Simona Faini

On simple and stable homogeneous bundles

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2006_8_9B_1_51_0>
On Simple and Stable Homogeneous Bundles.

Simona Faini

Sunto. – Nell’ articolo abbiamo voluto analizzare il rapporto tra i concetti di stabilità e semplicità per un fibrato vettoriale omogeneo su una varietà proiettiva.
Il teorema principale mostra come un fibrato omogeneo non sia destabilizzato dai suoi sottofibrati omogenei se e solo se esso è il prodotto tensoriale fra un fibrato omogeneo stabile ed una rappresentazione irriducibile.
Daremos quindi un esempio di un fibrato omogeneo, che risulta semplice, ma non stabile.

Summary. – In this work we will analyze the relation between the stability and the simplicity of a homogeneous vector bundle on a projective variety.
Our main theorem shows that a homogeneous bundle is not destabilized by its homogeneous subbundles if and only if it is the tensor product of a stable homogeneous bundle and an irreducible representation.
Then we give an example of a homogeneous bundle, which is simple, but not stable.

1. – Introduction.

In this article we want to examine the relation between the concepts of stability and simplicity for a homogeneous vector bundle.

We start considering a homogeneous rational variety $X := G/P$, with G complex simple Lie group and P a parabolic subgroup; a homogeneous vector bundle E on G/P will be then, as we will see later, given by a representation ρ of P; thus we’ll can write $E = E_\rho$ in the just specified sense.

We will define the notions of simplicity and H-stability in section 2; now we show the results we obtained.

The first result for homogeneous bundles on $X = G/P$ is the Ramanan theorem: if ρ is an irreducible representation of P, then E_ρ is a stable bundle.

From this, we have that symmetric powers of TP^m, or symmetric powers of universal and quotient bundle on grassmannians are stable, because for a representation ρ of P, we have $E_{S^m}\rho \simeq S^mE_\rho$, for all $m \geq 0$.

More generally, in [9] Rohmfeld establishes the following semistability-criterion for homogeneous bundles:
Rohmfeld criterion for semistability: (1) E_ρ is H-semistable $\iff \mu_H(F) \leq \mu_H(E_\rho)$ for every homogeneous subbundle F induced by a subrepresentation of ρ;
(2) If E_ρ is indecomposable and $\mu_H(F) < \mu_H(E_\rho)$ for every homogeneous subbundle F of E_ρ induced by a subrepresentation of ρ, then E_ρ is stable.

Actually Rohmfeld states his theorem in a slightly different form, which is not suitably written: indeed, the Euler sequence provides a counterexample to the last statement of [9].

However, the reader can easily check that what really Rohmfeld proved is the just stated criterion.

Our first result in this work is therefore the next theorem, which is a refinement of the preceding criterion:

Theorem 1. – (Main theorem) Let E be a homogeneous bundle on the homogeneous rational variety G/P (with the preceding notations); then the two following conditions are equivalent:

(i) For every F, subbundle of E induced by a subrepresentation of ρ, we have
$$\mu_H(F) < \mu_H(E);$$

(ii) there exist an irreducible representation W of G and a stable homogeneous subbundle F_0 of E, such that
$$E \simeq W \otimes F_0.$$

We will see later not only the proof of this theorem, but also an application for the next problem.

It is well known that for every vector bundle, H-stability \Rightarrow simplicity, but for rank ≥ 3 the viceversa is not true: in [5] a counterexample is constructed (the simplest one has rk 3 on \mathbb{CP}^2).

Although the notion of homogeneity for vector bundles is a strong hypothesis, in the end of this work we will give an example of a rk 15 homogeneous bundle on \mathbb{CP}^2, such that it is simple, but not stable: doing this, we will use the main theorem we told before.

We finally remark that all simple homogeneous bundles on \mathbb{CP}^2 of rk ≤ 14 are stable: this is the content of the conclusive tables.

2. – Notations and preliminaries.

Let $X := G/P$ a homogeneous rational variety, with G complex Lie group and P its parabolic subgroup.

We will give now two definitions:
Definition 1. – Let E be a vector bundle on the homogeneous rational variety $X := G/P$, of $\dim X = d$. Fixed $H \in \text{Pic}(X)$, H ample, E is said to be H-stable (respectively semistable) if for all subsheaves F of E, $0 \neq F \subset E$, it holds
\[\mu_H(F) < \mu_H(E) \] (respectively \leq),
where
\[\mu_H(F) := \frac{H^{d-1} \cdot c_1(F)}{rk(F)} \]
is the slope of F with respect to H.

Example. – If $G/P = \mathbb{C}P^2$, we will take $H = \mathcal{O}_{\mathbb{C}P^2}(1) = \mathcal{O}(1)$; then, for any vector bundle E on $\mathbb{C}P^2$, by identifying $\mathbb{Z} \cong H^2(\mathbb{P}^2, \mathbb{Z}) \ni c_1(E)$, we have
\[\mu(E) := \mu_H(E) = \frac{c_1(E)}{rk(E)} \]

Definition 2. – A vector bundle E on a homogeneous rational variety $X = G/P$ is said to be simple, if
\[h^0(E \otimes E^*) = 1 \]

Remark 1. – E is simple \iff $\text{End}(E) = \{\text{homotheties of } E\}$.

In this article, we will work essentially with a particular class of vector bundles on X: the homogeneous bundles.

To define these, we need to introduce before the following construction.

Definition 3. – Let $\rho : P \longrightarrow \text{GL}(r, \mathbb{C})$ a representation of P. We define the vector bundle E_ρ on G/P as the quotient of $G \times \mathbb{C}^r$, with respect to the equivalence relation \sim, given by
\[(g, v) \sim (g', v') \iff \text{there exist } p \in P : g = g'p \text{ and } v = \rho(p^{-1})v' \]

Remark 2.
\[E_{\rho_1} \oplus E_{\rho_2} \cong E_{\rho_1 \oplus \rho_2}; \]
\[E_{\wedge^k(\rho)} \cong \wedge^k E_\rho; \]
\[E_{\rho_1} \otimes E_{\rho_2} \cong E_{\rho_1 \otimes \rho_2}; \]
\[E_{S^m \rho} \cong S^m E_\rho; \]
\[E_{\rho^*} \cong (E_\rho)^*. \]
Now, the previous definition allows us to introduce the concept of homogeneity for a vector bundle:

Definition 4. – A vector bundle of \(rk = r \) on \(G/P, E \), is homogeneous, if there exists a representation \(\rho : P \rightarrow GL(r, \mathbb{C}) \) s.t. \(E = E_\rho \).

Remark 3. – If \(E, F \) are homogeneous bundles on \(G/P \), then \(E \oplus F, E \otimes F \) and \(E^* \) are homogeneous too.

Example. – \(O_{\mathbb{C}P^n}(t), T_{\mathbb{C}P^n}(t), S^m(T_{\mathbb{C}P^n}) \) are homogeneous vector bundles, for all \(t \in \mathbb{Z} \), for all \(m \in \mathbb{N} \).

Now we begin by introducing some notations, which we will use in the fourth section: there, we will construct an example of homogenous vector bundle on \(\mathbb{C}P^2 \), which is simple, but not stable.

In that case we will have thus \(G/P = \mathbb{C}P^2 \), i.e. \(G = SL(3, \mathbb{C}) \) and

\[
P := \left\{ \begin{bmatrix} \det A^{-1} & A & y \\ 0 & A \end{bmatrix} \mid A \in GL(2, \mathbb{C}), (x, y) \in \mathbb{C}^2 \right\}
\]

By the definition of the homogeneity of a vector bundle, we are naturally interested in studying the indecomposable (otherwise, the induced vector bundle is decomposable, hence automatically not simple \(\Rightarrow \) not stable) representations of \(P \).

At first, we observe that \(P \simeq GL(2, \mathbb{C}) \times \mathbb{C}^2 \), where the structure of semi-direct product on \(GL(2, \mathbb{C}) \times \mathbb{C}^2 \) is defined by, for \((A \times a), (B \times \beta) \in GL(2, \mathbb{C}) \times \mathbb{C}^2 \),

\[
(A \times a) \cdot (B \times \beta) := (A \cdot B \times (\hat{B}a) + \beta),
\]

Here “\(A \cdot B \)” indicates the usual row-columns product and \(\hat{B}a := \det B \cdot a \cdot B \).

So we can find the representations of \(P \), by combining representations of \(GL(2, \mathbb{C}) \) and of \(\mathbb{C}^2 \).

Now, the irreducible representations of \(GL(2, \mathbb{C}) \) are, for all \(m \in \mathbb{N} \) and \(l \in \mathbb{Z} \),

\[
\rho^l_m : GL(2, \mathbb{C}) \rightarrow GL(m + 1, \mathbb{C})
\]

\[
A \mapsto (\det A)^l \cdot S^m A
\]

and thus, because of the complete reducibility of \(GL(2, \mathbb{C}) \), if \(\psi : P \rightarrow GL(r, \mathbb{C}) = Aut(V) \) is a representation of \(P \), then

\[
\psi|_{GL(2, \mathbb{C}) \times 0} = \bigoplus_{i=1}^{j} \rho^l_{m_i},
\]
From all these considerations, we can deduce the following theorem (see [10] for more details):

Theorem 2. Let $\psi : P \rightarrow Aut(V)$ be a representation, such that

$$\psi|_{GL(2, \mathbb{C}) \ltimes 0} = \bigoplus_{i=1}^{j} \rho_{m_i}^{l_i}.$$

Then there exist a P-invariant flag

$$0 \subset V_1 \subset V_2 \ldots \subset V_j = V$$

such that

$$\rho_{m_i}^{l_i} \simeq V_i/V_{i-1} =: \text{gr}_i V.$$

Moreover, $\psi|_{Id \ltimes \mathbb{C}^2} =: \pi$ induces, for $1 \leq r \leq s \leq j$, operators

$$\pi_{rs} : \mathbb{C}^2 \rightarrow \text{Hom}(\text{gr}_s V, \text{gr}_r V)$$

and, for $1 \leq s < r \leq j$, operators $\pi_{rs} \equiv 0$ (*).

Finally, ψ is completely reducible $\iff \pi \equiv 0$.

Definition 5. (fundamental) Let ψ be as in the preceding theorem. Then $(\rho_{m_1}^{l_1}, \ldots, \rho_{m_j}^{l_j})$ is the type of ψ, and j is the index.

Theorem 3. Define $Q = T^{P^2}(-1)$. If ρ_m^j is an irreducible representation of P, then

$$\text{(1)} E_{\rho_m^j} \simeq S^m T^{P^2}(l-m) \simeq S^m Q(l)$$

$$\text{(2)} (\rho_m^j)^{\ast} \simeq \rho_m^{-l-m}.$$

Remark 4. The type of a representation of P doesn’t determine uniquely the P-invariant flag of theorem 2, in general: this depends on the fact that, when we have three or more irreducible components of $\psi|_{GL(2, \mathbb{C}) \ltimes 0}$ ($\iff j \geq 3$), \Rightarrow we can arrange on the matrix associated to ψ the correspondent diagonal blocks in many different ways (provided we still have a representation, i.e. $\pi_{rs} \equiv 0$ for all $1 \leq s < r \leq j$, as we said before in (*)).

Now, we will display some results, which will help us to write the matrix-form for a representation of P; the first is the

Theorem 4. (see [10]) Let $\psi : P \rightarrow Aut(V)$ be a representation of P, of type
\((\rho_{m_1}^1, \rho_{m_2}^2)\); if \(\psi\) is indecomposable, then necessarily we have

\[
|m_2 - m_1| = 1 \text{ and } \begin{cases}
 l_2 = l_1 + 1, & \text{if } m_1 < m_2; \\
 l_2 = l_1 + 2, & \text{if } m_2 < m_1.
\end{cases}
\]

Moreover, the operator \(\pi_{12}\) is uniquely determined, up to a scalar factor \(\lambda \in \mathbb{C}^\star\), as follows: for \((x, y) \in \mathbb{C}^2\):

(i) if \(m_1 < m_2\), we call \(m = m_1\) and

\[
\Rightarrow \pi_{12}(x, y) = \begin{bmatrix}
(m + 1) \cdot x & y & 2y & 0 \\
x & 2y & 0 & x \\
y & x & x & (m + 1) \cdot y
\end{bmatrix} =: D^{m+1}
\]

is a \((m + 1) \times (m + 2)\) matrix;

(ii) if \(m_2 < m_1\), we call now \(m = m_2\)

\[
\Rightarrow \pi_{12}(x, y) = \begin{bmatrix}
y & y & 0 \\
x & y & 0 & x \\
-x & -x & y & -x
\end{bmatrix} =: I^{m+1}
\]

is a \((m + 1) \times (m + 2)\) matrix.

As a consequence of this theorem, one can verify that in both previous cases it holds

\[
\mu(E_{\rho_{m_2}^\psi}) = \mu(E_{\rho_{m_1}^\psi}) + \frac{3}{2}
\]

Definition 6. – In theorem 4 (where \(\psi\) is indecomposable!), \(\pi_{12}\) is said a connection-operator.

We reported this theorem, because it is the point of departure to prove the following more general results:

Proposition 1. – (see [10]) Let \(\psi\) be an indecomposable representation of \(P\), of type \((\rho_{m_1}^1, \rho_{m_2}^2, \ldots, \rho_{m_t}^t)\); we call \(n := \text{min}\{m_i \mid i = 1, \ldots, t\}\) and \(N := \text{max}\{m_i \mid i = 1, \ldots, t\}\). Then

(i) for each irreducible component \(\rho_m^1\) of \(\psi\), with \(m \neq n, N\), there exist \(h, k \in \{1, \ldots, t\}\) s.t.

\[
m_h = m - 1 \quad \text{and} \quad m_k = m + 1;
\]
(ii) for \(m = n, N \), there exist \(h, k \in \{ 1, \ldots, t \} \) s.t.

\[
m_h = n + 1 \quad \text{and} \quad m_k = N - 1.
\]

In conclusion, the proposition says that the set \(\{ m_i \mid i = 1, ..., t \} \) is connected.

Theorem 5. – (see [10]) Let \(\psi \) be an indecomposable representation of \(P \), of index \(t \). Then there exists an uniquely determined filtration

\[
0 \subset V_1 \subset V_2 \subset ... \subset V_k
\]

with the following properties:

1. \(H_i := V_i/V_{i-1} = \bigoplus_{j \in M_i} \rho_{m_j}^j \), where \(M_i \subset \{ 1, ..., t \} \) is such that

\[
\mu(H_i) := \mu(\rho_{m_j}^j) = \text{constant (with respect to } j)\]

for all \(j \in M_i \);

2. \(\mu(H_i) = \mu(H_{i-1}) + \frac{3}{2} \) for all \(i \in \{ 2, ..., k \} \);

3. \(\psi|_{S^2} \) induces, for each \(i \in \{ 1, ..., k - 1 \} \), a homogeneous not-trivial operator of degree 1

\[
\Theta_i : \mathbb{C}^2 \rightarrow \text{Hom} \left(H_{i+1}, H_i \right).
\]

Definition 7. – In the same hypothesis of theorem 5, we call \(\Psi \upharpoonright \cdots (H_1, H_2, ..., H_k) \) the \(\mu \)-filtration of the representation \(\psi \).

Corollary 1. – Let \(\psi \) be an indecomposable representation of \(P \), with \(\mu \)-filtration \((H_1, H_2, ..., H_k)\) and respective operators \(\{\Theta_i\}_{i \in \{1, ..., k - 1\}} \). Then

\[
\exp \left(\begin{bmatrix}
0 & \Theta_1 & 0 & 0 \\
0 & \Theta_2 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \Theta_{k-1} \\
\end{bmatrix} \right) = \psi|_{S^2} \}
\]

Here and in the following we will intend \(V \) as in \(\mathbb{C}T^2 = \mathbb{P}(V) \); now let \(I^{p,q}V \) be the irreducible representation of \(SL(V) \) corresponding to the Young diagram with \(p \) boxes in the first row, and \(q \) boxes in the second one.

This is all what we need to know to compute the cohomology groups we said; in fact, we have the following well known results:

Proposition 2. – Let \(\rho_m^j \) be the irreducible representation of \(P \) defining
$S^m Q(l)$; then, if we identify ρ^l_m with the homogeneous bundle it induces,

\[
(1) \quad c_1(\rho^l_m) = \left(\frac{1}{2} m + l \right) \cdot (m + 1);
\]

\[
(\nabla)
\]

\[
(2) \quad \mu(\rho^l_m) = \left(\frac{1}{2} m + l \right).
\]

Theorem 6. The first cohomology-groups of $E_{\rho^l_m}$ are

\[
H^0(E_{\rho^l_m}) \cong \Gamma^{m+l,1} V;
\]

\[
H^1(E_{\rho^l_m}) \cong \Gamma^{m-1,l+m+1} V;
\]

\[
H^2(E_{\rho^l_m}) \cong \Gamma^{l-3,1-l,m-3} V.
\]

The goal of this section is the proof of the main theorem (see Introduction): however, we need before the Ramanan construction of «CS-subbundle» ([9]). It allows us to verify the failure of H-stability of a homogeneous vector bundle on its homogeneous subbundles, instead of on all its subsheaves (thus we call «CS-subbundles» those ones which are contradicting stability).

We’re going now to introduce some results, which the reader could find in [9] in a more detailed way:

Definition 8. Let E be a not-stable homogeneous vector bundle. A coherent subsheaf $0 \neq F \subset E$ is said to be SCS (i.e., «strong contradicting stability») in E, if the two following conditions are fulfilled:

(i) F is H-stable and E/F is torsion-free;

(ii) for all coherent subsheaf Q, with $0 \neq Q \subset E/F$, we have

\[
\mu_H(Q) \leq \mu_H(F).
\]

Lemma 1. Let $0 \neq U_1, U_2 \subset E$ be two coherent subsheaves of E, with E/U_1 and E/U_2 torsion-free. If U_1 is H-stable and U_2 satisfies condition (ii) of the preceding definition, then

\[
U_1 \cap U_2 \neq 0 \quad \text{and} \quad U_1 \subsetneq U_2 \quad \Rightarrow \quad \mu_H(U_1) < \mu_H(U_2)
\]
Lemma 2. – Let E be a vector bundle on G/P and
\[M := \{ c_1(F) \mid 0 \neq F \subset E, F \text{ coherent subsheaf of } E \} \]
Then $\text{sup } M < +\infty$ and $\text{sup } M = \max M$.

Proposition 3. – (Existence of SCS-subsheaves) Let E be a H-not stable vector bundle; then E contains a SCS-subsheaf F.

Theorem 7. – (Uniqueness of SCS-sheaves) Let E be a H-not stable vector bundle on G/P, and let $0 \neq U_1, U_2 \subset E$ be two SCS-subsheaves of E, s.t. $U_1 \cap U_2 \neq 0$. Then it is $U_1 = U_2$.

With the assumption that E is not H-stable, we now define the not-empty (by proposition 3) set
\[M_0 := \{ \text{SCS - subsheaves of } E, \text{ with minimal rank } =: r_0 \text{ and maximal slope } \mu_0 \} \]
Proposition 3 and theorem 7 say us that M_0 contains SCS-subsheaves of E, for which every two intersect only trivially ($*$).

Now we call
\[\bar{F} := \bigoplus_{i \in I} F_i, \]
where I is the maximal set of indices for elements of M_0, which form a direct sum; since $\text{rk}E$ is finite and by ($*$), then I is finite too.

Now, if $M \in M_0 - \{ F_i \mid i \in I \}$, then it is $M \cap \bar{F} \neq 0$; in fact, if $M \cap \bar{F} = 0$, then we have to add a new element for M to I, because of the maximality of I with respect to this property (\oplus).

Moreover, the sheaf \bar{F} has maximal slope $\mu_H(\bar{F}) = \mu_0$; therefore \bar{F} satisfies condition (ii) of the definition of SCS-subsheaf. By lemma 1, we have $M \subset \bar{F}$ and thus the subsheaf \bar{F} is uniquely determined.

Finally, we have only to show the properties which characterize our \bar{F}: in particular, in the second of the following theorems we’ll see that \bar{F} is a homogeneous H-semistable subbundle of E. Once again, here we quote some results from [9]:

Proposition 4. – If \bar{F} is defined as above and $A \in M_0$, then there exists $i \in I$ s.t. $A \simeq F_i$.

Theorem 8. – If \bar{F} is as above, then \bar{F} is a homogeneous H-semistable vector subbundle of E, with $\mu_H(\bar{F}) \geq \mu_H(E)$.

Definition 9. – Let \bar{F} be as above; we call it the CS-subbundle of E.
From this construction of \bar{F}, it follows the next

Corollary 2. Let H be an ample fixed element in $\text{Pic}(G/P)$. If E_ρ is a H-not stable homogeneous vector bundle on G/P, then E_ρ contains a homogeneous CS-subbundle; i.e., there exists a homogeneous subbundle $\bar{F} = \bigoplus_{i \in I} F_i$ induced by a subrepresentation of ρ, s.t.

$$\mu_H(\bar{F}) \geq \mu_H(E_\rho),$$

where the F_i’s are homogeneous subbundles of E_ρ, H-stable and with the same slope and rank.

Corollary 3. (see [6]) $\mu_H(\bar{F}) \geq \mu_H(E_\rho)$ for every F, homogeneous subbundle induced by a subrepresentation of $\rho \Leftrightarrow E_\rho$ is H-semistable.

We are now ready to prove the next

Theorem 9. (Main theorem) Let $E = E_\rho$ be a homogeneous vector bundle on G/P; the following conditions are equivalent:

(i) For every homogeneous subbundle F given by a subrepresentation of ρ, we have $\mu_H(F) < \mu_H(E)$;

(ii) There exist an irreducible representation W of G and a homogeneous H-stable (\Rightarrow simple) bundle (not necessarily a homogeneous subbundle) F_0 of E, s.t.

$$E = W \otimes F_0.$$

Proof:

((i) \Rightarrow (ii)) We only have the two following possibilities:

(a) E is H-stable, and we have already finished, because $E = E \otimes C$;

(b) Otherwise E is H-not stable, and therefore, by hypothesis (i) and corollary 2, it is necessarily $\bar{F} = E$, where \bar{F} is as in the same corollary.

Now, $\bar{F} = \bigoplus_{i \in I} F_i$ and in this direct sum we can group the F_i’s which result isomorphic; thus we get

$$\bar{F} = \bigoplus_i W_i \otimes F_i,$$

with W_i vector spaces and F_i pairwise not isomorphic. Now, by using the H-semistability of \bar{F}, we will prove that there is only one summand in the above direct sum.

In fact, if there were at least two distinct $F_i \otimes W_i$ in \bar{F}, then each of these would be a homogeneous subbundle of E (using for this the same Rohmfeld’s argument, with the ρ-invariance and the Krull-Schmidt theorem’s application which is in [2]), of rank $< \text{rk}(E)$, but with $\mu_H(F_i \otimes W_i) = \mu_H(F_i) = \mu_H(E)$, in opposition to the assumption.

Hence $E = \bar{F} = F_0 \otimes W$, where F_0 is one fixed of the F_i’s.
The stability of F_0 is directly given by corollary 2; therefore we only have to show that W is an irreducible representation of G.

- To prove that W is a representation, we need at first to define an action of G on W: but we can do this in a natural way, after we observed that

$$\text{Hom}(F_0, \bar{F}) = \text{Hom}(F_0, W \otimes F_0) = W \otimes \text{Hom}(F_0, F_0) \simeq W$$

because of the simplicity of F_0.

The first term of this chain is $\text{Hom}(F_0, F_0) \simeq H^0(F_0^* \otimes \bar{F})$, on which there is already a natural action of G; therefore W is a representation.

- Now, by contradiction, if W wasn't irreducible, then it would be decomposable, that is we would have $W = W_1 \oplus W_2$, with W_i not-trivial subbundles.

But so it were also $E = F_0 \otimes W = F_0 \otimes W_1 \oplus F_0 \otimes W_2$, where the $F_0 \otimes W_i$'s are both homogeneous (again by [2]) proper subbundles of E, with $\mu_H(F_0 \otimes W_i) = \mu_H(E)$.

Hence we found a contradiction to the hypothesis and therefore (i) \Rightarrow (ii) also in the H-not stable case.

$((i) \Leftarrow (iii)$ We can suppose E not H-stable, because otherwise the thesis is obvious. Hence, let E be not-stable.

By (ii), we have immediately the H-semistability of E; so, it suffices to show that the only homogeneous subbundle of E, given by a subrepresentation of ρ, with slope $\mu_H(E)$ is E itself.

Hence, let E' be another subbundle of E, induced by a subrepresentation of ρ, with $\mu_H(E) = \mu_H(E')$: we can assume that $\text{rk } E'$ is minimal with respect to the subbundles of E with the same properties.

Thus E' satisfies (i) and so, just by applying the first part of the proof, we know that $E' = W' \otimes F_0'$, with F_0' homogeneous and stable. Now, from the morphism

$$i : W' \otimes F_0' \hookrightarrow F_0 \otimes W$$

(induced by the inclusion $E' \hookrightarrow E$), it follows the existence of a not-zero $\varphi \in \text{Hom}(F_0', F_0)$.

But $\text{Hom}(F_0', F_0)$ is one dimensional, because both F_0 and F_0' are stable bundles, with the same slope; thus φ itself is an isomorphism, so that

$$\text{Hom}(F_0', F_0) \simeq \text{Hom}(F_0', F_0)^G \simeq \mathbb{C},$$

by the stability (\Rightarrow simplicity) of F_0; here by $\text{Hom}(F_0', F_0)^G$ we mean the G-invariant subspace.

Finally, coming back to the morphism i, we can say that it induces a G-invariant map $W' \to W$ and this implies $W' = W$, by using the Schur’s lemma.

Thus we've got

$$E' = F_0 \otimes W' = F_0 \otimes W = E,$$

which is our thesis.
4. – A simple homogeneous bundle, which is not-stable.

In this final section, we will discuss the key-example of a homogeneous, simple, but not-stable vector bundle; we will construct this bundle on $G/P = \mathbb{C}P^2$, so that in this case we will have $G = SL(3, \mathbb{C})$ and

$$P := \left\{ \begin{bmatrix} \det A^{-1} & x & y \\ 0 & A \end{bmatrix} \mid A \in GL(2, \mathbb{C}), (x, y) \in \mathbb{C}^2 \right\}$$

With the notations introduced in section 2, we consider the representation ψ of P of type $(\rho_1^{-2}, \rho_0^0 \oplus \rho_2^{-1} \oplus \rho_4^{-2}, \rho_9^0)$.

We want to write the matrix-form of this ψ, determined by its type: by the results we indicated in second section, we obtain a first matrix

$$A := \begin{bmatrix} \rho_1^{-2} & I_1 & D_2 & 0 & 0 \\ 0 & \rho_0^0 & 0 & 0 & 0 \\ 0 & 0 & \rho_2^{-1} & 0 & D_3 \\ 0 & 0 & 0 & \rho_4^{-2} & I_4 \\ 0 & 0 & 0 & 0 & \rho_9^0 \end{bmatrix}$$

Hence the matrix-form of ψ is (by abuse of notation)

$$\psi = \exp A = \begin{bmatrix} \rho_1^{-2} & I_1 & D_2 & 0 & \frac{1}{2}D_2D_3 \\ 0 & \rho_0^0 & 0 & 0 & 0 \\ 0 & 0 & \rho_2^{-1} & 0 & D_3 \\ 0 & 0 & 0 & \rho_4^{-2} & I_4 \\ 0 & 0 & 0 & 0 & \rho_9^0 \end{bmatrix}$$

This matrix is important, because it allows us to investigate the not-stability of E: in fact, by corollary 2, if E is not-stable, then it contains the CS-subbundle, which is induced by a subrepresentation of ψ. So, examining all the subrepresentation of ψ and calculating the slope of each of these (or better, the slope of each bundle by these induced), we can find a destabilizing subbundle of E.

Recalling (see [10]) that two similar matrices associated to representations of P induce the same bundle, we are able to find a destabilizing subbundle of E,
considering the following matrix, which is similar to ψ

$$
\begin{bmatrix}
\rho_1^{-2} & D_2 & 0 & \frac{1}{2}D_2D_3 & I_1 \\
0 & \rho_2^{-1} & 0 & D_3 & 0 \\
0 & 0 & \rho_4^{-2} & I_4 & 0 \\
0 & 0 & 0 & \rho_3^0 & 0 \\
0 & 0 & 0 & 0 & \rho_0^0
\end{bmatrix}
$$

(3)

and its submatrix

$$
\rho :=
\begin{bmatrix}
\rho_1^{-2} & D_2 & 0 & \frac{1}{2}D_2D_3 \\
0 & \rho_2^{-1} & 0 & D_3 \\
0 & 0 & \rho_4^{-2} & I_4 \\
0 & 0 & 0 & \rho_3^0
\end{bmatrix}
$$

(4)

Now, if $\bar{F} := E_\rho$, then

$$
\mu(\bar{F}) = \frac{3}{14} > \frac{1}{5} = \mu(E)
$$

and we conclude the not-stability of E.

Finally, we have to show the simplicity of E; we start with the following exact sequence, obtained out of the filtration of ψ:

$$
0 \rightarrow F \rightarrow E \rightarrow O \rightarrow 0
$$

(5)

We want to compute $H^0(E)$; hence we need before some information about the first cohomology groups of \bar{F}.

Let F' and F'' be the homogeneous subbundles of \bar{F}, given by subrepresentations of type $(\rho_1^{-2}, \rho_2^{-1})$ and (ρ_4^{-2}, ρ_3^0) respectively ($F' \hookrightarrow (\rho_1^{-2}, \rho_2^{-1})$ and $F'' \hookrightarrow (\rho_4^{-2}, \rho_3^0)$); then we have

$$
0 \rightarrow F' \rightarrow \bar{F} \rightarrow F'' \rightarrow 0
$$

(6)

and now we have to compute $H^0, H^1(F'), H^0, H^1(F'')$.

(a) F':

$$
0 \rightarrow \rho_1^{-2} \rightarrow F' \rightarrow \rho_2^{-1} \rightarrow 0
$$

$$
\Rightarrow 0 \rightarrow 0 \rightarrow H^0(F') \rightarrow 0 \rightarrow C \rightarrow H^1(F') \rightarrow 0 \rightarrow H^2(F') \rightarrow 0
$$

$$
\Rightarrow H^0(F') = 0, \ H^1(F') \simeq C, H^2(F') = 0
$$
(b) F'':

\[0 \rightarrow \rho_4^{-2} \rightarrow F'' \rightarrow \rho_3^0 \rightarrow 0 \]

(7) \[0 \rightarrow 0 \rightarrow H^0(F'') \xrightarrow{\beta} I^{3,3}V \xrightarrow{\gamma} I^{3,3}V \xrightarrow{\alpha} H^1(F'') \rightarrow 0 \]

By Schur’s lemma, α is $\equiv 0$, or it is an isomorphism.

If α is an isomorphism, then we have $\gamma \equiv 0$ and hence β is surjective; therefore β is an isomorphism, i.e. $H^0(F'') \simeq I^{3,3}V$.

Substituting this in the cohomology sequence associated to (6), we get

\[0 \rightarrow 0 \rightarrow H^0(F) \xrightarrow{\delta} I^{3,3}V \xrightarrow{\sigma} C \xrightarrow{\tau} H^1(F) \xrightarrow{\epsilon} I^{3,3}V \rightarrow 0 \]

By the Schur’s lemma ϵ must be an isomorphism; hence $H^1(F) \simeq I^{3,3}V$ and then $\tau \equiv 0$: this is a contradiction, because $\sigma \equiv 0$, by the same lemma.

Hence α isn’t an isomorphism, but $\alpha \equiv 0$.

This implies $H^1(F'') = 0$, because of the surjectivity of α, and thus sequence (7) becomes

\[0 \rightarrow 0 \rightarrow H^0(F'') \xrightarrow{\beta} I^{3,3}V \xrightarrow{\gamma} I^{3,3}V \xrightarrow{\alpha} 0 \]

$\Rightarrow \gamma$ is an isomorphism, $\beta \equiv 0$ and $H^0(F'') = 0$.

Coming back now to the cohomology sequence of (6),

\[0 \rightarrow H^0(F) \rightarrow 0 \rightarrow C \rightarrow H^1(F) \rightarrow 0, \]

we finally obtain $H^1(F) \simeq C$ and $H^0(F) = 0$.

Hence, with this results the cohomology sequence of (5) is

\[0 \rightarrow H^0(E) \xrightarrow{\mu} C \xrightarrow{\theta} C \xrightarrow{\nu} H^1(E) \rightarrow 0 \]

Now, since $\theta \neq 0$, θ must be an isomorphism. $\Rightarrow \nu \equiv 0, \mu \equiv 0$ and $H^0(E) = 0$.

We will use this information later, to compute $H^0(E \otimes E^*)$.

Now we examine the bundle $F \leftrightarrow (\rho_1^{-2}, \rho_2^{-1}, \rho_3^{-2}, \rho_3^0)$, induced by matrix (4): with the same method exposed before to search for the subrepresentations of ψ, we can find all subbundles of F given by sub-representations, and verify that they all have slope $< \mu(F)$:

a) Index 3: (1) $G_1 \leftrightarrow (\rho_1^{-2}, \rho_2^{-1}, \rho_4^{-2})$, which is decomposable.

$\Rightarrow \mu(G_1) = \frac{-3}{10} < \frac{3}{14} = \mu(F)$

b) Index 2: (1) $G_2 \leftrightarrow (\rho_1^{-2}, \rho_2^{-1})$. Then

\[\mu(G_2) = \frac{-3}{5} < \frac{3}{14} = \mu(F); \]
(2) $G_3 \leftrightarrow (\rho_3^{-2}, \rho_4^{-2})$. Then

$$\mu(G_3) = -\frac{3}{7} < \frac{3}{14} = \mu(\bar{F})$$

\(c\) Index 1: (1) $G_4 = E_{\rho_4^{-2}} = Q(-2)$. Therefore

$$\mu(G_4) = -\frac{3}{2} < \frac{3}{14} = \mu(\bar{F})$$

(2) $G_5 = E_{\rho_4^{-2}} = S^1Q(-2)$. Then

$$\mu(G_5) = 0 < \frac{3}{14} = \mu(\bar{F})$$

This computation tells us by corollary 3 that \bar{F} is semistable. Now, just by using the main theorem we can conclude the stability (⇒ simplicity) of \bar{F}: by contradiction, if \bar{F} isn’t stable, then by the main theorem in the expression $\bar{F} = W \otimes F_0$, F_0 is a proper homogeneous subbundle of \bar{F}, because F_0 is stable, while \bar{F} is not by assumption.

Therefore $rk(\bar{F}) = 14 = rk W \cdot rk(F_0)$ and we have only three possibilities:

1. $rk(W) = 2$ and $rk(F_0) = 7$; but so

$$\mu(F_0) = \mu(\bar{F}) = \frac{3}{14} \Leftrightarrow \mathcal{Z} \ni c_1(F_0) = \frac{3}{2}$$

Thus this possibility leads to a contradiction;

2. $rk(W) = 7$ and $rk(F_0) = 2$; in this case

$$\mu(F_0) = \mu(\bar{F}) = \frac{3}{14} \Leftrightarrow \mathcal{Z} \ni c_1(F_0) = \frac{3}{7}$$

and, as above, this case isn’t possible;

3. $rk(W) = 14$ and $rk(F_0) = 1$; but

$$\mu(F_0) = \mu(\bar{F}) = \frac{3}{14} \Leftrightarrow \mathcal{Z} \ni c_1(F_0) = \frac{3}{14}$$

But this is another contradiction, and hence \bar{F} is stable.

We are now finally ready to compute $H^0(End(E))$.

Starting from (5), and tensoring it with E^*, we get

$$0 \to \bar{F} \otimes E^* \to End(E) \to E^* \to 0, \tag{8}$$

Thus we need to study (i) $\bar{F} \otimes E^*$ and (ii) E^*:

(i) If we take the dual of (5) and afterwards we tensor by \bar{F}, we obtain

$$0 \to \bar{F} \to E^* \otimes \bar{F} \to End(\bar{F}) \to 0$$

and its cohomology sequence

$$0 \to 0 \to H^0(\bar{F} \otimes E^*) \to \mathbb{C} \to \mathbb{C} \to \ldots \tag{9}$$
where we used the simplicity of $\tilde{F}, H^0(\tilde{F}) = 0$ and $H^1(\tilde{F}) \simeq \mathbb{C}$. But τ is an isomorphism; $\Rightarrow \sigma \equiv 0$ and, by its injectivity, $H^0(\tilde{F} \otimes E^*) = 0$.

(ii) The dual of (5) is

\[(10) \quad 0 \rightarrow \mathcal{O} \rightarrow E^* \rightarrow F^* \rightarrow 0 \]

Hence, to estimate $H^0, H^1(E^*)$, we need some information about the first cohomology groups of F^*.

With the same techniques used for $H^0, H^1(\tilde{F})$, we can compute $H^0(F^*) = 0$. Finally, coming back to the cohomology sequence of (10), we have

\[0 \rightarrow \mathbb{C} \rightarrow H^0(E^*) \rightarrow 0 \]

\[\Rightarrow H^0(E^*) \simeq \mathbb{C}. \]

\Rightarrow from (8) we see that $H^0(End(E)) \simeq \mathbb{C}$, i.e. E is simple.

As conclusion to the article, we report some lists, in which we display the results we obtained in all cases of homogeneous vector bundles on $\mathbb{C}P^2$, of $rk \leq 15$:

Homogeneous bundles of index 3

\[
\begin{array}{|c|c|c|}
\hline
\mu\text{-filtration} & \text{Stable} & \text{Simple} \\
\hline
(p_m^l, p_{m+1}^{l+1}, p_{m+2}^{l+2}) \text{ for } m > 0 & \text{yes} & \text{yes} \\
\hline
(p_{m+2}^{l-2}, p_{m+1}^l, p_m^{l+2}) \text{ for } m > 0 & \text{yes} & \text{yes} \\
\hline
(p_m^l \oplus p_{m+2}^{l-1}, p_{m+1}^{l+1}) & \text{no, but it is semistable} \Leftarrow & \text{no} \\
\hline
(p_{m+1}^l, p_m^{l+2} \oplus p_{m+2}^{l+1}) & \text{no, but it is semistable} \Leftarrow & \text{no} \\
\hline
\end{array}
\]

for $l \in \mathbb{Z}$ and $m \in \mathbb{N}$.

Homogeneous bundles of index 4 and rank 10

\[
\begin{array}{|c|c|c|}
\hline
\mu\text{-filtration} & \text{Stable} & \text{Simple} \\
\hline
(p_0^{-1}, p_0^0 \oplus p_3^{-1}, p_0^1) & \text{yes} & \text{yes} \\
\hline
(p_0^0 \oplus p_2^{-1}, p_1^1 \oplus p_3^0) & \text{yes} & \text{yes} \\
\hline
(p_1^{-1}, p_0^1 \oplus p_2^0, p_3^1) & \text{no} & \text{no} \\
\hline
\end{array}
\]
Homogeneous bundles of index 5 and rank 15

<table>
<thead>
<tr>
<th>(\mu)-filtration</th>
<th>Stable</th>
<th>Simple</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\rho_0^{-2}, \rho_1^{-1}, \rho_2^0 \oplus \rho_4^{-1}, \rho_3^1))</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>((\rho_0^{-1}, \rho_1^0 \oplus \rho_3^{-1}, \rho_2^1 \oplus \rho_4^0))</td>
<td>no</td>
<td>?</td>
</tr>
<tr>
<td>((\rho_0^0 \oplus \rho_2^{-1}, \rho_1^1 \oplus \rho_3^0, \rho_4^1))</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>((\rho_1^{-2}, \rho_0^0 \oplus \rho_2^{-1}, \rho_3^0, \rho_4^1))</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>((\rho_1^{-2}, \rho_0^0 \oplus \rho_2^{-1} \oplus \rho_4^{-2}, \rho_3^0))</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>((\rho_0^0 \oplus \rho_4^{-2}, \rho_1^1 \oplus \rho_3^0, \rho_2^2))</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>((\rho_0^1 \oplus \rho_2^0 \oplus \rho_4^{-1}, \rho_1^2 \oplus \rho_3^1))</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

REFERENCES

Dipartimento di Matematica «Ulisse Dini», Università degli Studi di Firenze
Viale G.B. Morgagni, 67A - 50134 - Firenze
e-mail: faini@math.unifi.it

Percennuta in Redazione
il 6 settembre 2002 e in forma rivista l’8 aprile 2005