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Existence and Uniqueness for an Integro-Differential
Equation with Singular Kernel.

VALERIA BERTI

Sunto. — In questo articolo st studia un problema evolutivo per la viscoelasticita linea-
re, supponendo che il nucleo di memoria G' sia singolare. St assume che G' pre-
senti una singolaritd iniziale in modo che non sia una funzione L nel tempo, ma
che la funzione G sia integrabile per t = 0. Applicando il metodo delle trasformate
di Fourier, si dimostra un teorema di esistenza e unicita della soluzione debole, in
un opportuno spazio funzionale, la cui definizione dipende esplicitamente dalle
proprieta del nucleo di memoria.

Summary. — In this paper we study the evolutive problem of linear viscoelasticity with
a singular kernel memory G'. We assume that G' presents an initial singularity,
so that it is not a L1 —function in time, whereas the relaxation function G is inte-
grable at t = 0. By applying the Fourier transform method, we prove a theorem of
existence and uniqueness of the weak solutions in a functional space whose defini-
tion is strictly related to the properties of the kernel memory.

1. - Introduction.

The evolution of a viscoelastic solid, contained in a domain Qc R? is gover-
ned by the equation

w(x, t) =V-T(x, t) + f(x, t) reQ, t>0,

where u is the displacement vector, T is the stress tensor and f is the body
force.
We assume that the stress tensor satisfies the linear constitutive equation [6]

T(x, t) =G, (x)Vu(x, t) — fG’(.%', ) Vu(x, t) — Vulx, t —s)] ds,
0

where G, and G’ are symmetric fourth-order tensors.
The kernel memory G’ is usually required to be a L'-function in time
([1,2]). However the behaviour of some kind of materials can be described
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through a model which involves a singular kernel (see [4, 5, 8] and references
therein). In such a case, the tensor G’ is assumed to present an initial singula-
rity, so that G’ ¢ L.

In this paper we consider this case and suppose also that the relaxation
function

1.1) Gz, t) =G, (x) — fG'(x, s) ds
t

is integrable at ¢ = 0. To deal with the singularity of the kernel memory, we
apply the Fourier transform method and introduce a definition of the weak
solutions of the problem in the frequencies domain. In this way, we analyze the
properties of a complex-valued tensor H, related to the Fourier transform of
G'. The search of the weak solutions leads to the introduction of a functional
space, whose definition depends explicitly on the properties of H.

In Section 2 we consider the transformed system and show that the origi-
nal problem is related to the solution of an elliptic equation with fixed fre-
quency. Under suitable hypotheses on the source f and on the initial history
u’(x, s) =u(x, —s), s >0, we prove in Section 3 an estimate which allows us
to obtain the existence and uniqueness of the weak solution.

2. — Formulation of the problem.

Let us consider the equation
22 x,t)=V-: [Gw(ac) Vu(a, t) — fG’(x, [ Vulx, t) — Vu'l(x, s)] ds]
0

+f(x, t),

where u'(x, s) =u(x, t — s) denotes the history of the displacement u.

We assume that 2 is a regular bounded domain, with boundary 89 C-
smooth and locally on one side of 9Q.

Moreover, we require that u satisfies the elastic boundary condition

2.3) a(o) w(o, t) + T(o, t) n(o) =0 ocedf2,

where n denotes the outward normal of the boundary 02 and a e L * (022) is a
scalar function such that

a(o)=za,,>0 oedf .
The initial history, defined as

w(e, t) =u’(x, —t) t<0



EXISTENCE AND UNIQUENESS FOR AN INTEGRO-DIFFERENTIAL EQUATION ETC. 301

will be considered as a known function. In order to emphasize the initial histo-
ry, the stress tensor T can be written in the form

t
T(x, t) = G, (x) Vulz, t) — fG'(ac, O[Vule, t) — Vu'(e, s)] ds
0

- fG’(ac, $) Vau(x, t) ds + Ty, ),
t

where

Ty, ) = [G'(x, ) Vu'(z, ) ds = [G'(x, t+5) Vu'(x, 5) ds.
t 0

In this way the equation (2.2) yields

t
24)  w(x,t)=V-: |:Gm(ac) Vau(x, t) — fG’(ac, [ Vulx, t) — Vu'l(x, s)] ds
0

— fG’(oc, s) Vu(x, t) ds] +V-To(x, t) +f(x, t)
t
and we restrict our attention to the search of a solution u(x, t), with initial
data

0

25)  ulx, 0)=u’(x, 0)=uy(x), %(W,OF%(W,OF%(M, re.

In what follows, we denote by f the Fourier transform of f with respect to the
variable ¢, namely

fz, o) = ff(x, t) e “dt.

Moreover, each function f, defined for ¢t = 0, will be identified with its causal
extension, which coincides with f for ¢ =0 and vanishes for ¢ <(0. For causal
functions, let f;, f. be respectively the sine and cosine transforms, i.e.

fi(x, ) = ff(x, t) sinwtdt, f.(x, w)= ff(x, t) coswtdt .
0 0
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The Fourier transform of the stress tensor 7' is

o
/T(.CU, w) =G, (x) Vi\b(ﬁc, w) — f fG’(x’ [ Vulx, t) — Vut(x’ s)]dse —iwt g4
00

- f fG’(ac, s) dsVu(x, t) e~ dt + Ty(x, )
0 ¢

and a direct check proves the identity

T(x, w) = G () Vii(x, o) —ffG’(ac, s) dsVu(x, t) e "' dt + Ty(x, )

0 t
— fG’(x, s) [ fVu(ac, t) e "@tdt — fVu(ac, t) e‘i‘*’(”s)dt] ds
0 5 0

= [H(x, ) + G (x)] Vii(x, o) + Ty(x, ),

where

H(x, w) = —fG’(x, $)(1 — e~ %) ds .
0

We recall here the thermodynamic restrictions on the relaxation function, re-
lated to the tensor H ([3]). As a consequence of the Second Law, the sine tran-
sform G, (x, w) of the causal extension of G'(t) is negative definite for each
w >0, so that the tensor

w3IH(x, w) = —0G] (x, ®)

is positive definite for any w e R and x € Q.

Henceforth we denote by Sym the set of symmetric tensors and by |-| the
modulus of a tensor in Sym.

Since the system is a solid, G. is uniformly positive defined, i.e. there
exists a constant g, > 0 such that

inf A-G.A>g.., |Al*,

for each A € Sym.

As we have already pointed out in the introduction, we assume that the re-
laxation function G, defined by (1.1) presents an integrable singularity as t =
0. In particular, we require the existence of a constant w, > 0 such that G sati-
sfies the conditions
(2.6) sup [RH(x, o) — 0G| (z, )] <Cy,

ref

@) sup |[ — oG/ (x, )] < Cs,

ref
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for any w > w,. Such assumption allows to know the behaviour of the kernel
memory for large values of w.

An example of kernel G’ which satisfies the hypotheses above mentioned is
given by a series of exponential functions, namely

=)

G't)=- e, t>0,

n=1
where p is a fixed parameter such that p e (% , 1). This condition ensures that

G presents an integrable singularity at ¢ = 0. Moreover, since

©

_ 1
Glw)=— 2,

. ’
n=1n"+ 10

the following relations can be easily verified

Gl = —0> —

’
n=1n2 + @*

S 1
NH(w) = w? Z _—
=112 + w?)
Therefore G satisfies (2.6) and (2.7).
The assumptions on the kernel memory allow us to give the definition of weak
solutions of the problem. To this purpose, we introduce the functional space

AR, Q) = {@7 eL*(R, H(2)): wu e L*(R, L*(Q)),

©

[ [ -06 @, ) Vi, o) Vi@, 0) dedo < oo}
Q

—

where = denotes the complex conjugate.

DEFINITION 2.1. — A function w is a weak solution of the problem (2.4)-
(2.5), with boundary condition (2.3) if e R, Q), uye H(Q), 1ye L3(Q),
feL*R, L%(Q)), Tye L*(R, L%(R)) and the equality

(2.8) f f [— w2, 0) ¢p(x, )+ [Hx, )+ G @)V, w) - Ve, w)] dedo =0
—°Q

©

[ 7@, )¢, o) = To@, )V é@, )] dudo +

—% 0

ff[uo(x)nwuo(x)]a(x, w)dmdw—ffa(a)ma, 0) ¢(0, w) dodw

—%© Q —® 9Q

holds for each ¢ e é/)\{’(R, Q).
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From the definition of the space :‘)Z’(R, ), we can prove that all the inte-
grals in (2.8) converge. Concerning the second term, observe that, in view of
(2.6), for |w|> w, the following inequality holds

|H(z, 0) Vi(z, o) Vo, o) | < [RH(x, 0) Vile, 0)Vo(x, o) | +
|SH(x, w) Vule, w)'V;ﬁ(m, w)| < (C; + weh) |G () Vule, w)'Va(.%', )|,
whereas, if |w| <w,, there exists 6 >0 such that

|H(x, w) Vi, ®)-Vx, w) | <0|Vur, o) ||Velr, o).

Therefore

[ [1HG, o) Vi, 0)-V e, o) |dedo < .
—* Q

The choice ?ﬁ(m, w) = $l(ac) 52(60) with 51 e H'(Q) and 52 smooth with com-
pact support, yields

[ =@, 0) ¢ @+ H@ o)+ G..@)] Vi, 0) V@] de g0 do =

—% 0

[ [17, ©)6:1@) = To, ©)-V 1 ()] d po(w) deo +

—» 0

[ [T + ioug@)] ¢,() dv po(e) do —

—x 0

[ [ o, ) ¢:(0) do py(w) dor .
—® 39Q
By the arbitrariness of ¢, we conclude that (-, ) is a weak solution of the
transformed problem

29  —o%uw) — iy — ivu,= V- [(H) + G. () Vi(o) + Ty(w)] + f(w)
(2.10) a(0) Wo, o)+ T(o, ) n(o) =0 oed

for almost every weR.

3. — Existence and uniqueness.

In this section we prove the existence and uniqueness for the weak solution
of the problem (2.4)-(2.5).

Since we can change the unknowns in order to have zero initial data, it is
not restrictive to assume %, =0 and 1, = 0.

We denote by ||-|| and ||-|js0 the norms in L?(Q) and L?2(32) respectively
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and recall the following classical inequalities ([7, 9])
3.1) i) [P < Ky [Vai() [P + K [[i(w) e,
(3.2) (@) |ie < [IVa() | + Ksllad(a) P,

where K, K,, K3 are positive constants depending on Q.

PROPOSITION 3.1. — For each w € R, the problem (2.9)-(2.10) with uy = 0 and
1y =0, admits a unique weak solution u(-, w) e H (), which satisfies the
mequality

3.3) ||a)ﬁ(w)||2 + ||[ -G/ (a))]l/ZVﬁ(w)H2 + ||ﬁ(a))||§9 <
ANF@)|P+ [+ w]) To(w)|P1,

where 1 is a suitable positive constant.

ProoF. — The existence and uniqueness of the weak solution of the problem
(2.9)-(2.10) can be proved like in [2], therefore we need only to verify the ine-
quality (3.3). To this aim, observe that if %(-, w) is a weak solution, then it sati-
sfies the relation

B4 [{-0?|i, 0)|*+ [H, ) + G ()] Vide, )-Vi* (e, 0)} do=

Q
f[f(ac, w) W (e, w) — Tole, w)-Va*(x, o)) de — fa(o) | u(o, w)|*do .
Q EN)

Since

lim0 NH(x, ) =0,
there exists a constant w; >0 such that if |w| <w;
1
[NH(x, w) | < Egmm.
Therefore, from the real part of the equation (3.4), we obtain

lwii(w)|2 = fSt[H(x, ®) + G ()] Vii(x, 0)-Vii* (x, ) do +
Q

fa(o, w)|u(o, w)|*do — mf[f(x, w) W, 0) — To(x, o) Vu* (e, w)] de =
Q

2Q

1 . = . - ~
2 9enl Vi@ +a, a@)Eo - f L G, @) UG, ) = T, ) Vit (@, )] dac.
Q
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Keeping (3.1) into account, the previous inequality yields
S9anlFA I+ [0 < K 0 Vi) P+ Ky T +
17 @)@ + 7o @)V a)] -

Thus, if |o] <min{w1, ALz 1/ﬂ}, we have
4K1 2K2

1 ~ m|| -~ 7 ~ m ~
el %Hu(w)llég < | f@lllla@)ll + [ To() [ [Vi(a)] .

Since
limo oG (w) =0,
we conclude that there exist 1;, w, such that the estimate

35)  [ou@)+[[- oG, @1 Vi@ + @@ <. Uf @) +[To@)IF]

holds for each |w| <w,.
Let us examine the case of large values of w. Suppose w > w, and multiply
the imaginary part of (3.4) by w, thus obtaining the inequality

f—wG;(x, o) Vi, o) Va*(x, o) de <

o
[lof@, o) @@, 0)| + 0Ty, 0) Vit @, o) |]de<
Q
o) | ()] + I - Gy ()12 Vi) || [l - o LG, (@)1 V2 Ty(w)]|.
Therefore

-G (@)1 Vi(w) P < doiw)|P+ %||f<w>||2+ =0 G (@)1 2Ty ()P,
where ¢ is an arbitrary positive constant and the condition (2.7) yields
3:6) [~ G, ()" Vi()|F < o) + %Ilf(anllz + Collo To(@)|P.
Moreover the real part of (3.4) leads to
loii|E < [IRH(, 0) + G ()] Vi, ©)-Vi* Gz, o) dx +
Q

o " f (@) [ wai(w)|| + [ — oGy ()1 2Ty () || [ = wGy ()12 Vi) || +

am ||@((U)||%_Q,
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where

ay = sup |a(o) |
redR

and in view of the inequalities (2.7) and (3.2) we have

37 oww)|f<

sup (|[§RH(90, 0)+ G ()[-0G) (2, »)] | +ayKs |[-0G, (x, o)+ é)

ref
_ ~ _ Cy o ~
Il =G ()] Vu@)|F +[lo = f (@)l oz + 72 7o)+ & yoo =2 [lati(w)]P.

The hypotheses on the kernel ensure that there exists a positive constant
such that

1
sup [[RH®, o) + G. ()G (x, »)]1" | + ayKs|wG{ (x, »)| '+ > <p.
re

Therefore, (3.7) yields the inequality

()P < BllwG, (@) Va@) [P + o = (@) o) +
Co 7 2 21|77 2
?||T0(a))|| +ayo ? o)
and, keeping the equation (3.6) into account, we obtain

_ _ 1,4 _
lot@)[F < | @) + —|f @) + CZHCUTU(CU)HZ] +

1, - = Cs 7 _
@@ +llo 7 F@lF + ZITo@)F + ayo i@,
1

The choices ¢ = v and || >max{w,, 2Vay} give

1 = —~
3.8) lewu(w)||2<4ﬁ2||f(w)||2+

- N Cy  ~
BC:lo Ty()|? + [l ' fw)|? + ?ZHTO(CU)Hz'

Finally, substitution in (3.6) leads to the estimate
3.9 |-G ()]2Vu(w)|F < 88| f (@) +2C:||loTy(w)|? +

l 17 2 % n 2
ﬁ”w flo)|F+ Y [ To() P
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From the inequalities (2.7) and (3.2), we deduce
(3.10) [%]0 < Co [l — Gy ()12 Vi) | + Ky |2

Therefore by virtue of (3.8), (3.9) and (3.10), we obtain that there exist
Ag, w3 >0 such that the inequality

31D [ou@)+- w6/ @1*Vi@)P +[u@lEe <2 f @)F + o To@)]

holds for any |w| > ws.

The inequalities (3.5) and (3.11) show that (3.3) is satisfied for |o|<w,
and |@|> wj;. In order to conclude the proof, observe that since the operator
A(w), defined by the system (2.9)-(2.10) as A(w)(v) = V-[(H(w) + G,) Vv] +
w?v, ve H(Q), is continuous with respect to the parameter w, the inverse
operator A ~!(w) is continuous too (see Lemma 44.1 of [10]). Therefore the ine-
quality (3.3) holds also for values of w in the compact set [ws, w3]. ™|

By integrating the estimate (3.3) in (— o, o), we obtain the inequality

[ {loi@)|E + I - G, (@)1 Viiw)|E +|[iw)|E} do <

2 [IF@R+ I+ |o]) Tol?} do,

WhereAthe right-hand side is finite, provided that the functions f and (1+
|w|) Ty belong to L2(R, L*(£2)). In such a case u(x, w) € H(R, Q) and the
following theorem is proved.

THEOREM 3.1. - If G satisfies the assumptions (2.6)-(2.7), fe
L%(R", L%(Q)) and Tye H'(R*, L2(Q)), the evolutive problem (2.4)-(2.5),
with zero initial data and boundary condition (2.3), admits a unique weak
solution in the sense of Definition 2.1.
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