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The Landau-Lifshitz Equations and the Damping Parameter.

K. HAMDACHE - M. TiLIOUA

Sunto. - In questo articolo si tratta Ueffetto damping nei materiali ferromagnetici. In
particolare, ci st occupa di determinare la sensibilita della soluzione ottenuta con il
metodo LLG rispetto al parametro di damping o. St analizza qui il comportamento
della soluzione debole globale ad energia finita delle equazioni di Landau-Lifshitz
quando il parametro di damping a tende verso 0 (underdamping) o verso +oo
(overdamping).

Summary. — The present paper is particularly devoted to the damping effect in ferro-
magnetic materials. We are intevested in determining the sensitivity of the LLG
method solution to the phenomenological damping parameter a. We discuss the be-
haviour of the global weak solutions with finite energy of the Landau-Lifshitz
equations when the damping parameter a tends either to 0 (underdamped case) or
+oo (overdamped case).

1. — Introduction.

The magnetization dynamies in thin magnetic films and microstructures is
technologically relevant for, e.g., magnetic recording applications at high bit
densities. Over recent years the investigations of the magnetic switching beha-
viour of ferromagnetic elements has become more advanced due to improve-
ments in numerical micromagnetic methods and high accuracy fabrication
methods. Central problems are the calculation of the switching time and the
stability of the switching process as a function of the time structure of the ex-
ternal field, and the detailed influence of magnetic damping. Most of the para-
meters required in micromagnetic equations are well characterized directly
using conventional techniques [4]. However, the damping cannot be derived
rigorously from basic principles, it is just added by a phenomenological term. In
reality it is caused by a complex interaction of the conduction electrons in the
magnet and its magnetization. For information we report the values of damping
parameter of some particulate magnetic recording materials. a = 0.051 for CrOg,
a = 0.066 for y-Fez03, a = 0.13 for Co-y-Fez03, a = 0.92 for MP (metal particle),
and a = 0.007 for permalloy. Damping has many effects for example micro-
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magnetic experiments reveals that small values of a (< 0.1) lead to shorter
switching times at small field strength. Damping has also a large effect on the
dynamie character of domain walls in bubble garnet material with structure
within the walls.

Let us now describe the mathematical problem. We consider Q c R? a
bounded and regular domain representing a ferromagnetic material. The
boundary of 2 is denoted by 02 and n is the unit outward normal to Q. In
Q = R' x Q, the magnetization field M(t,x) of the ferromagnet satisfies the
Landau-Lifshitz equations (LL)

{@M = —yM x HM) —aM x (M x H(M)) in Q

1
@) M) = M,in Q, M x (AV -n)M =0 on R" x 0Q

coupled to the stray field equation satisfied by magnetic potential ¢
(2) V- (Vo + 72( QM) = 0{in R* x R

The gyromagnetic parameter is denoted by y > 0. The damping is given in terms
of the paramater a > 0, which is and its implications are the main object of our
attention. The effective magnetic field H is given by

3) HM) = AAM + Vo + (V) (M)

where A > 0 is the exchange constant, y : R® > R"isa regular function with
bounded second derivatives representing the volume anisotropy energy. The LL
equations are equivalent to the Landau-Lifshitz-Gilbert equations (LLG) given
by (when y = 1)

{(%M:aM x M — (1 + a®)M x H(M) in Q

(4)
M@O0)=M,in Q, M x (AV -n)M =0 on R" x 0Q.

As usually the term M x AM is understood in the weak sense V - (M x VM).
Note that the motion conserves |M|. The parameter a plays a crucial role in the
existence theory of global weak solutions with finite energy see [16], [1]. Our
aims is to understand the behaviour of the solutions of LLG equation (4) for small
values of damping i.e., a — 0. If we set a = 0 in the LL equation (1) we get the so
called gyromagnetic equation (GLL) that describes the undamped precession of
the magnetization vector M about the effective field. When, H is reduced to the
exchange term AAM equation (4) describe the symplectic flow of harmonic maps
see [14], [13]. In the same time, we want to discuss the behaviour of the global
solutions when a — oo. The precession is negligible compared with the damping
parameter. Even if this question is academic, this behaviour is not clear as we
shall show. We introduce a new time scaling for the solutions of LL equation (1)
changing its dependency with respect to a. For this new equation the behaviour
when the damping parameter is large corresponds to the study of the initial layer
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of the original solutions. The system in this case is said to be overdamped. The
limit equation involves the damping equation (11) known as the heat flow for
harmonic maps see [3], [2], [5], [6] for example.

Let M, € HY(Q) satisfying the saturation condition |M0(90)\2 =la.einQandg,
be the solution of the equation (2) associated with M,,. Let &, be the initial energy

5) EM,) = A[VM, 22 ) + [V, 22, + f w(M,) d

It is easy to see that [|Ve,|* de = —fM Vg, dx and then 0 < E(M,) < oco.

Following Visintin [16] Rand Alouges- Soyeur [1], let (M?*, p*) be a global weak solu-
tion of LLG equation (4), with finite energy, associated with the initial data M. That
is M* € L°(R"; H'(Q)), oM* € LAR"; LA(Q)), Vo € L2(R"; LA(R?)), M* sa-
tisfies the saturation condition

(6) Mt x))* =1 ae
and for all ¢ > 0 the energy inequality

t
() EQME(t)) + 2x(a) f M ($) ) ds < EM,).
0

The energy of the system at the time ¢ is defined by (see for example [8])

®) EM D) = ATM D g + V0" O 50, + [ D) dix
Q
and the constant x(a) is given by
a
) =T

The solutions (M?, ¢*) satisfy the LLG equation (4) and stray field equation in the
sense of distributions. The coefficient x(a) gives the strenght of the decay of the
energy. One observes that r(a) — 0 for either a — 0 or a — +o0o. We have in fact,
§<x(a) <afora<1,s < Kla) <1 , for a > 1. The loss of the bound of 9;M* may
mduce a lack of compaetness of the sequence (M%), when either a — 0 or
a — +o0. The following uniform estimates hold for global weak solutions

LEMMA 1. - There exists C > 0 which is independent of a such that
\Me(t,®)> =1 a.e
(10) |VMa|L%(R+;:[,2<9>> + W(ﬂa‘Lw(ﬂ{*;]?(;x{g)) <C

\/@|atMa|L2(R+:L2(Q)) <C.
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The rest of paper is organized as follows. Section 2 is devoted to overdamped
behaviour that is the damping equation. We give convergence results when
a — +oo and identify the limiting problem. The underdamped case which cor-
respond to a — 01is studied in Section 3. We present in Section 4 our next results.
We give direct proofs for the global existence, both for DLL equation (11) and for
a particular case of GLL equation (see Section 3) corresponding to the case
where H = Vg (see [11] for the full LLG equation in that case). The first result is
established via an approximated problem of the semilinear heat equation and the
second one via an iterative scheme. We conclude in Section 5 by some remarks
and perspectives.

2. — The overdamped case.

We discuss in this section the behaviour of the global weak solutions of the
LLG equations (4) when a — +oo. We call damping equation (DLL) the fol-
lowing equation
{@M = —aM x (M x H(M)) in @

11)
( M@O)=M,in Q, M x (AV -n)M =0 on R" x 9Q

It is important to precise the sense of the right hand side of (11) when M is a
weak solution of the problem that is M € L=(R*; H'(Q)), ;M € L*(R"; L*(Q))
and |M(t,x)* =1. We have then M x (M x AM) € LA(R";LA(Q)) since
oM € LA(R™; L?(Q)). Moreover we may write M x AM =V - (M x VM) then
for all test function ¢ we have

fo(M><AM)~¢dxdt:fM><VM-V(qub)dacdt.
Q Q

Hence, the weak form of (11) is M x O:M = aM x HM).

Let (ay,), be a sequence such that a,, — +o0o when n — +oo. We denote by
(M™, ¢™) the solutions of LL.G equations (4) associated with a,, and the initial data
M,. Using lemma 1 and LL.G equations (4) it is easy to obtain the convergence
result

(12) M" x H(M"™) — 0 strongly in LA(R"; LA(Q)).

Since, for a subsequence still denoted (M", ¢") we have that M"™ — M weakly-x in
LR HYQ)) but not strongly in L2 (R";L*Q), then M" x VM" —
M x VM + ¢ and M" x Vo' — M x Vo + u weakly-« in L°(R*; L2(Q)) with
¢ # 0and u # 0in general. It is not clear to show that £ = 0 and i = 0 or not and

in this case how to characterize &, i in term of M.
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We shall introduce a usefull time scaling of the solutions to obtain the strong
convergence of the sequence of solutions. Let us consider LLG equations (4)
satisfied by (M*, ¢*). We set

(13) Bla) = vic(a)

where v > 0 is a fixed constant. We introduce the couple (m*(t), ¢“(t)) by setting
for allt > 0 and a.e x € Q

(14) m*(t,x) = M (Ba)t, x), ¢"(t,x) = p"(B(a)t, v).
We easily verify that (m?, ¢") satisfies the new LLG equation labelled (NLLG)

15) { om® = a(m® x hm* — yvm® x H(m®)
m*(0) = M, in Q, m* x (AV -n)m* =0 on R x 9Q

coupled to the stray field equation (2) satisfied by ¢*. The solutions (1%, ") is
such that the saturation condition (6) is satisfied by m“ and the following energy
inequality holds

t
(16) EOm™(8)) + 2 f 0 ($) P2 g ds < EOL).
0

The LL equation associated to the NLLG equation (15) takes the form

2

m ><7-[(m)—1_|_a2

(17 om* = v(— m* x (m* x H(m”))

a
1+a2
As for lemma 1 we have the bounds

LEMMA 2. - There exists C > 0 which is independent of a such that

(18) { IV e 2y F IV e 2y < C
\3tma|L2(JR+;LZ(9)) <C.

We denote by (m", ¢") the solutions associated with a,,. Lemma 2 implies the
following convergences

LEMMA 8. — There exists a subsequence still denoted (m",$") such that it
holds that

mt — m weakly— x in LR HY(Q))
oym" — oym weakly in LAR'; LA(Q))
m" — m strongly in L2 (R; LX)

V¢" — Ve weakly— « in L¥(R™; LA(R?)).



288 K. HAMDACHE - M. TILIOUA

Moreover, using once more lemma 2, we get the result

LEMMA 4. — The sequence (m",$") satisfies the strong convergence
(20) m" x dm" —vm" x H(m") — 0 strongly in L2(R™; L3(Q))

Now, we are able to pass to the limit in the weak formulation of the NLLG
equation (15) associated with a,. Let g be a regular test function defined in
R* x Q. Then m" satisfies the weak formulation

[¢273

L o dedt +fM0 - 9(0) dar) =
Q Q

(21) fm” x Om" - g dwdt +Afm” x Vm" - Vg dxdt—
Q Q

fm” x V¢" - g dwdt —fm” x (Vaw)(m™) - g dadt
Q Q

Passing to the limit in the weak formulation by using lemma 3 and lemma 4 it
follows that m satisfies the equation

fmx8tm-gdxdt+Afm><Vm~ngacdt—
Q Q

(22)
fmx Vé-g dxdt—fm x (Vyyp)m) - g daedt =0
Q Q

where ¢ satisfies, in the sense of distributions, the stray field equation
(23) V- (Vo+7(@m)=0in R x R?.

It remains to precise the sense of the initial data verified by m. Since we have
m" € L*(RT: 1HY(Q)) and dym” € LAR';L2(Q)) then m satisfies the same
properties and m € HY(0, T; 1.2(Q)) for all T > 0. Hence m(0) is well defined in
LA(Q). Using the inequality

t
(24) |m"(0) — M(O)ﬁﬁ(g) < 2] |mn(3) - m(8)|L2(Q)‘at m"(s) — O m(8)|L2(Q) ds+
0

" () — m)[} 2,
we deduce that

2 2
|mn(0) - m(0)|[ {Z(Q) S CT|mn - m|L2(07T;I'/2(Q)) + |7/nﬂyZ - m‘Lz(O.T;LZ(Q)).

Finally, since we have m"(0) = M, and m" converges strongly in L*(0, T L2(Q))
to m, we get that m(0) = M, in L2(Q). We proved the following result
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THEOREM 1. — Let (m, ¢) be the limit of a subsequence of (m", $"). Then (m, $)
1s a global weak solution of the damping equation
mx m=vmx Hm) in R™ x Q
(25) m0) =M, in Q, m x (AV -n)m =0 on RT x 0Q
V- (Vé+ 7 @m)=0in RT x R3.
Moreover m satisfies the saturation condition (6) and for all t > 0, the energy

estimate

t
(26) Em(t)) + 2v f 10, (8) P2 gy s < EML).
0

ProOF. — The strong convergence of the subsequence m" implies the sa-
turation condition for m. To prove the energy inequality we proceed as follows.
We consider the energy estimate (16) satisfied by m". We multiply the inequality
by 0(t)* where 0 is a regular function, and integrate over (0, 7). Using the con-
vexity of the L? norm and the weak convergences we get

AIVO) [} 71 2y < liminf AV 0" 0) 720 7.1 20
and
|V(¢0)|22(0‘T;L2(R3)) < liminf |V(¢n0)|iz(0,T;L2(lR3))'
Next the strong convergence of m" gives
|y (m)6? |i1(oﬁT;‘[ Loy = lim 1% (mn)92|il(0‘T;:[ Q)
Consider the damping term we have f |0(t)8tm"(s)|iz(g) dsdt where A = {(,s),

A
0<t<T,0<s<t}. We conclude by using the weak convergence in
L2(A; L2(Q)) of the sequence O(s)dym"(t). The proof of the theorem is then
complete.

REMARK 1. - The term m x H(m) is wunderstood in 1its weak form
V-(mx Vm)+m x Vo +m x (Vyw)(m). From equation (25) it follows that
m x Him) € LAR™; L2(Q)) and then m x (m x H(m)) is well defined in the same
space. Next, m x Oym € L2(R*; L2(Q)) and then m x (m x Oym) belongs to the
same space. Finally since we have |m(t, 90)|2 =1 then Oym = —m x (m X Oym).
Consequently from DLL equation (25), m satisfies in L2(R™; L2(Q)) the equation

27 om = —vm x (m x H(m)).

REMARK 2. — We conclude that at high damping the magnetization rotates
more or less directly towards the effective field direction without any precession.
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3. — The underdamped case.

We discuss in this section the behaviour of the solutions of the LL.G equations
(4) when a — 0. We call gyromagnetic equation (GLL) the LL equations (1)
where we set a = 0.

Let (a,), be a sequence of R* such that a,, — 0 when n — +o0o. We denote by
(M", ¢") a global weak solution of the LL.G equations (4) satisfying the energy
inequality (7). We have the estimates

LEMMA 5. — There exists C > 0, independent of n such that the sequence
(M™, ¢") satisfies the estimates

Mt @)f =1 ae
(28) VM |12 + VO e 2wy < €
V| OM"| 2.1 20y < C.

We have also

LEMMA 6. — The sequence (M™) is compact in L2 (R™: L2(Q)).

loc

ProoF. — From lemma 5, the sequence (M") is uniformly bounded in
LR HY(Q) and a,0M" — 0 strongly in L2(RT;L2(Q)). Then M"x
a, OM" — 0 strongly in L2(R™; L2(Q)). Moreover, M" x H(M") is uniformly
bounded in L”(R*;H’I(Q)). Here, we used the weak form M" x AM" =
V- -M"xVM"). Hence, using the LLG equations 4), oM" = M"x
A O M™ +a,21M” X HM"™) + M" x H(M™) we deduce that o,M" is uniformly
bounded in /@, L2(R"; L2(Q)) + a2L=(R"; H1(Q)) + L¥(R*"; H'(Q)). Conse-
quently, for T >0 fixed, we deduce that 9,M" is uniformly bounded in
L20, T; Q). Using the compactness of the embedding of Q) into 1L2(Q)
and Aubin’s compactness lemma, it follows that the sequence (M") is a compact
sequence in L2(0, T; L2(Q)).

Lemmas 5 and 6 imply the following convergence results

LEMMA 7. — There exists a subsequence still denoted (M", ¢") such that
M" — M weakly— + in L*°(R"; HQ))

M — M weakly in LAR"; H1(Q))

(29) anOM" — 0 strongly in L2(R'; L2(Q))

M" — M strongly in L (R™; 1L.2(Q))

Vo' — Vo weakly— « in L¥(R*; L2(R?)).

Moreover M satisfies the saturation condition (6).
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Now, we are able to pass to the limit in the weak formulation of the LLG
equations (4)

[y og dedt+ [ M, 9O de = v [ M x Jao, M -gdidt
Q Q Q

(30) +(1 + a,%){fM” x VM" - Vg dxdt —fM” x Vo" - gdxdt
Q Q

fan X VoM™ ~gdacdt}.
Q

We obtain the result
THEOREM 2. — Let (M, p) be the limit of a subsequence of (M™, ¢"). Then, (M, )
is a global weak solution of the gyromagnetic equations (GLL)
OM = —M x H(M) in R* x Q
(31) M©O)=M, in Q, M x AV -n)M =0 on 02
V- (Vo + 2(@M) =0in R x R®.

Moreover, M satisfies the saturation condition (6) and, for all t > 0, the energy
mequality

(32) EM@) < EM,).

PrOOF. — Passing to the limit in the weak formulation (30) we deduce that M
satisfies the equation

—fM-atgdacdtJrfMo - (0) d =
Q Ie)

(33) foVM~ngxdtffoV(p-gdxdt
Q Q

—foVMy/(M)-gdacdt
Q

where ¢ satisfies the stray field equation (2) associated to M. Since
M € L*(R*; HNQ)) and oM € LA(R"; H(Q)) then M € C([0, T1; L*(Q)) for
all 7' > 0 fixed. It follows that M(0) is well defined in L2(Q). Integrating by part
in the equation satisfied by M we deduce that M satisfies the gyromagnetic
equation (31) with the initial and boundary condition. It remains to prove the
energy inequality. The sequence M" satisfies (7) and then we have E(M"(t)) <
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E(M,) for all t > 0. Using the convexity of the L2(0, T; 1L2(©2))-norm and the strong
convergence of M", we get the wished result. This complete the proof of the
theorem.

REMARK 3. — From equation (31) we can say that for lower values of a, the
magnetic damping vanishes and the precession continues for ever. In other
words, the magnetization precesses several times around the effective field di-
rection before it reach equilibrium.

4. — The DLL and GLL equations.

We adress in this section the question of a direct proof of global weak solu-
tions of the GLL equation and the DLL equations. Let us first consider the DLL
equations

GM = —vM x (M x H(M)) in RT x Q
(34) M@O)=M,in Q, M x (AV -n)M =0 on R" x 9Q
V- (Vo + 2(@M)=0in R" x R®

where M, € HYQ), |Mo(ac)|2 =1 a.e and for simplicity H(M) = AAM + V.
Since the weak solutions satisfy the saturation condition |M(t, ac)|2 =la.ethen M
satisfies formally

M x oM = —vM x (M - HM)M — H(M)) = vM x H(M)
that is
M x O M = vM x HM).

We are interested in the global weak solution of the following weak form of the
DLL equations

M x M =vM x HM) in RT x Q
(35) MO)=M,in Q, M x AV -m)M =0 on R" x 0Q
V- (Vo + 2(@M)=0in R" x R®

We will say that M is a global weak solution of the DLL equation (35) if M sa-
tisfies the saturation condition, M € L*(R"; H'(Q)), &M € LAR": LA(Q)),
Vo € L*(RY; LZ(RS)), has a finite energy and satisfies the weak formulation

(36) [ OM-M x gdudt+vA[ VMM x Védudt = [ VoM x gdut,
Q Q Q

for all test functions ¢.



THE LANDAU-LIFSHITZ EQUATIONS AND THE DAMPING PARAMETER 293

In this proof we shall employ the method proposed by Hamdache [7]. We
introduce the approximated solutions U* of the semilinear heat equation.
1
0 U* —vAAU* + AU® = LU* +vWef — =T (U?
(37) { J V. + LAY )
U#0) = M, in Q, (AV -n)U? = 0in R* x 9Q

where 2> 0 is fixed, I'(U) = V((|U|)) and p(U) = |1 + |U»)/? — 2122, We
have I'(U) x U = 0. We set R“(U) = AU + vV — %F(|U|)f0r U e LAQ)and pis
the solution of the stray field equation associated with U. Thus, there exists
C, > 0 such that for all U,V € L2(Q) we have

(38) |R(U) — RV 29 < CelU = V2

Consequently, R? is a Lipchitz perturbation in L.%(Q) of the operator ( — AA + 1)
with Neumann boundary condition then, by the classical existence theory of
solutions to the semilinear heat equation we get the result see Mizohata [10],
Pazy [12] for example

LEMMA 8. — Let M, € HY(Q) and T > 0 be fixed. Then there exists a global
weak solution U¢ of (37) such that U¢ e C°([0,T]; HY(Q)). Moreover if
M, € T12(Q) with (AV - )M, = 0 on R" x 9Q that is M, belongs to the domain
of the Laplacian operator with the Neumann boundary condition and
IM,(@)[> =1 a.e then U? € C°[0, TT; H2(Q)) N C1(10, T[; H1X(Q)) and satisfies for
all t € [0, T], the energy inequality

t
SN ,
(39) VEWUAO) + - T O] +2 f 0. U() 22y ds < vEM)
0

where EU®) = A|VUAB)[} 2 + [V 25, for t > 0. Notice that y(|M,]) = 0
and |U*@®)|, 2@ < Cy fort € [0, T] where Cr is independent of e.

Let (¢,) be a sequence such that ¢, — 0 as n — oo. We denote by U" and ¢"
the solution associated to the sequence &,. We deduce the convergence results

LEMMA 9. — Assume M, as in lemma 8. Then there exists a subsequence still
denoted (U", ") such that

U" — M weakly—  in L=, T; H(RQ)),

U™ — M weakly in L*0, T; L3(Q)),

(40) U" — M strongly in L20, T; L3(Q)),

2W|U")) — 0 strongly in L0, T; L}(Q)),

|M(t, 9c)|2 =1a.e, Vop" — Vo weakly—x in L>*,T; L2(R?)).
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We are able to prove the global existence of weak solutions to DLL equations
(35). We have the result

THEOREM 8. — Let M, € H(Q) satisfying the saturation condition
|M,,(9c)\2 =1 a.e. Then there exists a global weak solution (M,¢p) to the DLL
equation (35) with finite energy.

Proor. — First, assume that M, is more regular in order that the energy in-
equality satisfied by U" holds. Then by lemma 9, let (M, p) be the limit of a
subsequence of (U", ¢"). Let ¢ be a regular test function, then multiplying (37) by
U"x ¢ and integrate by parts we get the weak formulation (observes that
"wum"-Urx¢=0)

(41) f&tU"-U"xg{:dacdt+vAfVU”-U”quSdacdt: va(,o”'U”xgbdxdt
Q Q Q

we pass to the limit by using the convergences stated in lemma 9 to get

(42)  [oM M xgdedi+vA[ VM- Mx Védedt=v[ Vo.M x gduat
Q Q Q

which shows that M satisfies in the sense of distributions the equation
M x OM =wV-(M x AVM) + M x Vo)
and the Neumann boundary condition
M x (AV -n)M = 0.

Moreover M satisfies the saturation condition [M(t,x)|* =1 a.e and we have
M e L0, T; 11NQ)), Vo € L=, T; L2(R?)) and o,M € L0, T; L3(2)). The in-
itial condition is obtained as follows. We have

t
43) [U"©O) — MO, < 2 f |U"(5) — M(S)], 20| OU"(8) — M), 2 d5+
0

, 2
\U" () = M@ 2
which implies the estimate
|U"(0) — M(O)ﬁ?(m < 2TCIU" = M2 1y 20y +1U" — M'iZ(O.T;T,,Z(Q))'

Using the strong convergence of U" to M in L2(0, T; .2(Q)) and U™(0) = M, we
deduce that M satisfies the initial condition M(0) = M, in 1.2(Q2). Hence the
theorem is proved for regular initial data. Now let M, satisfying the hypothesis
of the theorem. Let M? be a regular sequence such that M? — M, in HYQ). For
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¢ fixed, let UP be the solution of the problem (37) satisfying the energy inequality
(39). Since operator R is Lipchitz then (U?), is a Cauchy sequence in the space
defined by the energy inequality (39). Setting U* the strong limit of U? in that
space we deduce that U® is a global solution of the approximated problem as-
sociated to the initial data M, satisfying the energy inequality (39). The re-
mainder of the proof follows.

Now we discuss the global existence of weak solutions to GLL equations (31)
in a particular case; see Moser [11] for the LL equation (1) for example. For weak
solutions satisfying the saturation condition we have oM = —M x (M x o,M)
and the equations may be written as M x (M x oM — H(M)) = 0. This equation
is degenerated with respect to 0;:M. We shall discuss only the simplest case
where the exchange constant A = 0 given by

OM = —-M x Vo in Rt x Q
(44) M©) =M, in Q
V- (Vo+x(@M)=0in Rt x R®?

where M, € 1.2(Q) with |MO(90)\2 =1 a.e. For a discussion on the case A #0
without any coupling with the stray field equation, we refer to [15]. The map
M e L2Q) — Vo € .2(Q) is linear and continuous and satisfies the estimate
IVl 252y < M 20

To solve this equation we introduce the following iterative scheme. Let
M € WE>2(0, T; LA(Q)) such that [M°(t,2)|> = 1 a.e and consider the sequence
(M™),, defined for » > 0 by

M = —M"! x Vo' in R x Q
(45) M (0) = M, in Q
V- (V" + 7(@M") = 0 in R" x R?.
For given M" € Wh(0, T; L?(Q)) M"+! satisfies a linear system of differential

equations. Hence M"*! exists in W1>(0, T'; L?(Q)) and satisfies the saturation
condition [M"™+(t, x)|* = 1 for a.e. Moreover we have

at(MnJrl _ Mn) _ _(Mn+1 _ Mn) > v(pn —M" % (vwn _ v(/)nfl)

which implies the estimate
1d
2dt

since we have [M"(t,x)>=1 ae and |Vg"(t)— Ve" 1O 20 < [M"E)~
M”’l(t)|Lz(Q>. Setting V"(t) = exp ( — t)|M"(t) — M”’l(t)h;(g) we get V"H(t) <

(46) M) — MM @) 2) < IM®) — MO 20y | M1 0) — M D)], 2
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¢
Of V'(s) ds and finally, V"*1(¢) < L |V 1~@.1)- Using this estimate we deduce that

for all » and p we have

Tn
(47) V2@ = VIOL < IV e oy
p-1_ 7k 1

k=1 Gy F = 1T <1 for »n large.

Finally we obtain that (V"), is a Cauchy sequence in L?(0, T') and then M" — M
strongly in L?(0, T 1.2(Q)). We proved the result

n! 1 :
where we used gy < e ifp>2and

THEOREM 4. — Let M, € L2(Q) be such that |MO(.90)|2 =1la.e. ThenforallT >0
fixed there exists a global weak solution M € WH>(0, T, L2(Q)) of the problem
(44) satisfying the saturation condition.

REMARK 4. — The existence proof of weak solutions to the general GLL
equation (31) s not proved in this work.

5. — Concluding remarks.

Understanding magnetization damping in magnetic films is of paramount
importance, both from a fundamental scientific and from a practical point of view.
As has been presented in this paper we have taken a significant step towards
understanding magnetization damping and have shown that the dynamic char-
acter of the ferromagnetic structure is greatly affected by the material damping
factor. This means also that the switching strongly depends on the damping
parameter. For lower values of a, the rotation of magnetic moment is almost
entirely precessional. Note that at high damping the magnetization rotates more
or less directly towards the effective field direction. Study of a in bulk metallic
ferromagnets has drawn a significant interest but the damping mechanism in
bulk ferromagnets is not yet fully understood. Recent interest on the basic
physies community in this topic is motivated by the following fact. Viewing the
magnetization damping as a function of the thickness of samples reveals that for
thick samples the damping parameter remains constant, equal to the “bulk”
value. However, as the film thickness decreases the damping parameter in-
creases rapidly [9]. It would be very interesting to take into account the de-
pendence of a on film thickness. The results of this paper will stimulate further
interest in the magnetic dynamics of thin film magnetics especially in connection
with the aspect above.
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