BOLLETTINO UNIONE MATEMATICA ITALIANA

S. Dragotti, G. Magro, L. Parlato

Transverse Homology Groups

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 9-B (2006), n.1, p. 69-77.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2006_8_9B_1_69_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Transverse Homology Groups.

S. Dragotti - G. Magro - L. Parlato

Sunto. – In questa nota viene fornita una trattazione geometrica della teoria dell'omologia di intersezione.

Summary. - We give, here, a geometric treatment of intersection homology theory.

Introduction.

In [2] M. Goreski and R. MacPherson developed a theory of intersection of homology cycles on a pseudomanifold X, generalization of the Poincaré-Lefschetz theory. In their paper the authors attached to an oriented stratified pseudomanifold X a collection of groups $\{IH_n^{\bar{p}}(X)\}_{n\geq 0}$, called intersection homology groups, by using cycles and homologies, as in classical simplicial theory, such that their supports meet the strata of X according to the perversity \bar{p} .

In this note we give a different geometrical approach to this theory by showing that the objects may be defined starting from singular geometric cycles.

More in detail, given a stratified pseudomanifold X, we construct (sections 2. and 3.) a collection of groups $\{H_n^{\bar{p}}(X)\}_{n\geq 0}$, called \bar{p} -transverse homology groups of X, and we prove (section 4.) that for each $n\geq 0$ the group $H_n^{\bar{p}}(X)$ coincides, up to an isomorphism, with the homology intersection group $IH_n^{\bar{p}}(X)$.

We think that our different approach could make easier to investigate some important questions and to outcome new results.

For example, the groups $H_n^p(X)$ have functorial properties, if one defines appropriate maps between stratified pseudomanifolds, and they result invariant with respect to a suitable definition of homotopy. The above investigation and their relative results will be object of a later paper.

For the reader's convenience we include in this paper a section that provides the definitions of stratified pseudomanifold and homology intersection groups.

1. - Preliminaries.

A stratified pseudomanifold X of dimension m is a geometric m-cycle (i.e. the closure of the union of the m-simplices in any triangulation of X, and each (m-1)-

simplex is a face of exactly two m-simplices), with a filtration by subpolyhedra

$$X = X_m \supseteq X_{m-1} = X_{m-2} \supseteq \dots \supseteq X_1 \supseteq X_0$$

such that for each point $x \in X_i - X_{i-1}$ there is a filtered space

$$Y = Y_m \supseteq Y_{m-1} \supseteq ... \supseteq Y_1 \supseteq Y_0 = a$$
 point

and a map $Y \times D^i \to X$ which for each j, takes $Y_j \times D^i$ PL-homeomorphically to a neighborhood of x in X_j . (Here, D^i is the PL-disk of dimension i).

If $X_i - X_{i-1}$ is not empty, it is a PL manifold of dimension i, called the i-dimensional stratum of the stratification.

A perversity \bar{p} is a sequence of integers $(p_j)_{j\geq 2}$ such that $p_2=0$ and $p_{j+1}=p_j$ or $p_{j+1}=p_j+1$.

A compact polyhedron $P\subseteq X$ of dimension $\leq h$ is said to be (\bar{p},h) -allowable to X if $\dim(P\cap X_i)\leq i+h-m+p_{m-i}$ for each $i\leq m-2$.

Let $IC^{\bar{p}}(X)$ be the chain complex of simplicial chains whose support is $(\bar{p},.)$ -allowable to X, for each $n \geq 0$ the nth homology group of $IC^{\bar{p}}(X)$, denoted by $IH^{\bar{p}}_n(X)$, is the homology intersection group introduced by Goreski and MacPherson in [2].

2. - Transverse cycles and transverse homology.

Let X be a stratified pseudomanifold of dimension m, and let \bar{p} a perversity. A \bar{p} -transverse n-cycle without boundary of X is a pair (C, f), where C is an oriented geometric n-cycle without boundary and $f: C \to X$ is a simplicial map such that the polyhedron f(C) is (\bar{p}, n) -allowable to X, that is

$$\dim (f(C) \cap X_i) \le i + n - m + p_{m-i}$$

for each polyhedron X_i of the filtration of X which meets f(C).

A \bar{p} -transverse n-cycle with boundary of X is a pair (C,f), where C is an oriented geometric n-cycle with boundary ∂C , and $f:C\to X$ is a simplicial map such that f(C) is (\bar{p},n) -allowable to X and $f(\partial C)$ is $(\bar{p},n-1)$ -allowable to X, that is

$$\dim (f(C) \cap X_i) \le i + n - m + p_{m-i}$$

for each polyhedron X_i of the filtration of X which meets f(C), and

$$\dim (f(\partial C) \cap X_i) \le i + n - m - 1 + p_{m-i}$$

for each polyhedron X_i of the filtration of X which meets $f(\partial C)$.

Clearly, given a \bar{p} -transverse (n+1)-cycle with boundary (C, f) of X, the singular n-cycle $\partial(C, f) = (\partial C, f/\partial C)$ is a \bar{p} -transverse n-cycle without boundary of X, called boundary of (C, f).

Remark 2.1. – If $\bar{p}=(0,1,2,...,j,j+1,...)$ every singular n-cycle is a \bar{p} -transverse n-cycle.

REMARK 2.2. – Let (C, f) be a \bar{p} -transverse n-cycle of X, then if $h \geq n$ each h-cycle (C', f') is a \bar{p} -transverse h-cycle provided that $f'(C') \subseteq f(C)$.

Two \bar{p} -transverse n-cycles without boundary of X (C, f) and (C', f') are said \bar{p} -transverse homologous if there exists a \bar{p} -transverse (n+1)-cycle with boundary (W, F) such that

1)
$$\partial W = C \ \dot{\cup} - C'$$

2)
$$F/_C = f$$
, $F/_{C'} = f'$

where -C' is the cycle obtained from C' by reversing the orientation.

(W, F) is said a \bar{p} -transverse homology between (C, f) and (C', f').

Let (C, f) be a \bar{p} -transverse n-cycle of X, consider the map $F: C \times I \to X$ defined by F(y,t) = f(y) for each $t \in I$. By Remark 2.2 it follows that $(C \times I, F)$ is a \bar{p} -transverse (n+1)-cycle of X.

The gluing property of the geometric cycles with boundary can be extended to \bar{p} -transverse cycles with boundary as follows.

Let (C',f') and (C'',f'') be two \bar{p} -transverse (n+1)-cycles with boundary, and suppose that C is an oriented geometric n-cycle contained, up to a PL homeomorphism, in $\partial C'$ and in $\partial C''$, and such that $f'/_C = f''/_C$. Consider the oriented geometric (n+1)-cycle W obtained by gluing C' and C'' by a PL map $C \to C$ orientation reversing, and $f: W \to X$ the unique map which extends f' and f'' to W (usually denoted by $f' \cup f''$). We have that $f(W) = f'(C') \cup f''(C'')$, and hence $\dim f(W) = \max \dim (f'(C'), f''(C''))$. So (W, f) is a \bar{p} -transverse (n+1)-cycle of X.

As immediate consequence of the above we have that the \bar{p} -transverse homology relation is an equivalence relation.

PROPOSITION 2.3. — Let x be a point of a stratified pseudomanifold X of dimension m. If $x \notin X_i$, for each subpolyhedron X_i of the filtration of X such that $i < m - n - p_{m-i}$, then an n-cycle (C, c_x) , where c_x is the constant map to x, is a \bar{p} -transverse n-cycle. Furthermore two \bar{p} -transverse n-cycles (C, c_x) and $(C', c_{x'})$ are \bar{p} -transverse homologous.

Proof. – (C, c_x) is a \bar{p} -transverse n-cycle because

$$\dim(c_x(C) \cap X_i) = \dim(x \cap X_i) = 0; \quad 0 \le i + n - m + p_{m-i} \text{ if } i \ge m - n - p_{m-i}.$$

Two \bar{p} -transverse n-cycles are \bar{p} -transverse homologous because (C, c_x) and $(-C', c_{x'})$ are the complete boundary of the \bar{p} -transverse (n+1)-cycle (W, F) where W is the disjoint union of the cone on C with the cone on -C', and F is the map which carries the first cone to x and the second cone to x'.

Proposition 2.4. – Let (C, f) be a \bar{p} -transverse n-cycle of a stratified pseudomanifold X of dimension m, and let \overline{y} be a point of an n-dimensional simplex Δ of C. Then (C, f) is \bar{p} -transverse homologous to a \bar{p} -transverse cycle (C, f') where f' is a map which agrees with f on $C - \Delta$ and carries an n-simplex $\Delta' \subset \Delta \ (\overline{y} \in \Delta') \ on \ f(\overline{y}).$

PROOF. – Let $H: \Delta \times I \to \Delta$ be a homotopy between the identity and a map $g: \varDelta \to \varDelta$ such that $g/_{\dot{\varDelta}} = id_{\dot{\varDelta}}, \ \mathrm{g}(\varDelta') = \overline{y}.$ Let $W = C \times I, F: W \to X$ the map defined by

$$F(y,t) = \begin{cases} f(y) & \text{if } y \notin \mathring{\Delta} \\ f \circ H(y,t) & \text{if } y \in \Delta \end{cases}$$

By Remark 2.2 (W,F) is a \bar{p} -transverse (n+1)-cycle of X because F(W) = f(C). So, let $f' = F/_{C \times \{1\}}$, the \bar{p} -transverse n-cycle (C, f') is \bar{p} -transverse homologous to (C, f) and it satisfies the required conditions.

By Prop. 2.3 the \bar{p} -transverse n-cycles (C, c_x) belong to the same \bar{p} -transverse homology class. Every representative of such a class is called 0-homologous. A fundamental characterization of these n-cycles is given by the following

Proposition 2.5. – A \bar{p} -transverse n-cycle of X is 0-homologous if and only if it is a boundary.

PROOF. – Let (C, f) be a \bar{p} -transverse n-cycle 0-homologous and let (W, F) be a \bar{p} -transverse homology between (C, f) and (C_0, c_x) .

Fig. 1.

Consider the cycle (W', F') where W' is obtained by gluing W to a cone L on C_0 , and F' coincides with F on W and with the constant map to x on L. By Remark 2.2 (W', F') is a \bar{p} -transverse cycle because F'(W') = F(W). Moreover the boundary of (W', F') is (C, f).

Conversely, assume (C, f) is the boundary of the \bar{p} -transverse cycle (V, G). Let Δ be a top dimensional simplex of C. Suppose $f(\Delta) \subseteq X_i$ and $f(\Delta) \not\subseteq X_{i-1}$. If Δ is a face of an (n+1)-simplex Δ' of V, then $G(\Delta') \not\subseteq X_{i-1}$. Let Δ'' be an (n+1)-simplex of V contained in Δ' . (See Fig. 1).

By Prop. 2.4 we can suppose that, up to \bar{p} -transverse homology, G is constant on Δ'' , that is $G(\Delta'') = \overline{x} \in X_i$, $i \geq m - n - p_{m_{\overline{o}}i}$. The cycle $(\partial \Delta'', G/_{\partial \Delta''})$ is a \bar{p} -transverse cycle 0-homologous. The pair $(V - \Delta'', G/)$ is a \bar{p} -transverse homology between (C, f) and $(\partial \Delta'', G/_{\partial \Delta'})$. Then (C, f) is 0-homologous.

3. – The transverse homology groups.

Let X be a stratified pseudomanifold of dimension m, and let \bar{p} a perversity. Denote by $H_n^{\bar{p}}(X)$ $(n \geq 0)$ the set of \bar{p} -transverse homology classes of \bar{p} -transverse n-cycles without boundary of X.

Now given two \bar{p} -transverse n-cycles (C, f), (C', f') of X, it is easy to see that $(C \cup C', f \cup f')$ is a \bar{p} -transverse n-cycle of X and that its \bar{p} -transverse homology class depends only on the \bar{p} -transverse homology class of (C, f) and (C', f').

Then it makes sense to define:

$$[(C, f)] + [(C', f')] = [(C \cup C', f \cup f')]$$

Proposition 3.1. – $(H_n^{\bar{p}}(X), +)$ is an abelian group for each $n \ge 0$.

PROOF. - The associativity and commutativity property of the addition are evident.

The zero element of $(H_n^{\bar{p}}(X), +)$ is the class of the n-cycles 0-homologous.

For, the sum of a \bar{p} -transverse n-cycle (C,f) with a 0-homologous n-cycle (C_0,c_x) is \bar{p} -transverse homologous to (C,f), and a \bar{p} -transverse homology between them is given by the cycle (W,f) where W is the disjoint union of the cylinder $C\times I$ on C with the cone L on $-C_0$, and $F:W\to X$ is the constant map to x in L, while $F/_{C\times I}$ is the map defined by F(y,t)=f(y) for each $t\in I$.

From Prop. 2.5 it follows that the inverse element of the class of (C, f) is given by the class of (-C, f).

4. - The main theorem.

In this section we prove that the \bar{p} -transverse homology groups $H_n^{\bar{p}}(X)$ are isomorphic to the intersection homology groups $IH_n^{\bar{p}}(X)$ introduced by Goreski and MacPherson in [2].

Let $\xi = \sum m_h \sigma_h$ be a simplicial n-cycle of X. Consider the geometric realization of ξ , that is the singular geometric cycle (C_{ξ}, f_{ξ}) where C_{ξ} is the geometric cycle obtained by taking, for each h, m_h copies \varDelta_h^n of standard n-simplex \varDelta^n if $m_h > 0$, $-m_h$ copies of $-\varDelta^n$ if $m_h < 0$, and gluing two copies $\varDelta_{h'}^n$ along an (n-1)-face with opposite orientations, and f_{ξ} is a simplicial map such that $f_{\xi}(\varDelta_h^n) = \sigma_h$. Since $f_{\xi}(C_{\xi})$ coincides with the support $|\xi|$ of the simplicial cycle ξ , we have that, if, and only if, ξ lies in $IC_n^{\bar{p}}(X)$, then (C_{ξ}, f_{ξ}) is a \bar{p} -transverse cycle of X. Moreover, if ξ is a boundary, then (C_{ξ}, f_{ξ}) is also a boundary.

Then, if $n \leq \dim X$, it makes sense to consider the map $\Psi: IH_n^{\bar{p}}(X) \to H_n^{\bar{p}}(X)$ defined by

$$\Psi([\xi]) = [(C_{\xi}, f_{\xi})]$$

It is easy to see that Ψ is a homomorphism.

In order to prove that Ψ is an isomorphism we need the following lemma:

LEMMA 4.1. – Let (C, f) be a \bar{p} -transverse n-cycle of X. If $\dim f(C) < n$, then (C, f) is 0-homologous.

PROOF. – Since $\dim f(C) < n$, we have that $H_n(f(C)) = 0$. So (C, f) is the boundary of a singular geometric cycle (C', F) of $f(C_n)$. Being (C, f) a \bar{p} -transverse cycle and $F(C') \subseteq f(C)$, by Remark 2.2 (C', F) is a \bar{p} -transverse cycle of X. The assert follows by Prop. 2.5.

From the above lemma it follows:

Remark 4.2. –
$$H_n^{\bar{p}}(X) = 0$$
 for each $n > \dim X$.

LEMMA 4.3. – Let (C, f) be a \bar{p} -transverse n-cycle of X. If $\dim f(C) = n$, then there exists a \bar{p} -transverse n-cycle (C', f') \bar{p} -transverse homologous to (C, f) such that f' is injective on each top dimensional simplex of C'.

PROOF. — Let P' be the subpolyhedron of C consisting of n-simplices on which f is one to one, with their faces, and let P'' be the subpolyhedron consisting of the remaining n-simplices and their faces. Let $Q = P' \cap P''$, we observe that each (n-1)-simplex of P' - Q (or P'' - Q) is a face of two n-simplices of P' (or P'') whereas each (n-1)-simplex of Q is a face of an n-simplex of P' and a face of an n-simplex of P''. The polyhedron P' (or P'') is not in general a cycle just because Q is not in general a cycle.

Briefly, the idea of the proof is that of obtaining, starting from $C=P'\cup P''$, by appropriate identifications on Q, two \bar{p} -transverse cycles without boundary (C',f') and (C'',f'') such that (C'',f'') is 0-homologous and (C',f') is \bar{p} -transverse homologous to (C,f).

Step 1 Construction of (C', f') and (C'', f'').

Let $\sigma = (V_1,...,V_n)$ be an (n-1)-simplex of Q and let $\tau = (V_0,V_1,...,V_n)$ the n-simplex of P'' such that $\sigma \prec \tau$. There exists an unique (n-1)-face $\sigma_1 \neq \sigma$ of τ such that $f(\sigma_1) = f(\sigma)$. If $\sigma_1 = (V_0,...,V_{i-1},V_{i+1},...,V_n)$ is contained in Q we identify σ to σ_1 by the orientation-reversing simplicial isomorphism φ defined by putting $\varphi(V_r) = V_s \Leftrightarrow f(V_r) = f(V_s)$. If σ_1 is not contained in Q, it is a face of another simplex $\tau_1 \neq \tau$ of P'' and there exists an unique (n-1)-face $\sigma_2 \neq \sigma_1$ of τ_1 such that $f(\sigma_1) = f(\sigma_2)$. If σ_2 is contained in Q we identify σ_2 to σ_1 as before, otherwise we can iterate the proceeding and we obtain a sequence of simplices $\sigma \prec \tau \succ \sigma_1 \prec \tau_1 \succ \sigma_2 ... \succ \sigma_h \prec \tau_h ...$. We show that the simplices of the previous sequence are distinct.

Suppose by induction that the assert is true for the sequence $\sigma \prec \tau \succ \sigma_1 \prec \tau_1 \succ \sigma_2 ... \prec \tau_{l-1} \succ \sigma_l$, then we have

- 1) $\tau_l \neq \tau_{l-1}$ by construction;
- 2) $\tau_l \neq \tau_i$ if i < l-1 because otherwise $\sigma_l, \sigma_i, \sigma_{i+1}$ should be distinct faces of $\tau_l = \tau_i$ with $f(\sigma_l) = f(\sigma_i) = f(\sigma_{i+1})$;
- 3) $\sigma_{l+1} \neq \sigma_l$ by construction;
- 4) $\sigma_{l+1} \neq \sigma_i$ if i < l because otherwise $\sigma_i = \sigma_{l+1}$ should be a face of distinct simplices $\tau_{i-1}, \tau_i, \tau_l$.

From the above and from the compactness of C it follows that there exists an (n-1)-simplex $\sigma_r \subset Q$ such that $f(\sigma_r) = f(\sigma)$. We identify as before σ to σ_r .

By proceeding in this manner for each (n-1)-simplex of Q we obtain, by appropriate subdivision, two geometric n-cycles C' and C'' without boundary. Finally we denote by $f':C'\to X$ and $f'':C''\to X$ the PL maps naturally induced by f, and so we obtain the singular cycles (C',f'),(C'',f''). These cycles are \bar{p} -transverse cycles because $f'(C')\subseteq f(C),f''(C'')\subseteq f(C)$ and (C,f) is a \bar{p} -transverse cycle. Observe that f' is one to one on each n-simplex of C', while the map f'' is not one to one on each n-simplex of C'', so $\dim f''(C'')< n$ and hence (C'',f'') is 0-homologous by Lemma 4.1.

Step 2 (C', f') is \bar{p} -transverse homologous to (C, f).

Let (D,g) be a \bar{p} -transverse (n+1)-cycle whose boundary is (C'',f'') and let M_p be the simplicial mapping cylinder of the quotient map $p:C\to C'\cup C''$. By gluing M_p to the geometric cycle D along C'' we obtain the geometric cycle $W=M_p\cup D$ such that $\partial W=C\cup -C'$.

Let $F: W \to X$ the PL map defined by

$$F(y,t) = f(y) \text{ if } t \neq 0$$

$$F(p(y),0) = f(y)$$

$$F(y) = g(y) \text{ if } y \in D$$

Fig. 2.

Being $F(W) \subseteq f(C) \cup g(D)$, the singular (n+1)-cycle (W,F) is a \bar{p} -transverse (n+1)-cycle of X. Furthermore we have $F/_C = f$, $F/_{C'} = f'$ and hence (C',f') is \bar{p} -transverse homologous to (C,f).

Theorem 4.4. – $\Psi: IH_n^{\bar{p}}(X) \to H_n^{\bar{p}}(X)$ is an isomorphism.

Proof. -

 Ψ is onto.

Let (C, f) be a \bar{p} -transverse n-cycle of X.

If dim f(C) < n, by Lemma 4.1 (C, f) is 0-homologous, and hence [(C, f)] is the image of the zero element of $IH_n^{\bar{p}}(X)$.

Suppose dim f(C) = n. From Lemma 4.3 (C, f) is \bar{p} -transverse homologous to an n-cycle (C', f') where f' is injective on each top dimensional simplex τ_n of C'. So (C', f') is the geometric realization of the simplicial cycle $\sum_{\tau_n \in C'} f'(\tau_n)$.

Ψ is 1-1.

Let $[\xi]$ an element of $IH_n^{\bar p}(X)$ such that $\Psi([\xi])=[(C_\xi,f_\xi)]=0$ and let (W,F) be a $\bar p$ -transverse (n+1)-cycle of X whose boundary is (C_ξ,f_ξ) . We denote by S the set of (n+1)-simplices of W on which F is one to one. We will prove that $\xi=\partial\sum_{\tau_{n+1}\in S}F(\tau_{n+1})$.

Suppose $\xi = \sum m_h \sigma_h$, and let \mathcal{A}_h^n be an n-symplex of C_{ξ} such that $f_{\xi}(\mathcal{A}_h^n) = \sigma_h$. We need to show that, if $m_h \neq 0$, there exists an (n+1)-symplex $\bar{\tau} \in S$ such that $\sigma_h = F(\mathcal{A}_h^n) \prec F(\bar{\tau})$.

Let $\Delta_h^n \prec \tau$.

If $\tau \in S$, it is the required $\bar{\tau}$.

If not, there exists an unique face σ' of τ such that $F(\sigma') = -\sigma_h$. σ' does not lie in $C_{\xi} = \partial W$ (because otherwise $m_h = 0$), and hence there exists an unique (n+1)-symplex $\tau' \neq \tau$ of W such that $\sigma' \prec \tau'$. If $\tau' \in S$, it is the required $\bar{\tau}$. If not, we repeat the previous procedure starting from $\sigma' \prec \tau'$.

Arguing as in proof of Lemma 4.1, the above procedure has a finite number of steps, and it determines $\bar{\tau} \in S$.

Observe that, if $S = \emptyset$, then $\xi = 0$.

REFERENCES

- [1] S. BUONCRISTIANO C. P. ROURKE B. J. SANDERSON, A geometric approach in homology theory, Cambridge University Press London New York, 1976.
- [2] M. Goresky R. Macpherson, Intersection homology theory, Topology, 19 (1979), 135-162.
- [3] C. R. F. Maunder, Algebraic topology, Van Nostrand, London, 1970.
- [4] C. McCrory, Stratified general position, Algebraic and Geometric Topology, 142-146, Springer Lecture Notes in Mathematics, n. 664, Springer-Verlag, New York (1978).
- [5] C. P. ROURKE B. J. SANDERSON, Introduction to PL topology, Ergeb. Mat. Band., 69, Springer-Verlag, Berlin and New York, 1972.
- [6] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

Dipartimento di Matematica ed Applicazioni «Renato Caccioppoli» Via Cintia - 80126 Napoli - Italia

Pervenuta in Redazione il 20 giugno 2003