We note that
the formulation we proposed is similar to the one used in the nonparametric
Plateau’s problem (see [20]).

We have to underline that functional (35) of Theorem 11 does not arise from
the relaxation on BV(Q), with respect to the w*-BV (L) convergence, of the
functional (33) restricted on C; (Q) (that is the space of the function belonging to
C1(Q) with fixed boundary data ) but it is simply suggested by the analogy with
the integral setting. However, because of Theorem 11, it can be considered a
good candidate to represent just the functional R{w*-BV(Q)] (F‘C;@).

In the following, given a function u € BV (), we will always consider the
restriction of u to 02 in the trace sense (see for instance Theorem 1 pg. 177 [19]).

THEOREM 11. — Let Q cC @ be two open and bounded subsets of R" with
Lipschitz boundaries and f : R" — [0,00] be a proper, l.s.c. and level convex
fumction. Let us consider w € WH(Q' \ Q) and set

¢ =W € L,lH,,L,l 09Q2) and L =esssup f(Vw(x)).
xeQ\Q

For every u € BV(Q), let us define the functional

(35  F,(u,2) =Fu,Q) v H" '-esssup f* ((w(m)—u(m))v(%)) v L,
e

Where F is given by (33) and v : 02 — R" is the vector field of the outer normal
vectors to 0L

Then F, is ls.c. on BV(Q) with respect to the w*-BV () convergence.
Moreover if s = sup{f(&): & € R"} and Ky = {& € R" : f¢&) < s} is such that
cl(Kr) does mot contain any straight line, then the problem

(36) min{F,(u,Q) : u € BV(Q)},

admits at least a solution.

Proor. — Let u,u;, € BV(L) such that u;, — « in w*-BV(2) and define

w(x) if © € Q, uy(x) if x € Q,
wu(x) = and uy,(x) =

wx) if x e Q'\ Q, wx) if x € '\ Q.



362 MICHELE GORI

It is easy to see that %, i, € BV(Q') and %), — 4 in w*-BV(Q'). Moreover, since
Dit 0Q = (p —wv-H" 1 0Q and Diy,| 0Q = (p —up)v-H" 1| 0Q
(see [20] and [7] Theorem 3.1), we have also
F,(u,Q)=F@w,Q) and F,(w,, Q)= F(iy,, Q).
Then, by means of Theorem 10, it is
F,(u,Q) =F@u,Q) < 11}{%11317(@, Q) = lizriiongq,(uh, Q)

and the first part of the theorem is proved.

Before proving the second part of the theorem we need a remark. Let
O :[0,s] — [0, 00] be a continuous and strictly increasing function: it is clear that

u € BV(Q) is a minimum point of F,(u, Q) if and only if it is a minimum point of
@(Fw(u, Q)). However, a simple computation gives that, for every u € BV(Q),

O(F,(u,Q) = {ess sup (@ of)(Vu(x))]
reR

v [|D8u|— ess Sup (@of% (le):Z| (@)]

y [Hnl-ess sup (@0 fu)(((p(.oc) —u(oc))v(x))} v L,

reo

where

L =esssup (0o f)(Vuw(x)).
re@\Q

Thus, by Proposition 13, we have that @(F,(u, Q) is in fact the functional (35)
related to @ o f : R" — [0, co]. Then, invoking now Proposition 14, we can sup-

pose, without loss of generality, that f is demi-coercive, that is, there exist
a>0,b>0and # € R" such that, for every & € R",

f© = ale] = (n,¢) —b.

If, for every u € BV(Q), F'y(u, ) = oo there is nothing to prove. Thus let us
consider any u € BV(Q) such that F,(u,Q) <oo: we claim that, setting
_ 1 1
¢ =30 g0y
dD’u
d|Dsu|

@7 Fyu, Q) > c{ f F(Vu@)de + f £ ( (x)) d|D*u(x)
Q Q

+ f A ((¢(90) - u(x))v(ﬂc)) H" () } .
QR
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Indeed clearly it holds

38) esssup (V@) > ——— ,c" © f F(Vule)de.

reQ

Moreover since

S f
|D*ul- esssup f (dle“l(ac)>

it is that, for |D*ul-a.e. x € Q, f* ( (ﬁgiu‘ (ac)) < oo and then, by Proposition 11(ii),

we have also that, for |D%ul-a.e. x € Q, > ( ddlgful (96)) = 0: then in particular

1  ( AD*u "
39) Q) fo <d|D9 |( ))d|D ul(x) =
At last using Proposition 11(i) we have

(40) H" 1-esssup f* (((p(x) - u(oc))v(x))

xeoR

m f A ((¢(m) u(x))u(ac))?—(" L)

Putting together (38), (39) and (40) we obtain that, for every u € BV (L) such that
Fo(u, Q) < oo,

[ AD%u <
J RO pp— £n(9) f FOVu@)da V m( 5 f f ( d|DSu|(ac)>d|D u|@)

Vo f £ (@) — i) ) ' @)

> c{ [revuteyds+ f = (§T§SM| )) dID*u|(@)

- f [ (((ﬂ(oc) - u(x))o(x)) H"I(%)} ,

0Q

and (37) is proved.
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By means of the inequality (37) and Proposition 11(iii) (*) we find

Fo(u, Q) > acf |Vau(x)|de — cf(n, Vu(x))dx — beL™(2) 4+ ac|D*u|(Q)
Q e}

dD’u " 1
!<’7’d|D* |(ﬂc)>d|D ul(ac)+acf|(p(x) w(@)| dH" " (x)

—c [, (o) — wi@)dH" @),
90
and then, using the fact that ®), for every u € BV(Q),
f (n, Vu(x))de + f <77, D] (x)>d|Dé%|(9c) f (n, w(@)(@))dH" (x)
Q 90

and that there exists (°) a constant A = A(Q) > 0 such that, for every u € BV(Q),

f u@)|dee < AL |Dul(@) + f |u(ac)|dH”1(9c)},
Q 0Q
it follows

1 .
A1) F,(u,Q) > % <1 A Z) {|Du|(g) + Qf )| dae + ai )| dH 1<x)} —de

where

d— f ()| dH" 1) + f (1, 0@ dH ().
o o

If now we consider a minimizing sequence {uy,},- such that, for every € I\,
Fy(uy, Q) < oo we can prove its compactness only noting that (41) allows just
to apply the compactness theorem on BV (Q2): this fact, together with the lower
semicontinuity of the functional F,, guarantees the existence of a minimum
for (36). Od

REMARK 2. — Ifthere exists u € BV () such that F,,(u, Q) < oo, then the same
holds for every solution # of (36) too. Then, for H" -a.e. x € 6Q,

(p(@) — u@)v() € K = {& € R" : f5(&) < oo}

(*) Compare with Theorems 2.7 and 3.2 of [7].
(®) See Theorem 1 pg. 177 [19] and [20].
(®) See [20] and equation (3.4) of [7].
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Since f% is level convex and positively homogeneous of degree 0 (see
Proposition 4), K is clearly a convex cone and then it follows that, for
H' lae. xe {x €0 : o) & Kr}, o@)—u@) <0 and, for H" 1-ae.
v e {xea: —vx) ¢ K}, p(x) —u(x) > 0. Therefore we conclude that, for
H' ae. e {vedR: vw) ¢ K U(-Kp}, o) =u).

REMARK 3. — It is clear that, arguing as in the proof of Theorem 11, we cannot
avoid the presence of the constant L. Nevertheless we can easily find suitable
classes of examples in which L = 0 and then (36) really generalizes (6). Consider
for instance the case in which Q = B(0,1) C R? and f: R? — [0, 00) is defined as
FE1,E) =(E V0 +(E V0. If ¢ is the restriction to S' of a function
w € CY(B(0,1 +¢)) (where ¢ > 0) such that, for every x € B(0,1+¢)\ B(0,1),
Vu(r) € {(&1,&) : & <0,8 <0}, then L = 0.

5.2. Non level convex functionals.

In this section we find a simple application of Theorem 8 to the BV setting
where obviously only the one dimensional case is considered: the result here
presented should be compared with the ones obtained by Alicandro, Braides and
Cicalese [2] in which an analogous problem is deeply analyzed.

For this let (a,0) CR, f,w,¢:(a,b) x R — [0,00] be proper and Borel
functions. We want to minimize the following functional

Lu,K) = less sup f(x, u’(x))]
xe(a,b)\K

42) vV [ \/ e, w(x + ) — ule — ))1 vV [ess sup w(x, u(x))] ,

xreK re(a,b)\K

on the class

A={u,K): K={a=1t < ... <ty =b} C(a,b),m e N,
Vi € {1,...,1%} u e Wl"oo(ti_hti)}.

Here u(x + ) and u(x — ) are the right and the left limit of % in « that always exist
for every x € K when (u, K) € A. Let us note the analogy between this problem
and the classical Mumford-Shah image segmentation one (see [6] Chapter 6).
In order to solve this problem let’s note at first that if (u,K) € A then
u € SBV(a, b) (for more details on this space of functions see [6] Chapter 4). For
this we give a weak formulation of the functional L extending its definition on the
space SBV(a,b) in the obvious way: for every u € SBV(a,b), decomposing its
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distributional derivative as Du =« - £ + D#*u € M(a,b), where «’ € L'(a,b)
and D*u is purely atomic, we define

43) L(u)= [ess sup f (x,u’(x))] vV [ \/ ¢(90,D#u(ac))] Vv less sup w(ac,u(ac))] .

xe(a,b) cAp, xe(a,b)

Clearly, when (u, K) € A, L(u, K) = [L(u), thus

inf  [(w) < inf L(u,K).
ueSBV(a,b) (u,K)eA

The following theorem shows that, with suitable hypotheses on f,w, ¢, the

functional L admits a minimum on A. Note that, in order to obtain the com-

pactness we need a particular hypothesis on ¢, that, as Proposition 10 shows, is

more natural it seems.

THEOREM 12. — Let f,w,¢: (a,b) x R — [0,00] be proper and Borel func-
tions. Let us suppose that, for Lr-ae x € (a,b), f(x,-),w(x, ) are l.s.c. and level
convex on R, and there exists a function 0 : [0, 00) — [0, o) such that, for every
xe(ab)and & e R,

fl@, O Awx, &) > 0(1¢) and tlim 0t) = oo.

Moreover, setting | = inf{f(x, &) : (x, &) € (a,b) x R}, let us suppose that ¢\ 1 is
ls.c. on (a,b) x R, for every x € (a,b), ¢(x,-) VI is sub-maximal on R and
@(x,0) = 0, and there exists a function y : (0,00) — [0, c0) such that,

and limy(t) = oc.
t—0

¢, 8) >y if x € (a,0),£ >0,
$@,8) =ooif & € (a,b),{ <0,

Then the problem
min{L(u,K) : (u,K) € A}

admits at least a solution.

Proor. — We start considering the functional I defined by (43) and proving,
by using the direct methods, that it has a minimum on SBV (a, b). For this let us
consider a minimizing sequence {u;,},-; C SBV(a, b): we can suppose that there
exists a constant M > 0 such that, for every & € N, L(uy, (a,b)) < M Gf . =
there is nothing to prove). We want to prove at first the compactness of this se-
quence.

Using the coercivity property of f,w and ¢, we can find a constant M’ > 0
such that, for every uw € SBV(a,b) such that [L.(u, (a,b)) < M (in particular, for



ON THE LOWER SEMICONTINUITY OF SUPREMAL ETC. 367

every uy;), we have

() for £l-ae.x € (a,b), [/ ()| < M,
(i) for L'-a.e.x € (a,b), [ulx)| < M,
(i) for every « € Ap, (the set of the atoms of Du), D*u(x) > 4. This con-
dition implies, in particular, that on every jump point the function % increases.

Then, thanks to Theorem 4.8 in [6], we may prove that the sequence {u;, },-; is
compact if we are able to prove that there exists C > 0 such that, for every 2 € I\,
#(A,,) < C. In order to prove this we consider the formula, referred to a good
representative of uy, given by

b
w®—)—wa+) = [ wW@ds+ Y Dru)

xeA

Lth
that implies, by means of (iii),

1
#(Aw) 37 < m; D uy () < up(b —) — up(a +))|

b
¥ f i @)|da < 2M" + (b — )M’ = C.

Thus there exists a (not relabelled) subsequence and % € SBV(a, b) N L*°(a, b)
such that

up, — uin w*-BV(a,b), and wu;, — %in w*-L>(a,b).

Let’s show now the lower semicontinuity of [. on this sequence. Obviously
Duy, — Du in w*-M(a, b) and, by Theorem 8, for the functional

less sup f(x, u’(m))] v [ \/ gb(oc,D#u(w))],

xE(UL,b) EADu

the lower semicontinuity holds. By Theorem 7 also the functional

esssup w(e, u(x)),
xe(a,b)

is lower semicontinuous on the considered sequence. Then
L, (a, b)) < li}rbn inf L(uy, (a, b)),
and so [, admits a minimum on SBV (a, b) given by #. Let’s note now that since (i),

(ii) and (iii) hold for % too, clearly #(Ap;) < C and, for Llae. xe@b),
|/ ()| < M': then (4,Apz) € A and the thesis is achieved. O
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