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Hodge Classes and Abelian Varieties of Quaternionic Type.

GIUSEPPE LOMBARDO (*)

Sunto. – In questo articolo viene analizzato lo spazio delle classi di Hodge contenute
nella coomologia intermedia di una varietà Abeliana di tipo quaternionico. Vengo-
no costruite al2-rappresentazioni che semplificano lo studio della congettura di
Hodge in quanto l’agebricità di una classe implica quella di tutte le altre contenute
nelle medesima rappresentazione.

Summary. – We obtain «coniugacy classes» (with respect to a al2 action) in the space of
Hodge cycles in the middle cohomology of an Abelian variety of quaternionic type.
The existence of such a class simplifies the study of the Hodge conjecture.

1. – Introduction.

The relationship between abelian varieties of Weil type, which provide an
important test for the Hodge conjecture because of the existence of exceptio-
nal Hodge classes, and Kuga-Satake varieties was investigated by the present
author in [L].

Now, we consider firstly the simple abelian varieties obtained (Poincarè’s
decomposition) from the Kuga-Satake varieties associated to K3-type Hodge
structures of dimension 8 and 7 and we analyze in detail the Hodge classes
contained in their middle cohomology. The endomorphism ring of these varie-
ties contains a quaternion algebra, so, using tools of representation theory, we
construct «conjugacy classes» of cycles with respect to a sl2 action. The alge-
bricity of one element contained in a class implies obviously the algebricity of
the elements contained in the same class, and this provides a simplification in
the study of the Hodge conjecture for these varieties.

Using the same techniques, in section 5 we study more generally Abelian va-
rieties of quaternionic type in order to obtain «conjugacy classes» of Hodge

(*) The author is supported by EAGER - European Algebraic Geometry Research
training network, Contract number HPRN-CT-2000-00099 and by Progetto di Ricerca
Nazionale COFIN 2002 «Geometria delle Varietà Algebriche».
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cycles in their middle cohomology. The main result is Theorem 5, in which we ob-
tain a sl2 representation of dimension 2m11 contained in B m(X), where X is a
2m-dimensional abelian variety of quaternionic type.

The study of abelian varieties whose endomorphism ring is a definite qua-
ternion algebra over Q is very interesting since can provide information about
Hodge classes of Weil-type abelian varieties. Indeed, recently van Geemen
and Verra studied families of abelian 8-folds of quaternionic type, called of
spin (7)-type, and they showed that the Hodge conjecture for infinitely many
families of abelian varieties of Weil type follows from the Hodge (2,2)-conjec-
ture for such 8-folds (see [vG-V]).

2. – Preliminary notions.

2.1. Hodge structures.

A rational Hodge structure of weight k is a rational vectorspace V with a
decomposition of its complexification V7C45p1q4k V p , q where V p , q are
complex vector subspaces such that V p , q 4V q , p . The type of a Hodge structu-
re of weight k is the k11-tuple (dim V k , 0 , dim V k21, 1 , R , dim V 0, k ), and in
particular a weight-two Hodge structure is said to be of K3-type if it has type
(1 , n22, 1 ).

Equivalently, a rational Hodge structure of weight k can be defined using
representation theory as a couple (V , h) with V rational vectorspace and
h : C*KGL(V7R) rational representation such that h(t) 4t k QId for all t in R .

A rational polarized Hodge structure of weight k is a 3-tuple (V , h , c)
where c is a polarization of the weight k Hodge structure (V , h), that is a bili-
near map c : V3VKQ such that

(1) c(h(z) v , h(z) w) 4 (zz)k c(v , w) (v , w�V7R , (z�C*
(2) c(v , h(i) w) 4c(w , h(i) v) (v , w�V7R
(3) c(v , h(i)v) D0 (v�V7R2 ]0(.

2.2. Hodge classes.

Let V be a rational Hodge structure of even weight 2m , the space of its
Hodge classes is B(V) »4VOV m , m . In case of smooth projective varieties X ,
we define the space of its (codimension p) Hodge cycles

B p (X) »4H 2p (X , Q)OH p , p (X) %H 2p (X , C)

and the direct summand Hdg(X) 45p B p(X) is called the Hodge ring of X .
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2.3. Hodge conjecture.

Let X be a smooth projective variety, there are defined cycle class maps

c p : CH p (X)Q

!ai Zi

K

O

H 2p (X , Q)

! ai [Zi ]

from the Chow group (with rational coefficients) CH p (X)Q which associates to
a subvariety Zi %X of codimension p its cohomology class [Zi ]. It is possible to
show that the image of c p is contained in B p (X), and we have the

HODGE (p , p) CONJECTURE. – The map c p : CH p (X)Q KB p (X) is surjective.

2.4. Kuga-Satake varieties.

Let (V , h , c) be a weight 2 polarized Hodge structure of K3-type and let
]g1 , R , gn ( be a basis of V in which the symmetric bilinear form Q42c is
given by Q4d1 X1

2 1d2 X2
2 2d3 X3

2 2R2dn Xn
2 (di �QD0 ). We consider the

Clifford algebra Cn 4
T 7 V

I(Q)
quotient of the tensor algebra T 7 V by the the

two-sided ideal I(Q) 4 av7v2Q(v)b, and in the following we write simply
a1 R ak istead of a1 7R7ak. Let Cn

1 be the even Clifford subalgebra of Cn

(i.e. the subalgebra generated by the class of tensor products of elements of V

in even number) and let J4
1

kd1 d2

g1 g2 . We have obviously J 2 421 and the

left multiplication by J on C 1
n defines a complex structure on C 1

n , R 4
def

C 1
n 7Q R .

Let now C 1
n , Z be the lattice of linear combinations of elements of the basis of

C 1
n with integer coefficients, the quotient

KS4
(C 1

n , R , J)

C 1
n , Z

is a complex torus. This torus is an abelian variety since it admits the
polarization

E(v , w) »4Tr(ai(v) w)

where Tr(x) is the trace of the map «right multiplication on C 1
n by the element

x�C 1
n », i is the canonical involution of the Clifford algebra and a�C 1

n is an
element such that we have i(a) 42a and E(v , Jv) D0 for all v . The abelian
variety

(KS , E)

is called the Kuga-Satake variety associated to the k3-type Hodge structure
(V , h , c).
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3. – Hodge structure of dimension 8.

We start our analysis with a Lemma on Clifford algebras constructed from
a 8-dimensional vector space.

LEMMA 3.1. – Let V be a 8-dimensional vector space and let
Q8 4Hyp5Hyp5 [a]5 [b]5 [c]5 [d] (a , b , c , d�QD0 ) be a quadratic form
on V , we have

C 1 (Q8 ) `gl4 (H(kabcd) )

where H4Q5Qi5Qj5Qk is a quaternion algebra with i 2 42ab ,
j 242ac, k 242a 2bc, ij4k , jk4 i , ki4 j and H(kabcd) 4H7Q Q(kabcd).

PROOF. – Let ]e1 , R , e8 ( be the diagonal basis for Q8 such that Q8 4

diag (2 , 22, 2 , 22, a , b , c , d); the center of C 1
8 is generated by the element

z4e1 e2 R e8 which satisfies

z 2 4 (21)7161514131211 (2)(22)(2)(22) abcd416abcd .

Using the properties of Clifford algebras, we can show that

C 1
8 ` (C 1

6 5e7 C 2
6 )7Q Q(kz) . ( * )

Moreover, we have

C 1
6 4C 1

4 5e5 C 2
4 5e6 C 2

4 5e5 e6 C 1
4

C 2
6 4C 2

4 5e5 C 1
4 5e6 C 1

4 5e5 e6 C4
2 .

We observe that

e7 C 2
4 4e5 e6 (e5 e6 e7 C 2

4 ) , e6 C 2
4 4e5 e7 (e5 e6 e7 C 2

4 ) , e5 C 2
4 4e6 e7 (e5 e6 e7 C 2

4 )

(multiplication by constants does not change linear spaces), therefore

C 1
8 4C 1

4 5e5 C 2
4 5e6 C 2

4 5e5 e6 C 1
4 5e7 (C 2

4 5e5 C 1
4 5e6 C 1

4 5e5 e6 C4
2 )

4 (C 1
4 5e5 e6 e7 C 2

4 )5e5 e6 (C 1
4 5e5 e6 e7 C 2

4 )5e5 e7 (C 1
4 5e5 e6 e7 C 2

4 )

5(e6 e7 )(C 1
4 5e5 e6 e7 C 2

4 )

4 (C 1
4 5e5 e6 e7 C 2

4 )5e5 e6 (C 1
4 5e5 e6 e7 C 2

4 )5e5 e7 (C 1
4 5e5 e6 e7 C 2

4 )

5(2ae6 e7 )(C 1
4 5e5 e6 e7 C 2

4 ) .
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Let B4C 1
4 5e5 e6 e7 C 2

4 , from ( * ) one has

C 1
8 ` (B5e5 e6 B5e5 e7 B52ae6 e7 B)7Q(kabcd) .

Moreover, B`gl4 (Q) (see [L, Thm 6.2] ). The symbols i4e6 e5 , j4e7 e5 and
k42ae6 e7 satisfy the rules of a quaternion algebra, therefore we have
C 1 (Q8 ) `gl4 (H(kabcd) ) as required. r

We consider now the Lie algebra ao8 (C), the Dynkin diagram associated to
such an algebra is D4

Dynkin diagram D4

So, we can denote by [0010] and [0001] be the two half-spin representa-
tions od ao8 (C) (see [F-H] for details) and we have

LEMMA 3.2. – Let (V , h , c) be a general weight-2 rational Hodge structure
of dimension 8 and K3-type with polarization

c`Hyp5Hyp5 [a]5 [b]5 [c]5 [d] (a , b , c , d�QD0 ).

If abcd41 the associated Kuga-Satake variety is isogenous to (A13A2 )4

where A6 are not-isogenous abelian varieties of dimension 8 with H 1 (A6 , C)
isomorphic respectively to [0010]2 or to [0001]2.

PROOF. – Let KS be the Kuga-Satake variety associated to (V , h , c) and

let q4abcd . It has dimension dimC KS4
2821

2
464 and, since End (KS) `
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C8
1

`gl4 (H(kq) ), if q41 we obtain C8
1

`gl4 (H5H). Hence, by Poincaré’s
theorem we have KSAX 4 with XAA13A2 , where A1 and A2 are not isoge-

nous abelian varieties of dimension dimC A64
26

22 2
48. Moreover,

H 1 (KS , C) `C8
1 (c C ) and using the isomorphism described in [F-H, p. 305]

we have H 1 (KS , C) `gl( [0010] )5gl( [0001] ) (we recall that dim[0010] 4

dim[0001] 48). Therefore H 1 (KS , C) ` [0010]8 5 [0001]8 and, from Poinca-
ré’s decomposition, we have that H 1 (A13A2 , C) ` [0010]2 5 [0001]2 so
H 1 (A1 , C) ` [0010]2 and H 1 (A2 , C) ` [0001]2 . Indeed, we cannot have
H 1 (A1 , C) `H 1 (A2 , C) ` [0010]5 [0001] since it implies A1AA2 and the-
se varieties are not isogenous from Poincaré’s theorem. r

We can now prove the following

THEOREM 3.3. – Let A1 and A2 be the simple Abelian varieties occurring
in the decomposition of the Kuga-Satake variety associated to a general 8-di-
mensional K3 Hodge structure (V , h , c). For each A6 there is a 9-dimensio-
nal al2 representation of Hodge cycles contained in H 8 (A6 , Q)O
H 4, 4 (A6 ).

PROOF. – We consider the variety A1 (the situation is obviously analoguous
for A2). Writing H 1 (A1 , C) ` [0010]a 5 [0010]b in order to distinguish the
isomorphic copies, we have a SL2-action (or, equivalently, a al2-action) on

H 1 (A1 , C) ` [0010]a 5 [0010]b . The element H4g t
0

0
t 21h�SL2 acts as t on

[0010]a and as t 21 on [0010]b . We can extend this action to Rn H 1 (A1 , C) in
the obvious way and we consider the one-dimensional space R8 [0010]a `

[0000], the element H acts on this space as t 8 . Using repeatedly the element

Y4g0
0

0
0
h�al2 on R8 [0010]a , since the weights decrease by two under the

action of Y we obtain a al2-representation of dimension 9. This representation
is unique (it is maximal), therefore it must be defined over Q (that is, there
exists a 9-dimensional subspace contained in H 8 (X , Q) such that the repre-
sentation is the C-tensorization of this subspace). Since (V , h , c) is of type K3,
on VC the matrix of h : C*KGL(VR ) can be diagonalized as h(z) 4

diag (z 2 , zz, zz, zz, z2 , zz, zz, zz) and writing z4re iu we have h(z) 4r 2 h(e iu ).
So if we choose z�S 1 we obtain h(z) 4diag (z 2 , 1 , 1 , 1 , z 22 , 1 , 1 , 1 ) �
SO8 (C).

Let Li be the functionals defined by Li ( diag (ajj ) ) 4aii (see [F-H] p. 163),
we have

Li (h(z) ) 4
.
/
´

z 2

1

i41

i42, 3 , 4
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In order to understand if the obtained al2 representation is contained in
B 4 (A1 ) we have to determine if its elements are contained in H 4, 4 (A1 ). We ob-

serve that the weights of the half-spin representation [0010] are
1

2
(6L1 6

L2 6L3 6L4 ) with an even number of minus. We can compute the matrix of the
representation hA : S 1 KGL( [0010] ) using h and these weights

1

2
(L1 1L2 1L3 1L4 )(h(z) )

QQ
Q

1

2
(2L1 2L2 2L3 2L4 )(h(z) )

4kz 2 Q1 Q1 Q1

4kz 22 Q1 Q1 Q1

4z

4z 21 4 z

and we obtain hA(z) ` (z , z , z , z , z, z, z, z). Therefore, R8 [0010] has type (4 , 4 )
and the whole representation is contained (by conjugation) in B 4 (A1 ) 4

H 8 (A1 , Q)OH 4, 4 (A1 ). Looking at the SL2-action, it is easy to find the spaces
in which the cycles are contained and the situation can be summarized as
follows

weights

t 8

t 6

t 4

t 2

t 0

t 22

t 24

t 26

t 28

spaces

R8 [0010]a
R7 [0010]a 7 [0010]b

R6 [0010]a 7R2 [0010]b
R5 [0010]a 7R3 [0010]b
R4 [0010]a 7R4 [0010]b
R3 [0010]a 7R5 [0010]b
R2 [0010]a 7R6 [0010]b

[0010]a 7R7 [0010]b
R8 [0010]b

number of cycles

1
1
1
1
1
1
1
1
1.

Moreover, we observe that the cycles are the [0000] representations (since are
invariants) and that (by explicit computation) there are 10 [0000] representa-
tions contained in H 8 (A1 , Q)OH 4, 4 (A1 ). The last cycle necessarily must be
contained in R4 [0010]a 7R4 [0010]b otherwise, using the SL2-action, the num-
ber of cycles necessarily increases. r

4. – Hodge structure of dimension 7.

Now we consider Kuga-Satake varieties constructed from a 7-dimensional
K3-type Hodge sructure. We show that these varieties can be decomposed in
Abelian 8-folds of quaternionic type and, repeting the same argument of the
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previous section, we compute the number of al2 representations contained in
the space of their codimension 4 Hodge cycles. We obtain the following

THEOREM 4.1. – Let (V , h , c) be a general weight 2 polarized Hodge
structure of dim V47 and dim V 2, 0 41 with polarization
c`Hyp5Hyp5 [a]5 [b]5 [c] (a , b , c�QD0 ), the associated Kuga-Satake
variety is isogenous to four copies of an Abelian variety A of dimension 8.
The space of codimension 4 Hodge cycles of A contains one 9-dimensional,
one 5-dimensional and two 1-dimensionals al2-representations.

PROOF. – The matrix of the representation h : S 1 KGL(VR ) can be diago-
nalized on VC as h(z) 4diag (z 2 , 1 , 1 , z 22 , 1 , 1 , 1 ) �SO7 (C) (see Lemma 3.2),
therefore

Li (h(z) ) 4
.
/
´

z 2

1

i41

i42, 3

(see 3.2). From the isomorphism C 1
`gl4 (H) (analogous to Lemma 3.1, see

also [vG]), we have the decomposition KSAA 4 where A is a simple Abelian va-
riety of dimension dimC A48 with End (A) 4H . In similar way to Lemma 3.2,
C 1 (c C ) `gl(S) where S is the spin representation of ao7 (C) which has dimen-

sion 8 and weights
1

2
(6L1 6L2 6L3 ). The Dynkin diagram associated to

ao7 (C) is B3 (see [F-H])

Dynkin diagram B3

therefore we can write S4 [001]. Now, we repeat the argument of 3.3; the
Hodge structure on this space is given by hA(z) 4diag (z , z , z , z , z, z, z, z),
H 1 (A , C) ` [001]a 5 [001]b and we find a SL2-representation of dimension 9
in H 8 (A , Q)OH 4, 4 (A) starting from R8 [001] 4 [000] which has type
(4, 4).

We can also compute (with the aid of the computer program «Lie»)
the number of the [000] representations in each component of
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R8 ( [001]a 5 [001]b ) and we obtain

weights

t 8

t 6

t 4

t 2

t 0

t 22

t 24

t 26

t 28

spaces

R8 [001]a
R7 [001]a 7 [001]b

R6 [001]a 7R2 [001]b
R5 [001]a 7R3 [001]b
R4 [001]a 7R4 [001]b
R3 [001]a 7R5 [001]b
R2 [001]a 7R6 [001]b

[001]a 7R7 [001]b
R8 [001]b

number of cycles

1
1
2
2
4
2
2
1
1.

Obviously, we have the following situation

(1) one 9-dimensional representation generated by R8 [001],
(2) one 5-dimensional representation generated by the cycle contained in

R6 [001]a 7R2 [001]b and not contained in the previous al2 representa-
tion

(3) two 1-dimensional representations contained in R4 [001]a 7R
4 [001]b . r

REMARK 4.2. – We observe that, starting from a 6-dimensional K3-type
Hodge structure, we obtain (see [L]) that KSAA 4 where A is an Abelian four-
fold of Weil type. The endomorphism ring of A is an imaginary quadratic field,
and H 1 (A , C) ` [001]5 [010] where [001] and [010] are the half-spin repre-
sentations of ao6 (C). These representations are not isomorphic, so in this case
we don’t have a al2-action and we cannot find conjugacy classes. A direct com-
putation of the [000]-representations shows that we have 3 cycles, R4 [010],
R4 [001] and a third cycle contained in R2 [010]7R2 [001] (this cycle is [E 2 ]
where E denotes the polarization of the variety).

5. – Abelian Varieties of quaternionic type.

Let now X be an Abelian variety of dimension 2m with EndQ (X) a totally
definite quaternion algebra H . From [Ab1] we have that the Mumford-Tate
group of X is isomorphic to SO(2m , C) and H 1 (X , C) 4W5W where W is the
standard representation of SO(2m , C). Hence, as is 3.3, we have a al2-repre-
sentation of Hodge cycles corresponding to the action of H . Now, we study
this situation more in detail and we prove the following

THEOREM 5.1. – Let X be an Abelian variety of type III of dimension 2m .
The space of codimension m Hodge cycles contains a al2-representation of di-
mension 2m11.
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PROOF. – Let x�H be a generical element of H with non trivial imaginary
part, Q(x) is a imaginary quadratic field therefore there are a , b�Q such
that x 2 1ax1b40 and A , B�Q such that x 4m 1Ax 2m 1B40. Let Mx be
the action of x on H 2m (X , Q), on H 2m (X , C) Mx has eigenvalues
x 2m , x 2m21 x, R , x2m . Now, we consider Ker (Mx

2 1AMx 1B); if v�
(H 2m (X , C))p , q

we have that (Mx
2 1AMx 1B)v4 (x 2p x2q 1Ax p xq 1B)v . Ob-

serving that the equation y 2 1Ay1B40 has solutions y4x 2m and y4 x2m

we obtain that

V4Ker (Mx
2 1AMx 1B) 4 (H 2m (X , C))2m , 0

5 (H 2m (X , C))0, 2m
.

From [Ab1], the element x�Q(x) acts as x on the first copy of W and as x on
the second, and each copy contains m (1 , 0 ) forms and m (0 , 1 ) forms. Sum-
marizing, we have the decomposition H 1 (X , C) 4H 1, 0

1 5H 1, 0
2 5H 0, 1

1 5H 0, 1
2

(where 1 and 2 mean the action as x or as x respectively). From this decom-
position, we have that the subspace VQ such that VQ 7Q C4V is contained in
H 2m (X , Q)OH m , m (X). Hence, using the H-action on V we obtain a 2m11 di-
mensional representation contained in H 2m (X , Q)OH m , m (X). r
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