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Cohomology of Tango Bundle on I*°.

DANIELE FAENZI (¥)

Sunto. —- 11 fibrato di Tango e definito come pull-back del fibrato di Cayley C su una
quadrica liscia Qs in P° attraverso una funzione f definita in caratteristica 2 che
fattorizza il morfismo di Frobenius ¢. La coomologia di T ¢ calcolata in termini di
S® C, 9*(C), Sym*(C) e C, che si studiano con il teorema di Borel-Bott—Weil.

Summary. — The Tango bundle T is defined as the pull-back of the Cayley bundle over a
smooth quadric Qs in P8 via a map f existing only in characteristic 2 and factorizing
the Frobenius ¢. The cohomology of T is computed in terms of S ® C, ¢*(C), Symz(C)
and C, which we handle with Borel-Bott—Weil theorem.

1. - The bundles on > and on Qs.

The well-known Hartshorne conjecture states, in particular, that there are
no indecomposable rank-2 vector bundles on P", when n is greater than 5.
However, one of the few rank-2 bundles on P up to twist and pull-back by finite
morphisms is the Tango bundle 7 first given in [Tan76]. Later Horrocks in
[Hor78] and Decker Manolache and Schreyer in [DMS92] discovered that it can
be obtained starting from Horrocks rank-3 bundle. In [Fae03] we proved that T
is the pull-back of the Cayley bundle over a smooth quadric Q5 in P°. Anyway it
only exists in characteristic 2.

Here we compute the cohomology of T' applying an analogue of Borel-Bott—
Weil theorem in positive characteristic. In section (1) we introduce the involved
bundles and state the theorem, while in section (2) we give proofs and some more
remarks. We make use of Macaulay2 computer algebra package, see [GS].

Let k be an algebraically closed field, and let @5 be a smooth 5-dimensional
quadric hypersurface over k. On the coordinate ring R(I°) we use variables x;’s

(*) The author was partially supported by Italian MIUR funds.
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while on R(Qs5) we use z;’s.
Qs = {z§ + 2122 + 2324 + 252 = 0} C P

Both on IP° and Qs, we denote Chern classes by integers, meaning integral
multiples of the positive generators in each degree of the Chow ring. Further, we
call intermediate cohomology group any sheaf cohomology group of degree other
than 0 or 5, i.e. the dimension of the ambient variety.

On @5 = Ga/P(a1) we have the Cayley bundle C, associated to the standard
representation of the semisimple part of the parabolic group P(a;), where a; is
the shortest root in the Lie algebra of the exceptional Lie group Gg, having the
following Dynkin diagram.

@: O

a1 (65

The bundle C is obtained as the irreducible P(a;)-homogeneous module with
maximal weight Ao — 2/;. The bundle C(2) (weight /) is globally generated and
we have h’(C(2)) = 14. By virtue of [Fae03, Theorem (2)] we can define the Tango
bundle as follows.

DEFINITION. — Let char (k) = 2. For any odd n there exists a non-constant
morphism f: P*"—Q,. For n =5 the pull-back T = f*(C(1)) is a stable rank-2
bundle with c1(T) = 2, co(T) = 4 and Hilbert polynomial:

1, 1, 2, 11, 51
1T®) = 58 +gt' + 5t + 5 ot~ 14

Therefore we have, for every 0 <p <5andt € 7:

T~T2 and hP°(T®)=h>P(T(—t—8)

THEOREM 1. — Given the Tango bundle T defined above, we have:
W(T@) = 7(T@®)  fort>3

Furthermore, the only nonvanishing intermediate cohomology of T is the fol-
lowing:

t -0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2
hH(T(t)) 1 7 14 13 1
h2(T'(t)) 1
h3(T(t)) 1
W(T@) | 1 13 14 7 1
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In particular, the bundle T' = T( — 4) is the only twist of T for which all coho-
mology groups vanish.

Recall the definition of the spinor 4-bundle S over Q5. Since Q5=
Spin (7)/P(f;), where f; is the first root of Spin(7), we define S as the bundle
associated to the spin representation of the semisimple part ss(P(f;)) = Spin (5).
The bundle SV = S(1) is globally generated. By Beilinson’s theorem, the bundle
S(1), extended by zero to PG, has the minimal graded free resolution:

0—0u( — 1)® L5 08, —S(1)—0

b

where now B, by the observations in [Bea00], is an antisymmetric matrix whose
determinant is the equation of the quadrie, to the power 4. This is done by the
matrix:

0 0 0 —73 0 —z1 <5 —20
0 0 <3 0 <1 0 —R0 —X¢
0 —23 O 0 -z =2 0 —2
<3 0 0 0 20 26 22 0
(1) B= 0 —21 <5 —20 0 0 0 24
21 0 —20 —RXg 0 0 —R4 0
—25 <0 0 —Z22 0 %4 0 0
20 <6 z2 0 —Z4 0 0 0

The bundle C is related to S in the following way. One computes c4(S") = 0.
So, given a nontrivial global section of SV, we have a rank-3 bundle G defined by:

2) 0—0 -5 8V—G—0

It turns out that ¢3(GV(1)) = 0. One can prove that GV(1) has a unique section
b and that the quotient by such b is isomorphic to C(1) i.e. C is the cohomology of
the monad:
3) o-1"Ps Lo

The bundle C has rank 2 and Chern classes ( — 1,1). The only non—vanishing
intermediate cohomology groups are HY(C) = HY(C( — 4)) = k. All this is done in
[Ott90] and follows easily from [Jan87, Proposition 5.4] in any characteristic.

2. — Proof of the theorem and further remarks.

First of all we need some properties of the map f: P*—@,.. Recall that it is
defined for char (k) = 2 and for any odd » as:

2 2
Slro:. . o) = (@ok1 + -+ -+ Xp1Xn 1 X5 1 .. ).
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The map f is a finite morphism of degree 2"~! and factors the Frobenius
morphism ¢ as in the diagram:

Qn—>Qn

v

P"——P"

where 7 the projection from (1:0:...:0).
OBSERVATION 2. — Given the map f defined above, we have:

£ (Op)=0a0(- D" o 0(-2)

() 6 6
fOs1) =S 0 e 0(-1)

PrROOF. — Let F = f.(O5), G = f.(Op5(1)). The map f is a 16: 1 cover, because

the Frobenius is 32: 1 and the projection 7 is 2: 1. Then F and G are rank-16 vector

bundles, whose cohomology one can read from the Leray degenerate spectral

sequence. Indeed since R'( f,) = 0 (for i > 0) we have:

) H'(Qs, F(t) = H'(P, (O, ) = H' (P, 0,5(21)
H'(Qs, G(t) = H'(PP,f*(Oo,()(t)) = H'(P?, 052t + 1))

for 0 < ¢ < 5 and every t. This says that F and G have no intermediate cohomology,
hence by [Kap86] or [BGS87] they must decompose as sum of twisted spinor bundles
S(a) and line bundles (although actually Kapranov’s setting is over C). For G this
implies, by a computation on the Euler characteristic, that the only choice is the one
stated. On the other hand for F we have a priori two possibilities: either the one
stated above either S & S(—1) ® O @ O(— 1)* @ O( - 2).

Now the formula (5) says that the polynomial ring R(P°) decomposes as a
module over R(Q5) (under the action given by f) as R(P5)even &) R(P‘r’)odd where:

R(P)even = P HUP®,0@0)  R(P)oqq = P HP®, 02t + 1))
te7. te7.
For F we have to compute explicitly a presentation of the R(Q5)—module
R(]P5)even. We need ¢; to generate k = R(P5)0 and e; to generate the monomial
wiw; (1 #J) in R(lP5)2, thus obtaining a map:

:R(Q5) ® R@s)(~ 1°—R(P) & R(P),

But the coordinate ey is redundant, since zo®(ey) + D(eg1) + D(es3) = D(eys).
Now for R(P%),: the terms containing a? already lie in the image (got by the
action of z;_1), and in fact we just have to fix wxpxjx2x3 because, e.g.
Lox10224 = 23P(e34) + 25P(€25) + 20P(e24) and wox1 2405 = ToX12203 + 2122P(€0)+
20®(ep1). Thus we get a generator in degree 2 (and no syzygy); moreover
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01 X2x304s = 2122D(e23) + 2324D(eq1) + 2o(Xox122063), S0 that R(P%)g, and in fact
all R(P%)gyen, is also covered.

The presentation can be in fact computed also for R(P%)yqq. In this case one
finds as syzygy of a map R(Q5)° ® R(Q5)( — 1) — R(P°),qq the matrix B de-
scribed in (1) giving the spinor bundle, thus getting again (4). O

REMARK 3. — Observation (2) can probably be extended to any odd dimension.
Here we only mention that for f: P*— Q3 we get fi(Op) =S @ Og, @ Og,(—1)
and f.(0s(1)) = (94Q3 which can be computed by the presentation or by Euler
characteristic.

Finally, one may notice that 7.(S) = Ops(— 1)® and clearly 7,.(Op()) =
Ot) @ Ot — 1) so that the extension 0 — S(—1) — O(— 1)8 — S — 0 splits
after 7. (actually this holds in any characteristic). This agrees with the formula:

0.(0) =03 0(- 1P 0(-2)"° ¢ O(-3)
0, (0p) = 0% 3 O(—- 1" @ O(-2)°

Next we compute the cohomology of SymzC, C®(C,S ®C. First notice that if
V is the P(a;)-representation associated to the Go-homogeneous bundle C (of
weight 4o — 2/1), Sym? V is not completely reducible. This is due to the fact that
SL(2, k) is not linearly reductive in positive characteristic, check [Nag62].

In a similar way, the homogeneous bundle Sym® C' corresponds to a P(a;)-
representation of weight 2/, — 44; which a rank-2 subrepresentation. In fact,
setting C2! = ¢*(C), we obtain a nonsplitting Gg-equivariant exact sequence:

(6) 0—C—Sym*C—0O( — 1)—0
We also have:
9.(0g,) =0&O(— 1) & O(-2)" & S(—1)

7
g 9.(0g,(1)=0"0O0(- D & 0(-2)® S

~ Now again by Borel-Bott—Weil theorem ([Jan87, Proposition 5.4]) we know
hi(Sym2C(3)) = 0 for all i, Sym*C(4) is globally generated and:
1 3 27 81
0 _ 2 _ - 24 22 OF >
h"(Sym(?)) = x(Sym~C(¢)) 20 P+ 3 t 3 t 20t for ¢t >4
h'(Sym?C(2)) =14 hY(Sym®C(1)) =7 hl(Sym*C(-1) =1
where in the above twists these are the only non—vanishing H”s. By Serre
duality we only miss H%(Sym®C). Now since Ri(p,) = 0, by the degenerate Leray
spectral sequence, (6) and (7) we get:

HY(Sym?C) =H(C®) "= HA(C @ S(— 1) "=
= HA(C?( - 1)) = H¥(Sym*C(— 1)) %'k
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and by the same argument h'(Sym®C) = 1, while the remaining h' are zero. The
same procedure yields the following values of h'(S ® C(t)):

WS e0) =1 h'(S®C1) =6
(8) RSeC(-1)=1 hESel(-2)=1
hW(S®C(—4)=6 h'SeC(-5)=1

Now we can prove Theorem 1.
PROOF OF THEOREM 1. — Since Ri(f,) = 0 for i > 0 we compute cohomology
over @5 and get:

o H'(P°, T@2t) = H(Qs5,£.(Ops) @ C(A + 1))
H'(P®, T2t + 1)) = H{(Q5,£.(Ops(1)) @ C(A + 1))

The even part gives H'(P°, T(2t) = H(Qs, C(A + 1) & HI(Q5, Ct) e
H!(Q5, C(t — 1)), while the odd part gives HY(P®, T2t + 1)) = H(Q5, C(1 + t))°®
Hi(Qs,C(t))G@Hi(Q5,S®C(1+t)) and these are known by the above for-
mulas. O

REMARK 4. — The values hZ(SymzC) = hl(SymzC) =1 exhibit non—standard
cohomology for the representation Sym®V. Indeed 34s —3/; is singular
(842 — 341,3a1 + ag) = 0) so standard Borel-Bott—Weil theorem (i.e. in char-
acteristic 0) would give hi(SymZC) = 0. Of course, we would have no such se-
quence as (6).

Still, by tensoring the monad defining C by C(t) we get:

0—GY ® C¢t)—S @ Ct)—Ct)—0
0—Ct—-1)—G" @ Ct)—C ® Ct)—0

whence we derive the values of h'(S ® C(¢)) from those of SymZC, because, if
char (k) #2,C®C = SymzC @ O( — 1). This way we would get the same values
as in (8) if char (k) = 0. Finally, one can compute on Macaulay2 the values of the
cohomology of C!2! and check the correctness of the above result.

Now we can write the Beilinson table of the normalized 7'(— 1):

0 00 00

S oo O+
S oo HO
SO o OO
OO HHOOO
O H O OO
S JOoO OO
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Then we write 7'( — 1) as cohomology of a monad:
O(-1 e Q') —RPR) e Q1) —0"

As Wolfram Decker pointed out to us, another way to get Tango’s bundle is by
Horrocks bundle H in characteristic 2. Concretely, the Horrocks bundle splits
extension 0 — 7'(— 1) — H — O — 0. This allows to compute the cohomology of
H in terms of 7.

Moreover in [DMS92] one finds an explicit description of the maps in the
Beilinson monad. This provides also a check of computations. Denoting with
€o, - - - , 65 the canonical basis of £ (the exterior algebra over W = HO(P5, 0Q))),
and using the natural isomorphism Hom (Qi(i),QfO)) = ANTW = E;_;, T is the
cohomology of the maps a and f:

€0 €465
€1 €365
€2 €364
B=1es €162
€4 €062
€5 €061

0 epe3 + e1eq + e2e5

_ [ eoeiez +eseses  egeieses + eoezeses + e1eze4es 0
epes + e1e4 + eze5 €pe162 + egeqes e1626465

Finally, using the equations for 7', Macaulay2 provides the following re-
solution:

o' 0'(-3)
0 P - 0¥-6-0%-5-0%-9—- fH —-T—-0
O0(-8) 0%(-2)

Applying cohomology algorithms in Macaulay2 developed by Decker
Eisenbud and Schreyer one may also obtain a full table of the cohomology, which
we write in Macaulay2 notation:

total: 573 260 92 27 14 7 2 2 7 14 27 92 260 573
-6: 573 260 91 14 .
-5: . . 113147 1.

(10) -4: . A
-3: . B
-2: . .. . . . .17 14 13 1 .
-1: . .. . . . . . . .14 91 260 573

Reading the table along one antidiagonal gives the list of cohomology groups
of a single twist. Here the list for 7" starts from the up-right corner, while
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starting from a shift to the left means reading the list for a ( — 1)—twist. Table
(10) agrees with Theorem 1.
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