# BOLLETTINO UNIONE MATEMATICA ITALIANA

# SIMONA FAINI

# On simple and stable homogeneous bundles

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 9-B (2006), n.1, p. 51-67.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI\_2006\_8\_9B\_1\_51\_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.



# On Simple and Stable Homogeneous Bundles.

#### SIMONA FAINI

Sunto. – Nell' articolo abbiamo voluto analizzare il rapporto tra i concetti di stabilità e semplicità per un fibrato vettoriale omogeneo su una varietà proiettiva.

Il teorema principale mostra come un fibrato omogeneo non sia destabilizzato dai suoi sottofibrati omogenei se e solo se esso è il prodotto tensoriale fra un fibrato omogeneo stabile ed una rappresentazione irriducibile.

Daremo quindi un esempio di un fibrato omogeneo, che risulta semplice, ma non stabile.

**Summary.** – In this work we will analyze the relation between the stability and the simplicity of a homogeneous vector bundle on a projective variety.

Our main theorem shows that a homogeneous bundle is not destabilized by its homogeneous subbundles if and only if it is the tensor product of a stable homogeneous bundle and an irreducible representation.

Then we give an example of a homogeneous bundle, which is simple, but not stable.

#### 1. - Introduction.

In this article we want to examine the relation between the concepts of stability and simplicity for a homogeneous vector bundle.

We start considering a homogeneous rational variety X:=G/P, with G complex simple Lie group and P a parabolic subgroup; a homogeneous vector bundle E on G/P will be then, as we will see later, given by a representation  $\rho$  of P; thus we'll can write  $E=E_{\rho}$  in the just specified sense.

We will define the notions of simplicity and H-stability in section 2; now we show the results we obtained.

The first result for homogeneous bundles on X = G/P is the Ramanan theorem: if  $\rho$  is an irreducible representation of P, then  $E_{\rho}$  is a stable bundle.

From this, we have that symmetric powers of  $T\mathbb{P}^n$ , or symmetric powers of universal and quotient bundle on grassmannians are stable, because for a representation  $\rho$  of P, we have  $E_{S^m\rho} \simeq S^m E_{\rho}$ , for all  $m \geq 0$ .

More generally, in [9] Rohmfeld establishes the following semistability-criterion for homogeneous bundles:

Rohmfeld criterion for semistability: (1)  $E_{\rho}$  is H-semistable  $\iff \mu_H(F) \le \mu_H(E_{\rho})$  for every homogeneous subbundle F induced by a subrepresentation of  $\rho$ ;

(2) If  $E_{\rho}$  is undecomposable and  $\mu_H(F) < \mu_H(E_{\rho})$  for every homogeneous subbundle F of  $E_{\rho}$  induced by a subrepresentation of  $\rho$ , then  $E_{\rho}$  is stable.

Actually Rohmfeld states his theorem in a slightly different form, which is not suitably written: indeed, the Euler sequence provides a counterexample to the last statement of [9].

However, the reader can easily check that what really Rohmfeld proved is the just stated criterion.

Our first result in this work is therefore the next theorem, which is a refinement of the preceding criterion:

THEOREM 1. – (Main theorem) Let E be a homogeneous bundle on the homogeneous rational variety G/P (with the preceding notations); then the two following conditions are equivalent:

(i) For every F, subbundle of E induced by a subrepresentation of  $\rho$ , we have

$$\mu_H(F) < \mu_H(E);$$

(ii) there exist an irreducible representation W of G and a stable homogeneous subbundle  $F_0$  of E, such that

$$E \simeq W \otimes F_0$$
.

We will see later not only the proof of this theorem, but also an application for the next problem.

It is well known that for every vector bundle, H-stability  $\Rightarrow$  simplicity, but for rank  $\geq 3$  the viceversa is not true: in [5] a counterexample is constructed (the simplest one has rk 3 on  $\mathbb{CP}^2$ ).

Although the notion of homogeneity for vector bundles is a strong hypothesis, in the end of this work we will give an example of a rk 15 homogeneous bundle on  $\mathbb{CP}^2$ , such that it is simple, but not stable: doing this, we will use the main theorem we told before.

We finally remark that all simple homogeneous bundles on  $\mathbb{CP}^2$  of  $rk \leq 14$  are stable: this is the content of the conclusive tables.

#### 2. - Notations and preliminaries.

Let X := G/P a homogeneous rational variety, with G complex Lie group and P its parabolic subgroup.

We will give now two definitions:

DEFINITION 1. – Let E be a vector bundle on the homogeneous rational variety X := G/P, of dimX = d. Fixed  $H \in Pic(X)$ , H ample, E is said to be H-stable (respectively semistable) if for all subsheaves F of E,  $0 \neq F \subsetneq E$ , it holds

$$\mu_H(F) < \mu_H(E)$$
 (respectively  $\leq$  ),

where

$$\mu_H(F) := \frac{H^{d-1} \cdot c_1(F)}{rk(F)}$$

is the slope of F with respect to H.

EXAMPLE. – If  $G/P = \mathbb{CP}^2$ , we will take  $H = \mathcal{O}_{\mathbb{CP}^2}(1) = \mathcal{O}(1)$ ; then, for any vector bundle E on  $\mathbb{CP}^2$ , by identifying  $\mathbb{Z} \simeq H^2(\mathbb{P}^2, \mathbb{Z}) \ni c_I(E)$ , we have

$$\mu(E) := \mu_H(E) = \frac{c_1(E)}{rk(E)}$$

DEFINITION 2. – A vector bundle E on a homogeneous rational variety X = G/P is said to be simple, if

$$h^0(E\otimes E^*)=1$$

Remark 1. – E is  $simple \iff End(E) = \{homotheties \ of \ E\}.$ 

In this article, we will work essentially with a particular class of vector bundles on X: the homogeneous bundles.

To define these, we need to introduce before the following construction.

DEFINITION 3. – Let  $\rho: P \longrightarrow GL(r, \mathbb{C})$  a representation of P. We define the vector bundle  $E_{\rho}$  on G/P as the quotient of  $G \times \mathbb{C}^r$ , with respect to the equivalence relation  $\sim$ , given by

$$(g,v) \sim (g',v') \Leftrightarrow \text{ there exist } p \in P: g = g'p \text{ and } v = \rho(p^{-1})v'$$

Remark 2.

$$egin{aligned} E_{
ho_1} \oplus E_{
ho_2} &\simeq E_{
ho_1 \oplus 
ho_2}; \ E_{
ho^k(
ho)} &\simeq \wedge^k E_{
ho}; \ E_{
ho_1} \otimes E_{
ho_2} &\simeq E_{
ho_1 \otimes 
ho_2}; \ E_{S^m 
ho} &\simeq S^m E_{
ho}; \ E_{
ho^*} &\simeq (E_{
ho})^*. \end{aligned}$$

Now, the previous definition allows us to introduce the concept of homogeneity for a vector bundle:

Definition 4. – A vector bundle of rk = r on G/P, E, is homogeneous, if there exists a representation  $\rho: P \longrightarrow GL(r, \mathbb{C})$  s.t.  $E = E_{\rho}$ .

Remark 3. – If E,F are homogeneous bundles on G/P, then  $E \oplus F$ ,  $E \otimes F$  and  $E^*$  are homogeneous too.

EXAMPLE.  $-\mathcal{O}_{\mathbb{CP}^n}(t)$ ,  $T\mathbb{CP}^n(t)$ ,  $S^m(T\mathbb{CP}^n)$  are homogeneous vector bundles, for all  $t\in\mathbb{Z}$ , for all  $m\in\mathbb{N}$ .

Now we begin by introducing some notations, which we will use in the fourth section: there, we will construct an example of homogeneous vector bundle on  $\mathbb{CP}^2$ , which is simple, but not stable.

In that case we will have thus  $G/P = \mathbb{CP}^2$ , i.e.  $G = SL(3, \mathbb{C})$  and

$$P := \left\{ egin{bmatrix} det A^{-1} & A & y \ & & & \ 0 & A & \end{bmatrix} & | A \in GL(2,\mathbb{C}), (x,y) \in \mathbb{C}^2 
ight\}$$

By the definition of the homogeneity of a vector bundle, we are naturally interested in studying the indecomposable (otherwise, the induced vector bundle is decomposable, hence automatically not simple  $\Rightarrow$  not stable) representations of P.

At first, we observe that  $P \simeq GL(2,\mathbb{C}) \ltimes \mathbb{C}^2$ , where the structure of semidirect product on  $GL(2,\mathbb{C}) \times \mathbb{C}^2$  is defined by, for  $(A \ltimes a), (B \ltimes \beta) \in GL(2,\mathbb{C}) \ltimes \mathbb{C}^2$ ,

$$(A \ltimes a) \cdot (B \ltimes \beta) := (A \cdot B \ltimes (\hat{Ba}) + \beta),$$

Here " $A \cdot B$ " indicates the usual row-columns product and  $\hat{Ba} := detB \cdot a \cdot B$ .

So we can find the representations of P, by combining representations of  $GL(2, \mathbb{C})$  and of  $\mathbb{C}^2$ .

Now, the irreducible representations of  $GL(2,\mathbb{C})$  are, for all  $m\in\mathbb{N}$  and  $l\in\mathbb{Z}$ ,

$$ho_m^l:GL(2,\mathbb{C}){\:\longrightarrow\:} GL(m+1,\mathbb{C})$$
  $A\longmapsto (det A)^l\cdot S^m A$ 

and thus, because of the complete reducibility of  $GL(2,\mathbb{C})$ , if  $\psi:P{\longrightarrow}GL(r,\mathbb{C})=$  Aut(V) is a representation of P , then

$$\psi|_{GL(2,\mathbb{C}) \, dash\, 0} = igoplus_{i=1}^j 
ho_{m_i}^{l_i}.$$

From all these considerations, we can deduce the following theorem ( see [10] for more details):

THEOREM 2. – Let  $\psi: P \longrightarrow Aut(V)$  be a representation, such that

$$\psi|_{GL(2,\mathbb{C}) \ltimes 0} = \bigoplus_{i=1}^j 
ho_{m_i}^{l_i}.$$

Then there exist a P-invariant flag

$$0 \subset V_1 \subset V_2 \ldots \subset V_j = V$$

such that

$$\rho_{m_i}^{l^i} \simeq V_i/V_{i-1} =: gr_iV.$$

Moreover,  $\psi|_{Id_2 \times \mathbb{C}^2} =: \pi$  induces, for  $1 \leq r \leq s \leq j$ , operators

$$\pi_{rs}: \mathbb{C}^2 \longrightarrow Hom(gr_sV, gr_rV)$$

and, for  $1 \le s < r \le j$ , operators  $\pi_{rs} \equiv 0$  ( \* ).

Finally,  $\psi$  is completely reducible  $\Leftrightarrow \pi \equiv 0$ .

DEFINITION 5. – (fundamental!) Let  $\psi$  be as in the preceding theorem. Then  $(\rho_{m_1}^{l_1}, \ldots, \rho_{m_i}^{l_j})$  is the type of  $\psi$ , and j is the index.

Theorem 3. – Define  $Q = T\mathbb{P}^2(-1)$ . If  $\rho_m^l$  is an irreducible representation of P, then

$$(1)E_{
ho_m^l}\simeq S^mT\mathbb{P}^2(l-m)\simeq S^mQ(l)$$
  $(2)(
ho_{so}^l)^*\simeq 
ho_{so}^{-l-m}.$ 

REMARK 4. – The type of a representation of P doesn't determine uniquely the P-invariant flag of theorem 2, in general: this depends on the fact that, when we have three or more irreducible components of  $\psi|_{GL(2,\mathbb{C}\times 0)}$  ( $\Leftrightarrow j\geq 3$ ),  $\Rightarrow$  we can arrange on the matrix associated to  $\psi$  the correspondent diagonal blocks in many different ways (provided we still have a representation, i.e.  $\pi_{rs}\equiv 0$  for all  $1\leq s< r\leq j$ , as we said before in (\*)).

Now, we will display some results, which will help us to write the matrix-form for a representation of P; the first is the

THEOREM 4. – (see [10]) Let  $\psi: P \longrightarrow Aut(V)$  be a representation of P, of type

 $(\rho_{m_1}^{l_1}, \rho_{m_2}^{l_2})$ ; if  $\psi$  is indecomposable, then necessarily we have

$$|m_2 - m_1| = 1 \ and \ \left\{ egin{aligned} l_2 = l_1 + 1, & \mbox{if} \ m_1 < m_2; \ l_2 = l_1 + 2, & \mbox{if} \ m_2 < m_1. \end{aligned} 
ight.$$

Moreover, the operator  $\pi_{12}$  is uniquely determined, up to a scalar factor  $\lambda \in \mathbb{C}^*$ , as follows: for  $(x, y) \in \mathbb{C}^2$ 

(i) if  $m_1 < m_2$ , we call  $m = m_1$  and

is  $a(m+1) \times (m+2)$  matrix;

(ii) if  $m_2 < m_1$ , we call now  $m = m_2$ 

$$\Rightarrow \pi_{12}(x,y) = \left[egin{array}{cccc} y & & & 0 & & \ & -x & \ddots & & \ & 0 & & \ddots & y \ & & -x & \end{array}
ight] =: I^{m+1}$$

is a  $(m+1) \times (m+2)$  matrix.

As a consequence of this theorem, one can verify that in both previous cases it holds

$$\mu(E_{\rho_{m_2}^{l_2}}) = \mu(E_{\rho_{m_1}^{l_1}}) + \frac{3}{2}.$$

DEFINITION 6. – In theorem 4 (where  $\psi$  is indecomposable!),  $\pi_{12}$  is said a connection-operator.

We reported this theorem, because it is the point of departure to prove the following more general results:

PROPOSITION 1. – (see [10]) Let  $\psi$  be an indecomposable representation of P, of type  $(\rho_{m_1}^{l_1}, \rho_{m_2}^{l_2}, ..., \rho_{m_t}^{l_t})$ ; we call  $n := \min\{m_i \mid i = 1, ..., t\}$  and  $N := \max\{m_i \mid i = 1, ..., t\}$ . Then

(i) for each irreducible component  $\rho_m^l$  of  $\psi$ , with  $m \neq n, N$ , there exist  $h, k \in \{1, ..., t\}$  s.t.

$$m_h = m - 1$$
 and  $m_k = m + 1$ ;

(ii) for 
$$m=n,N$$
, there exist  $h,k\in\{1,...,t\}$  s.t. 
$$m_h=n+1 \qquad and \qquad m_k=N-1.$$

In conclusion, the proposition says that the set  $\{m_i \mid i=1,...,t\}$  is connected.

Theorem 5. – (see [10]) Let  $\psi$  be an indecomposable representation of P, of index t. Then there exists an uniquely determined filtration

$$0 \subset V_1 \subset V_2 \subset ... \subset V_k$$

with the following properties:

(1) 
$$H_i:=V_i/V_{i-1}=\oplus_{j\in M_i}
ho_{m_j}^{l_j}, \ \ where \ M_i\subset\{1,...,t\} \ \ is \ such \ that$$

$$\mu(H_i) := \mu(\rho_{m_j}^{l_j}) = constant \; (with \; respect \; to \; j)$$

for all  $j \in M_i$ ;

- (2)  $\mu(H_i) = \mu(H_{i-1}) + \frac{3}{2}$  for all  $i \in \{2, ..., k\}$ ; (3)  $\psi|_{Id_2 \times \mathbb{C}^2}$  induces, for each  $i \in \{1, ..., k-1\}$ , a homogeneous not-trivial operator of degree 1

$$\Theta_i: \mathbb{C}^2 \longrightarrow Hom(H_{i+1}, H_i).$$

Definition 7. – In the same hypothesis of theorem 5, we call  $\psi \leftrightarrow (H_1, H_2)$  $H_2,...,H_k$ ) the  $\mu$ -filtration of the representation  $\psi$ .

Corollary 1. – Let  $\psi$  be an indecomposable representation of P, with  $\mu$ filtration  $(H_1, H_2, ..., H_k)$  and respective operators  $\{\Theta_i\}_{i \in \{1, ..., k-1\}}$ . Then

$$exp\left(\begin{bmatrix}0&\Theta_1\\&0&\Theta_2&&0\\&&\ddots&\ddots\\&0&&0&\Theta_{k-1}\\&&&&0\end{bmatrix}\right)=\psi|_{Id_2\ltimes\mathbb{C}^2}$$

Here and in the following we will intend V as in  $\mathbb{CP}^2 = \mathbb{P}(V)$ ; now let  $\Gamma^{p,q}V$  be the irreducible representation of SL(V) corresponding to the Young diagram with p boxes in the first row, and q boxes in the second one.

This is all what we need to know to compute the cohomology groups we said; in fact, we have the following well known results:

Proposition 2. – Let  $\rho_m^l$  be the irreducible representation of P defining

 $S^mQ(l)$ ; then, if we identify  $\rho_m^l$  with the homogeneous bundle it induces,

(1) 
$$c_1(\rho_m^l) = \left(\frac{1}{2}m + l\right) \cdot (m+1);$$

$$(\Downarrow)$$

$$(2) \ \mu(\rho_m^l) = \left(\frac{1}{2}m + l\right).$$

Theorem 6. – The first cohomology-groups of  $E_{\rho_m^l}$  are

$$H^0(E_{
ho_m^l})\simeq arGamma^{m+l,l}V;$$

$$H^1(E_{\varrho_m^l})\simeq \Gamma^{m-1,l+m+1}V;$$

$$H^2(E_{\rho_m^l}) \simeq \Gamma^{-l-3,-l-m-3}V.$$

## 3. - Stability of homogeneous vector bundles.

The goal of this section is the proof of the main theorem (see Introduction): however, we need before the Ramanan construction of «CS-subbundle» ([9]).

It allows us to verify the failure of H-stability of a homogeneous vector bundle on its homogeneous subbundles, instead of on all its subsheaves (thus we call «CS-subbundles» those ones which are contradicting stability).

We're going now to introduce some results, which the reader could find in [9] in a more detailed way:

DEFINITION 8. – Let E be a not-stable homogeneous vector bundle. A coherent subsheaf  $0 \neq F \subsetneq E$  is said to be SCS (i.e., «strong contradicting stability») in E, if the two following conditions are fulfilled:

- (i) F is H-stable and E/F is torsion-free;
- (ii) for all coherent subsheaf Q, with  $0 \neq Q \subsetneq E/F$ , we have

$$\mu_H(Q) \le \mu_H(F).$$

LEMMA 1. – Let  $0 \neq U_1, U_2 \subsetneq E$  be two coherent subsheaves of E, with  $E/U_1$  and  $E/U_2$  torsion-free. If  $U_1$  is H-stable and  $U_2$  satisfies condition (ii) of the preceding definition, then

$$U_1 \cap U_2 \neq 0$$
 and  $U_1 \not\subseteq U_2 \implies \mu_H(U_1) < \mu_H(U_2)$ 

Lemma 2. – Let E be a vector bundle on G/P and

$$M := \{ c_1(F) \mid 0 \neq F \subsetneq E, F \text{ coherent subheaf of } E \}$$

Then  $\sup M < +\infty$  and  $\sup M = \max M$ .

Proposition 3. – (Existence of SCS-subsheaves) Let E be a H-not stable vector bundle; then E contains a SCS-subsheaf F.

THEOREM 7. – (Uniqueness of SCS-sheaves) Let E be a H-not stable vector bundle on G/P, and let  $0 \neq U_1, U_2 \subsetneq E$  be two SCS-subsheaves of E, s.t.  $U_1 \cap U_2 \neq 0$ . Then it is  $U_1 = U_2$ .

With the assumption that E is not H-stable, we now define the not-empty (by proposition 3) set

 $M_0 := \{SCS - \text{subsheaves of } E, \text{ with minimal rank} =: r_0 \text{ and maximal slope } \mu_0 \}.$ 

Proposition 3 and theorem 7 say us that  $M_0$  contains SCS-subsheaves of E, for which every two intersect only trivially (\*).

Now we call

$$\bar{F} := \bigoplus_{i \in I} F_i,$$

where I is the maximal set of indices for elements of  $M_0$ , which form a direct sum; since rkE is finite and by (\*), then I is finite too.

Now, if  $M \in M_0 - \{ F_i \mid i \in I \}$ , then it is  $M \cap \bar{F} \neq 0$ ; in fact, if  $M \cap \bar{F} = 0$ , then we have to add a new element for M to I, because of the maximality of I with respect to this property  $(\oplus)$ .

Moreover, the sheaf  $\bar{F}$  has maximal slope  $\mu_H(\bar{F}) = \mu_0$ ; therefore  $\bar{F}$  satisfies condition (ii) of the definition of SCS-subsheaf. By lemma 1, we have  $M \subset \bar{F}$  and thus the subsheaf  $\bar{F}$  is uniquely determined.

Finally, we have only to show the properties which characterize our  $\bar{F}$ : in particular, in the second of the following theorems we'll see that  $\bar{F}$  is a homogeneous H-semistable subbundle of E. Once again, here we quote some results from [9]:

PROPOSITION 4. – If  $\bar{F}$  is defined as above and  $A \in M_0$ , then there exists  $i \in I$  s.t.  $A \simeq F_i$ .

THEOREM 8. – If  $\bar{F}$  is as above, then  $\bar{F}$  is a homogeneous H-semistable vector subbundle of E, with  $\mu_H(\bar{F}) \geq \mu_H(E)$ .

Definition 9. – Let  $\bar{F}$  be as above; we call it the CS-subbundle of E.

From this construction of  $\bar{F}$ , it follows the next

COROLLARY 2. – Let H be an ample fixed element in Pic(G/P). If  $E_{\rho}$  is a H-not stable homogeneous vector bundle on G/P, then  $E_{\rho}$  contains a homogeneous CS-subbundle; i.e., there exists a homogeneous subbundle  $\bar{F} = \bigoplus_{i \in I} F_i$  induced by a subrepresentation of  $\rho$ , s.t.

$$\mu_H(\bar{F}) \ge \mu_H(E_\rho),$$

where the  $F_i$ 's are homogeneous subbundles of  $E_\rho$ , H-stable and with the same slope and rank.

COROLLARY 3. – (see [6])  $\mu_H(\bar{F}) \ge \mu_H(E_\rho)$  for every F, homogeneous subbundle induced by a subrepresentation of  $\rho \Leftrightarrow E_\rho$  is H-semistable.

We are now ready to prove the next

THEOREM 9. – (Main theorem) Let  $E = E_{\rho}$  be a homogeneous vector bundle on G/P; the following conditions are equivalent:

- (i) For every homogeneous subbundle F given by a subrepresentation of  $\rho$ , we have  $\mu_H(F) < \mu_H(E)$ ;
- (ii) There exist an irreducible representation W of G and a homogeneous H-stable ( $\Rightarrow$  simple) bundle (not necessarily a homogeneous subbundle)  $F_0$  of E, s.t.

$$E = W \otimes F_0$$
.

PROOF:

- $((i) \Rightarrow (ii))$  We only have the two following possibilities:
- (a) E is H-stable, and we have already finished, because  $E = E \otimes \mathbb{C}$ ;
- (b) Otherwise E is H-not stable, and therefore, by hypothesis (i) and corollary 2, it is necessarily  $\bar{F} = E$ , where  $\bar{F}$  is as in the same corollary.

Now,  $\bar{F} = \bigoplus_{i \in I} F_i$  and in this direct sum we can group the  $F_i$ 's which result isomorphic; thus we get

$$\bar{F} = \bigoplus_i W_i \otimes F_i$$

with  $W_i$  vector spaces and  $F_i$  pairwise not isomorphic. Now, by using the H-semistability of  $\bar{F}$ , we will prove that there is only one summand in the above direct sum.

In fact, if there were at least two distinct  $F_i \otimes W_i$  in  $\bar{F}$ , then each of these would be a homogeneous subbundle of E (using for this the same Rohmfeld's argument, with the  $\rho$ -invariance and the Krull-Schmidt theorem's application which is in [2]), of rank  $\langle rk(E) \rangle$ , but with  $\mu_H(F_i \otimes W_i) = \mu_H(F_i) = \mu_H(E)$ , in opposition to the assumption.

Hence  $E = \bar{F} = F_0 \otimes W$ , where  $F_0$  is one fixed of the  $F_i$ 's.

The stability of  $F_0$  is directly given by corollary 2; therefore we only have to show that W is an irreducible representation of G.

 $\bullet$  To prove that W is a representation, we need at first to define an action of G on W: but we can do this in a natural way, after we observed that

$$Hom(F_0, \bar{F}) = Hom(F_0, W \otimes F_0) = W \otimes Hom(F_0, F_0) \simeq W$$

because of the simplicity of  $F_0$ .

The first term of this chain is  $Hom(F_0, \bar{F}) \simeq H^0(F_0^* \otimes \bar{F})$ , on which there is already a natural action of G; therefore W is a representation.

• Now, by contradiction, if W wasn't irreducible, then it would be decomposable, that is we would have  $W = W_1 \oplus W_2$ , with  $W_i$  not-trivial subbundles.

But so it were also  $E = F_0 \otimes W = F_0 \otimes W_1 \oplus F_0 \otimes W_2$ , where the  $F_0 \otimes W_i$ 's are both homogeneous (again by [2]) proper subbundles of E, with  $\mu_H(F_0 \otimes W_i) = \mu_H(E)$ . Hence we found a contradiction to the hypothesis and therefore (i)  $\Rightarrow$  (ii) also in the H-not stable case.

 $((i) \Leftarrow (ii))$  We can suppose E not H-stable, because otherwise the thesis is obvious. Hence, let E be not-stable.

By (ii), we have immediately the H-semistability of E; so, it suffices to show that the only homogeneous subbundle of E, given by a subrepresentation of  $\rho$ , with slope  $\mu_H(E)$  is E itself.

Hence, let E' be another subbundle of E, induced by a subrepresentation of  $\rho$ , with  $\mu_H(E) = \mu_H(E')$ : we can assume that  $\operatorname{rk} E'$  is minimal with respect to the subbundles of E with the same properties.

Thus E' satisfies (i) and so, just by applying the first part of the proof, we know that  $E'=W'\otimes F'_0$ , with  $F'_0$  homogeneous and stable. Now, from the morphism

$$i: W' \otimes F'_0 \hookrightarrow F_0 \otimes W$$

(induced by the inclusion  $E' \hookrightarrow E$ ), it follows the existence of a not-zero  $\varphi \in Hom(F'_0, F_0)$ .

But  $Hom(F'_0, F_0)$  is one dimensional, because both  $F_0$  and  $F'_0$  are stable bundles, with the same slope; thus  $\varphi$  itself is an isomorphism, so that

$$Hom(F_0', F_0) \simeq Hom(F_0', F_0)^G \simeq \mathbb{C},$$

by the stability ( $\Rightarrow$  simplicity) of  $F_0$ ; here by  $Hom(F_0', F_0)^G$  we mean the G-invariant subspace.

Finally, coming back to the morphism i, we can say that it induces a G-invariant map  $W' \to W$  and this implies W' = W, by using the Schur's lemma.

Thus we've got

$$E' = F_0 \otimes W' = F_0 \otimes W = E$$
.

which is our thesis.

#### 4. – A simple homogeneous bundle, which is not-stable.

In this final section, we will discuss the key-example of a homogeneous, simple, but not-stable vector bundle; we will construct this bundle on  $G/P = \mathbb{CP}^2$ , so that in this case we will have  $G = SL(3, \mathbb{C})$  and

$$P := \left\{ egin{bmatrix} det A^{-1} & x & y \ \hline & & & \ 0 & A & \end{bmatrix} \quad | \ A \in GL(2,\mathbb{C}), (x,y) \in \mathbb{C}^2 
ight\}$$

With the notations introduced in section 2, we consider the representation  $\psi$  of P of type (  $\rho_1^{-2}, \rho_0^0 \oplus \rho_2^{-1} \oplus \rho_4^{-2}, \rho_3^0$  ).

We want to write the matrix-form of this  $\psi$ , determined by its type: by the results we indicated in second section, we obtain a first matrix

$$A := egin{bmatrix} 
ho_1^{-2} & I_1 & D_2 & 0 & 0 \ 
ho & 
ho_0^0 & 0 & 0 & 0 \ 
ho & 0 & 
ho_2^{-1} & 0 & D_3 \ 
ho & 0 & 0 & 
ho_4^{-2} & I_4 \ 
ho & 0 & 0 & 0 & 
ho_3^0 \ \end{pmatrix}$$

Hence the matrix-form of  $\psi$  is (by abuse of notation)

(2) 
$$\psi = \exp A = \begin{bmatrix} \rho_1^{-2} & I_1 & D_2 & 0 & \frac{1}{2}D_2D_3 \\ \hline 0 & \rho_0^0 & 0 & 0 & 0 \\ \hline 0 & 0 & \rho_2^{-1} & 0 & D_3 \\ \hline 0 & 0 & 0 & \rho_4^{-2} & I_4 \\ \hline 0 & 0 & 0 & 0 & \rho_3^0 \end{bmatrix}$$

This matrix is important, because it allows us to investigate the not-stability of E: in fact, by corollary 2, if E is not-stable, then it contains the CS-subbundle, which is induced by a subrepresentation of  $\psi$ . So, examining all the subrepresentation of  $\psi$  and calculating the slope of each of these (or better, the slope of each bundle by these induced), we can find a destabilizing subbundle of E.

Recalling (see [10]) that two similar matrices associated to representations of P induce the same bundle, we are able to find a destabilizing subbundle of E,

considering the following matrix, which is similar to  $\psi$ 

(3) 
$$\begin{bmatrix} \rho_1^{-2} & D_2 & 0 & \frac{1}{2}D_2D_3 & I_1 \\ 0 & \rho_2^{-1} & 0 & D_3 & 0 \\ 0 & 0 & \rho_4^{-2} & I_4 & 0 \\ 0 & 0 & 0 & \rho_3^0 & 0 \\ 0 & 0 & 0 & 0 & \rho_0^0 \end{bmatrix}$$

and its submatrix

(4) 
$$\rho := \begin{bmatrix} \frac{\rho_1^{-2}}{0} & D_2 & 0 & \frac{1}{2}D_2D_3\\ \hline 0 & \rho_2^{-1} & 0 & D_3\\ \hline 0 & 0 & \rho_4^{-2} & I_4\\ \hline 0 & 0 & 0 & \rho_3^0 \end{bmatrix}$$

Now, if  $\bar{F} := E_{\rho}$ , then

$$\mu(\bar{F}) = \frac{3}{14} > \frac{1}{5} = \mu(E)$$

and we conclude the not-stability of E.

Finally, we have to show the simplicity of E; we start with the following exact sequence, obtained out of the filtration of  $\psi$ :

$$0 \longrightarrow \bar{F} \longrightarrow E \longrightarrow \mathcal{O} \longrightarrow 0$$

We want to compute  $H^0(E)$ ; hence we need before some information about the first cohomology groups of  $\bar{F}$ .

Let F' and F'' be the homogeneous subbundles of  $\overline{F}$ , given by sub-representations of type  $(\rho_1^{-2}, \rho_2^{-1})$  and  $(\rho_4^{-2}, \rho_3^0)$  respectively (  $F' \leftrightarrow (\rho_1^{-2}, \rho_2^{-1})$  and  $F'' \leftrightarrow (\rho_4^{-2}, \rho_3^0)$ ); then we have

$$0 \longrightarrow F' \longrightarrow \bar{F} \longrightarrow F'' \longrightarrow 0$$

and now we have to compute  $H^0, H^1(F'), H^0, H^1(F'')$ .

(a) F':

$$\begin{split} 0 \longrightarrow & \rho_1^{-2} \longrightarrow F' \longrightarrow \rho_2^{-1} \longrightarrow 0 \\ \\ \Rightarrow 0 \longrightarrow 0 \longrightarrow H^0(F') \longrightarrow 0 \longrightarrow \mathbb{C} \longrightarrow H^1(F') \longrightarrow 0 \longrightarrow H^2(F') \longrightarrow 0 \\ \\ \Rightarrow H^0(F') = 0, \ H^1(F') \simeq \mathbb{C}, H^2(F') = 0 \end{split}$$

(b) F'':

$$0 \longrightarrow \rho_4^{-2} \longrightarrow F'' \longrightarrow \rho_3^0 \longrightarrow 0$$

$$(7) \qquad \Rightarrow 0 \longrightarrow 0 \longrightarrow H^0(F'') \xrightarrow{\beta} \Gamma^{3,3}V \xrightarrow{\gamma} \Gamma^{3,3}V \xrightarrow{a} H^1(F'') \longrightarrow 0$$

By Schur's lemma, a is  $\equiv 0$ , or it is an isomorphism.

If a is an isomorphism, then we have  $\gamma \equiv 0$  and hence  $\beta$  is surjective; therefore  $\beta$  is an isomorphism, i.e.  $H^0(F'') \simeq \Gamma^{3,3}V$ .

Substituting this in the cohomology sequence associated to (6), we get

$$0 \longrightarrow 0 \longrightarrow H^0(\bar{F}) \stackrel{\delta}{\longrightarrow} \varGamma^{3,3}V \stackrel{\sigma}{\longrightarrow} \mathbb{C} \stackrel{\tau}{\longrightarrow} H^1(F) \stackrel{}{\longrightarrow} \varGamma^{3,3}V \longrightarrow 0$$

By the Schur's lemma  $\varepsilon$  must be an isomorphism; hence  $H^1(\bar{F}) \simeq \Gamma^{3,3}V$  and then  $\tau \equiv 0$ : this is a contradiction, because  $\sigma \equiv 0$ , by the same lemma.

Hence a isn't an isomorphism, but  $a \equiv 0$ .

This implies  $H^1(F'')=0$ , because of the surjectivity of a, and thus sequence (7) becomes

$$0 \longrightarrow 0 \longrightarrow H^0(F'') \stackrel{\beta}{\longrightarrow} \Gamma^{3,3}V \stackrel{\gamma}{\longrightarrow} \Gamma^{3,3}V \stackrel{a}{\longrightarrow} 0$$

 $\Rightarrow \gamma$  is an isomorphism,  $\beta \equiv 0$  and  $H^0(F'') = 0$ .

Coming back now to the cohomology sequence of (6),

$$0 \to H^0(\bar{F}) \to 0 \to \mathbb{C} \to H^1(F) \to 0,$$

we finally obtain  $H^1(\bar{F}) \simeq \mathbb{C}$  and  $H^0(\bar{F}) = 0$ .

Hence, with this results the cohomology sequence of (5) is

$$0 \to H^0(E) \stackrel{\mu}{\longrightarrow} \mathbb{C} \stackrel{\theta}{\longrightarrow} \mathbb{C} \stackrel{v}{\longrightarrow} H^1(E) \longrightarrow 0$$

Now, since  $\theta \neq 0$ ,  $\theta$  must be an isomorphism.  $\Rightarrow v \equiv 0$ ,  $\mu \equiv 0$  and  $H^0(E) = 0$ .

We will use this information later, to compute  $H^0(E \otimes E^*)$ .

Now we examine the bundle  $\bar{F} \leftrightarrow (\rho_1^{-2}, \rho_2^{-1}, \rho_4^{-2}, \rho_3^0)$ , induced by matrix (4): with the same method exposed before to search for the subrepresentations of  $\psi$ , we can find all subbundles of  $\bar{F}$  given by sub-representations, and verify that they all have slope  $<\mu(\bar{F})$ :

a) Index 3: (1)  $G_1 \leftrightarrow (\rho_1^{-2}, \rho_2^{-1}, \rho_4^{-2})$ , which is decomposable.

$$\Rightarrow \mu(G_1) = \frac{-3}{10} < \frac{3}{14} = \mu(\bar{F})$$

b) Index~2: (1)  $G_2 \leftrightarrow (\rho_1^{-2}, \rho_2^{-1})$ . Then

$$\mu(G_2) = -\frac{3}{5} < \frac{3}{14} = \mu(\bar{F});$$

(2)  $G_3 \leftrightarrow (\rho_1^{-2}, \rho_4^{-2})$ . Then

$$\mu(G_3) = -\frac{3}{7} < \frac{3}{14} = \mu(\bar{F});$$

c) Index 1: (1)  $G_4=E_{
ho_1^{-2}}=Q(-2).$  Therefore

$$\mu(G_4) = -\frac{3}{2} < \frac{3}{14} = \mu(\bar{F});$$

(2)  $G_5 = E_{\rho_1^{-2}} = S^4 Q(-2)$ . Then

$$\mu(G_5) = 0 < \frac{3}{14} = \mu(\bar{F}).$$

This computation tells us by corollary 3 that  $\bar{F}$  is semistable. Now, just by using the main theorem we can conclude the stability ( $\Rightarrow$  simplicity) of  $\bar{F}$ : by contradiction, if  $\bar{F}$  isn't stable, then by the main theorem in the expression  $\bar{F} = W \otimes F_0$ ,  $F_0$  is a proper homogeneous subbundle of  $\bar{F}$ , because  $F_0$  is stable, while  $\bar{F}$  is not by assumption.

Therefore  $rk(\bar{F}) = 14 = rkW \cdot rk(F_0)$  and we have only three possibilities:

(1) rk(W) = 2 and  $rk(F_0) = 7$ ; but so

$$\mu(F_0) = \mu(\bar{F}) = \frac{3}{14} \Leftrightarrow \mathbb{Z} \ni c_1(F_0) = \frac{3}{2}$$

Thus this possibility leads to a contradiction;

(2) rk(W) = 7 and  $rk(F_0) = 2$ ; in this case

$$\mu(F_0) = \mu(\bar{F}) = \frac{3}{14} \Leftrightarrow \mathbb{Z} \ni c_1(F_0) = \frac{3}{7}$$

and, as above, this case isn't possible;

(3) rk(W) = 14 and  $rk(F_0) = 1$ ; but

$$\mu(F_0) = \mu(\bar{F}) = \frac{3}{14} \Leftrightarrow \mathbb{Z} \ni c_1(F_0) = \frac{3}{14}$$

But this is another contradiction, and hence  $\bar{F}$  is stable.

We are now finally ready to compute  $H^0(End(E))$ .

Starting from (5), and tensoring it with  $E^*$ , we get

$$0 \longrightarrow \bar{F} \otimes E^* \longrightarrow End(E) \longrightarrow E^* \longrightarrow 0,$$

Thus we need to study (i)  $\bar{F} \otimes E^*$  and (ii)  $E^*$ :

(i) If we take the dual of (5) and afterwards we tensor by  $\bar{F}$ , we obtain

$$0 \longrightarrow \bar{F} \longrightarrow E^* \otimes \bar{F} \longrightarrow End(\bar{F}) \longrightarrow 0$$

and its cohomology sequence

$$0 \longrightarrow 0 \longrightarrow H^0(\bar{F} \otimes E^*) \stackrel{\sigma}{\longrightarrow} \mathbb{C} \stackrel{\tau}{\longrightarrow} \mathbb{C} \longrightarrow \dots$$

where we used the simplicity of  $\bar{F}$ ,  $H^0(\bar{F}) = 0$  and  $H^1(\bar{F}) \simeq \mathbb{C}$ . But  $\tau$  is an isomorphism;  $\Rightarrow \sigma \equiv 0$  and, by its injectivity,  $H^0(\bar{F} \otimes E^*) = 0$ .

(ii) The dual of (5) is

$$0 \longrightarrow \mathcal{O} \longrightarrow E^* \longrightarrow F^* \longrightarrow 0$$

Hence, to estimate  $H^0, H^1(E^*)$ , we need some information about the first cohomology groups of  $\bar{F}^*$ .

With the same techniques used for  $H^0, H^1(\bar{F})$ , we can compute  $H^0(\bar{F}^*) = 0$ . Finally, coming back to the cohomology sequence of (10), we have

$$0 o \mathbb{C} o H^0(E^*) o 0$$
  $\Rightarrow H^0(E^*) \simeq \mathbb{C}.$ 

 $\Rightarrow$  from (8) we see that  $H^0(End(E)) \simeq \mathbb{C}$ , i.e. E is simple.

As conclusion to the article, we report some lists, in which we display the results we obtained in all cases of homogeneous vector bundles on  $\mathbb{CP}^2$ , of rk < 15:

## Homogeneous bundles of index 3

| $\mu$ -filtration                                               | Stable                                | Simple |
|-----------------------------------------------------------------|---------------------------------------|--------|
| $( ho_m^l, ho_{m+1}^{l+1}, ho_{m+2}^{l+2}) 	ext{ for } m>0$     | yes                                   | yes    |
| $( ho_{m+2}^{l-2}, ho_{m+1}^{l}, ho_{m}^{l+2}) 	ext{ for } m>0$ | yes                                   | yes    |
| $( ho_m^l \oplus  ho_{m+2}^{l-1},  ho_{m+1}^{l+1})$             | no, but it is semistable $\Leftarrow$ | no     |
| $( ho_{m+1}^{l}, ho_{m}^{l+2}\oplus ho_{m+2}^{l+1})$            | no, but it is semistable $\Leftarrow$ | no     |

for  $l \in \mathbb{Z}$  and  $m \in \mathbb{N}$ .

## Homogeneous bundles of index 4 and rank 10

| $\mu$ -filtration                                | Stable | Simple |
|--------------------------------------------------|--------|--------|
| $( ho_0^{-1}, ho_1^0\oplus ho_3^{-1}, ho_2^1)$   | yes    | yes    |
| $( ho_0^0\oplus ho_2^{-1}, ho_1^1\oplus ho_3^0)$ | yes    | yes    |
| $( ho_1^{-1}, ho_0^1\oplus ho_2^0, ho_3^1)$      | no     | no     |

| $\mu$ -filtration                                                         | Stable | Simple |
|---------------------------------------------------------------------------|--------|--------|
| $( ho_0^{-2}, ho_1^{-1}, ho_2^0\oplus ho_4^{-1}, ho_3^1)$                 | no     | yes    |
| $( ho_0^{-1}, ho_1^0\oplus ho_3^{-1}, ho_2^1\oplus ho_4^0)$               | no     | ?      |
| $( ho_0^0\oplus ho_2^{-1}, ho_1^1\oplus ho_3^0, ho_4^1)$                  | no     | no     |
| $( ho_1^{-2}, ho_0^0\oplus ho_2^{-1}, ho_3^0, ho_4^1)$                    | no     | no     |
| $( ho_1^{-2}, ho_0^0\oplus ho_2^{-1}\oplus ho_4^{-2}, ho_3^0)$            | no     | yes    |
| $( ho_0^0\oplus ho_4^{-2}, ho_1^1\oplus ho_3^0, ho_2^2)$                  | yes    | yes    |
| $(\rho_0^1 \oplus \rho_2^0 \oplus \rho_4^{-1}, \rho_1^2 \oplus \rho_3^1)$ | yes    | yes    |

## Homogeneous bundles of index 5 and rank 15

#### REFERENCES

- V. Ancona, Fibrati vettoriali su varietà razionali omogenee, Boll. UMI, 7 (1988), 299-317.
- [2] M. Atiyah, On the Krull-Schmidt theorem with application to sheaves, Bull. Soc. Math. France, 84 (1956), 306-317.
- [3] S. Faini, Stabilità e semplicità dei fibrati omogenei su  $\mathbb{CP}^2$ , tesi di laurea, Firenze, 2002.
- [4] L. MIGLIORINI, Stability of homogeneous vector bundles, Boll. UMI, Ser. VII, B 10, nr. 4 (1996), 963-990.
- [5] C. Okonek M. Schneider H. Spindler, Vector bundles on complex projective spaces, Birkhäuser, Boston, 1980.
- [6] G. Ottaviani, *Rational homogeneous varieties*, notes for the SMI-course in Cortona, 1995 (available at http://www.math.unifi.it/~ottavian).
- [7] R. PAOLETTI, Stability of a class of homogeneous vector bundles on ℂℙ<sup>n</sup>, Boll. UMI, Ser. VII, A 9, nr. 2 (1995), 329-343.
- [8] S. RAMANAN, Holomorphic vector bundles on homogeneous spaces, Topology, Vol. 5, pp. 159-177, Pergamon Press, 1966.
- [9] R. Rohmfeld, Stability of homogeneous vector bundles on  $\mathbb{CP}^n$ , Geometriae Dedicata, 38 (1991), 159-166.
- [10] R. Rohmfeld, Stabile homogenen Vektorbündel über der komplexen projectiven Ebene, PHD-thesis, Erlangen, 1989.

Dipartimento di Matematica «Ulisse Dini», Università degli Studi di Firenze Viale G.B. Morgagni, 67A - 50134 - Firenze e-mail: faini@math.unifi.it