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Hodge Classes and Abelian Varieties of Quaternionic Type.

GIUSEPPE LOMBARDO (*)

Sunto. — In questo articolo viene analizzato lo spazio delle classi di Hodge contenute
nella coomologia intermedia di una varieta Abeliana di tipo quaternionico. Vengo-
no costruite Sly-rappresentazioni che semplificano lo studio della congettura di
Hodge in quanto l'agebricita di una classe implica quella di tutte le altre contenute
nelle medesima rappresentazione.

Summary. - We obtain «coniugacy classes» (with respect to a Sl, action) in the space of
Hodge cycles in the middle cohomology of an Abelian variety of quaternionic type.
The existence of such a class simplifies the study of the Hodge conjecture.

1. — Introduction.

The relationship between abelian varieties of Weil type, which provide an
important test for the Hodge conjecture because of the existence of exceptio-
nal Hodge classes, and Kuga-Satake varieties was investigated by the present
author in [L].

Now, we consider firstly the simple abelian varieties obtained (Poincare’s
decomposition) from the Kuga-Satake varieties associated to K3-type Hodge
structures of dimension 8 and 7 and we analyze in detail the Hodge classes
contained in their middle cohomology. The endomorphism ring of these varie-
ties contains a quaternion algebra, so, using tools of representation theory, we
construct «conjugacy classes» of cycles with respect to a sl, action. The alge-
bricity of one element contained in a class implies obviously the algebricity of
the elements contained in the same class, and this provides a simplification in
the study of the Hodge conjecture for these varieties.

Using the same techniques, in section 5 we study more generally Abelian va-
rieties of quaternionic type in order to obtain «conjugacy classes» of Hodge

(*) The author is supported by EAGER - European Algebraic Geometry Research
training network, Contract number HPRN-CT-2000-00099 and by Progetto di Ricerca
Nazionale COFIN 2002 «Geometria delle Varieta Algebriche».
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cycles in their middle cohomology. The main result is Theorem 5, in which we ob-
tain a sl, representation of dimension 2m + 1 contained in B"(X), where X is a
2m-dimensional abelian variety of quaternionic type.

The study of abelian varieties whose endomorphism ring is a definite qua-
ternion algebra over @ is very interesting since can provide information about
Hodge classes of Weil-type abelian varieties. Indeed, recently van Geemen
and Verra studied families of abelian 8-folds of quaternionie type, called of
spin (7)-type, and they showed that the Hodge conjecture for infinitely many
families of abelian varieties of Weil type follows from the Hodge (2,2)-conjec-
ture for such 8-folds (see [vG-V]).

2. — Preliminary notions.

2.1. Hodge structures.

A rational Hodge structure of weight k is a rational vectorspace V with a
decomposition of its complexification VQC =@, ,_, V"7 where V" are
complex vector subspaces such that V¢ = V%7, The type of a Hodge structu-
re of weight k is the k + 1-tuple (dim V*°, dimV*~11 . dim V**), and in
particular a weight-two Hodge structure is said to be of K3-type if it has type
(1,n—2,1).

Equivalently, a rational Hodge structure of weight k£ can be defined using
representation theory as a couple (V, k) with V rational vectorspace and
h: C*—= GL(V @ R) rational representation such that A(t) = th.Id for all t in R.

A rational polarized Hodge structure of weight k is a 3-tuple (V, k, )
where 1 is a polarization of the weight k¥ Hodge structure (V, &), that is a bili-
near map v : VX V—@Q such that

@) ph(z) v, M(z) w) = (z2)" v, w) Yo, we VR, Vze C*
Q) y(, (i) w) =ypw, (i) v) Yv, we VIR
3) ypv, (i)v) >0 Yoe VR — {0}.

2.2. Hodge classes.

Let V be a rational Hodge structure of even weight 2m, the space of its
Hodge classes is B(V) := VN V™™, In case of smooth projective varieties X,
we define the space of its (codimension p) Hodge cycles

BY(X):=H*(X, Q) NH""(X)cH* X, C)

and the direct summand Hdg(X) = &,B”(X) is called the Hodge ring of X.
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2.3. Hodge conjecture.
Let X be a smooth projective variety, there are defined cycle class maps
y,: CH'(X)g — H*(X, Q)
Z%’Zi — Z%‘[Zi]

from the Chow group (with rational coefficients) CH”(X), which associates to
a subvariety Z;c X of codimension p its cohomology class [Z;]. It is possible to
show that the image of v, is contained in B”(X), and we have the

HODGE (p, p) CONJECTURE. — The map v ,: CH”(X)q— B*(X) is surjective.

2.4. Kuga-Satake varieties.

Let (V, h, y) be a weight 2 polarized Hodge structure of K3-type and let
{915 ---, 9.} be a basis of V in which the symmetric bilinear form @ = —v is

given by Q =d; XZ + do X7 — ds X7 — ... — d, X2 (d;€Q-,). We consider the
®
Clifford algebra C, = f(—ézg/ quotient of the tensor algebra T'®V by the the

two-sided ideal I(Q) = (v®@v — Q(v)), and in the following we write simply
0 ... q; istead of 0, ®... ®aq;. Let C," be the even Clifford subalgebra of C,
(i.e. the subalgebra generated by the class of tensor products of elements of V'

1

in even number) and let J = 9192. We have obviously J2= —1 and the

1 W2
left multiplication by J on C," defines a complex structure on C,' g 4 C. ®qR.
Let now C,’ ; be the lattice of linear combinations of elements of the basis of
C," with integer coefficients, the quotient

+
n 7J
ks Gnwd)
T
n, Z

is a complex torus. This torus is an abelian variety since it admits the
polarization

E(w, w) := Tr(auv) w)

where Tv(x) is the trace of the map «right multiplication on C," by the element
xeC,», 1 is the canonical involution of the Clifford algebra and aeC,' is an
element such that we have «a) = —a and E(v, Jv) >0 for all v. The abelian
variety

(KS, E)

is called the Kuga-Satake variety associated to the k3-type Hodge structure
V, ke, ).



250 GIUSEPPE LOMBARDO
3. — Hodge structure of dimension 8.

We start our analysis with a Lemma on Clifford algebras constructed from
a 8-dimensional vector space.

Lemma 3.1. — Let V be a 8-dimensional vector space and let
Qs=Hyp® Hyp® [a]lD[b]D [c]D [d] (a, b, ¢, de Q) be a quadratic form
on V, we have

C " (Qs) = gly(H(\/abed))

where H=Q®Qi®QD®Qk is a quaternion algebra with i*= —ab,
ji=—ac, k*=—a%bc, ij =k, jk=1, ki=j and H(\/abed) = H ®¢Q(\/abcd).

ProoF. — Let {ey, ..., eg} be the diagonal basis for Qg such that Qg =
diag (2, -2, 2, -2, a, b, ¢, d); the center of Cs" is generated by the element
Z=e16,...c3 Which satisfies

22=(—=1)TT6+5+443+241(9y_9Y(2)(—2) abcd = 16 abed .
Using the properties of Clifford algebras, we can show that
Cs' = (Cs DerCs ) ®eQ(V2). ()
Moreover, we have
Cs" =Cf @e;Cy PegCq DesesCy
Cs =Cf DesCy DegCy DesesCy .
We observe that
e:Cy =eseg(esegerCy ),  eCy =eser(esegerCy ),  esCy =egeq(eseger Cf )
(multiplication by constants does not change linear spaces), therefore

Cs" =Cy @esCy DegCy DesegCyf Der(Cy DesCy DegCy DesegCy)

= (Cf @eseser Cf ) Deseg(Cy DesegerCi ) Deser(Cir Desege Cf)
D(eser)(Cy DeseserCy )
= (Cf ®esegerCy ) DPeses(Cyf DeseserCp ) Deser(Cym Deseger Cf )

B(—aeger)(Cy Desege;Cp ).
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Let B= C4+ 6965 (X% C4_ y from ( * ) one has

Cs" = (B®esesBDese; BD —aege; B) Q Q(Vabed).

Moreover, B = gl,(Q) (see [L,, Thm 6.2] ). The symbols i = egze5, j = e;e5 and
k = —aege; satisfy the rules of a quaternion algebra, therefore we have
C*(Qs) = gly(H(\/abed)) as required. m

We consider now the Lie algebra $og(C), the Dynkin diagram associated to
such an algebra is D,

(0010]

O
[1000] [0100]

[0001]
Dynkin diagram D,

So, we can denote by [0010] and [0001] be the two half-spin representa-
tions od S03(C) (see [F-H] for details) and we have

LeEmMA 3.2. — Let (V, h, v) be a general weight-2 rational Hodge structure
of dimension 8 and K3-type with polarization

v=HypS Hyp B a]lB[b]1B[c]BI[d] (a,b,c,deQ-).

If abed =1 the associated Kuga-Satake variety is isogenous to (A, X A_)*
where A . are not-isogenous abelian varieties of dimension 8 with H (A ., C)
isomorphic respectively to [0010T% or to [0001 ]

Proor. — Let KS be the Kuga-Satake variety associated to (V, i, ¥) and
8—1
2 =64 and, since End(KS) =

let ¢ =abed. It has dimension dim¢KS =
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Cs" = gl,(H(\/q)), if ¢ =1 we obtain Cs" = ¢l,(H @ H). Hence, by Poincaré’s
theorem we have KS ~ X* with X ~A, x A_, where A, and A_ are not isoge-
6

nous abelian varieties of dimension dimcA. = 222—2 =8. Moreover,
HY(KS, C) =Cy () and using the isomorphism described in [F-H, p. 305]
we have HY(KS, C) = gl([0010]) ® gl([0001]) (we recall that dim[0010] =
dim[0001] = 8). Therefore H'(KS, C) = [00101*@[0001® and, from Poinca-
ré’s decomposition, we have that H'(A, X A_, C) =[0010 7@ [0001]* so
HYA,,C)=[0010]? and H'(A_, C)=[0001T%. Indeed, we cannot have
HY(A,,C)=H'A_, C)=[0010] [0001] since it implies A, ~A_ and the-
se varieties are not isogenous from Poincaré’s theorem. m

We can now prove the following

THEOREM 3.3. — Let A, and A_ be the simple Abelian varieties occurring
i the decomposition of the Kuga-Satake variety associated to a general 8-di-
mensional K3 Hodge structure (V, h, ). For each A . there is a 9-dimensio-
nal 3l, vepresentation of Hodge cycles contained in HS(A., Q)N
H"*(A.).

PrOOF. — We consider the variety A, (the situation is obviously analoguous
for A_). Writing H'(A,, C) =[0010],® [0010], in order to distinguish the
isomorphic copies, we have a SLs,-action (or, equivalently, a $ly-action) on
HY(A,, C)=[0010],8[0010],. The element H = (é tql) e SL, acts as t on
[0010], and as t ! on [0010],. We can extend this action to A"H(4;, C) in
the obvious way and we consider the one-dimensional space A®[0010], =
[0000], the element H acts on this space as t%. Using repeatedly the element

Y= (8 8) e 3l, on A®[0010],, since the weights decrease by two under the

action of Y we obtain a sl,-representation of dimension 9. This representation
is unique (it is maximal), therefore it must be defined over @ (that is, there
exists a 9-dimensional subspace contained in H®(X, @) such that the repre-
sentation is the C-tensorization of this subspace). Since (V, &, ¥) is of type K3,
on Ve the matrix of h:C*—GL(Vg) can be diagonalized as #h(z) =
diag (22, 27, 27, 2%, 2%, 2%, 2%, 2%) and writing z = oe® we have h(z) = 02h(e®).
So if we choose zeS! we obtain h(z) =diag(z2,1,1,1,272,1,1,1)e
SOz(C).

Let L; be the functionals defined by L;(diag (a;)) = a;; (see [F-H] p. 163),
we have

22 i=1
L;(h(z)) = i
1 i=2,3,4
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In order to understand if the obtained $l, representation is contained in
B*(A,) we have to determine if its elements are contained in H* *(4;). We ob-

serve that the weights of the half-spin representation [0010] are %(tLl +

Ly + Ly = L) with an even number of minus. We can compute the matrix of the
representation £: S'— GL([0010]) using % and these weights

1 I R —

%(—Ll—Lz—Lg—L4)(h(z)) =Ve2111=¢"=%

and we obtain 2(z) = (z, 2, 2, 2, , Z, Z, 2). Therefore, A[0010] has type (4, 4)
and the whole representation is contained (by conjugation) in B*(4;) =
HB8(A;, Q) N H**(A,). Looking at the SL,-action, it is easy to find the spaces
in which the cycles are contained and the situation can be summarized as
follows

weights spaces number of cycles
t8 A[0010], 1
t6 A"[0010], ® [0010], 1
¢ A[0010], ® AZ[0010], 1
t2 AP[0010], ® A%[0010], 1
t0 A*0010], ® A*[0010], 1
t=2 /\3[0010]a®/\5[0010]b 1
t 4 AZ[0010], ® A°[0010], 1
t=6 [0010],® /\7[0010],, 1
t8 /\8[0010]17 1.

Moreover, we observe that the cycles are the [0000] representations (since are
invariants) and that (by explicit computation) there are 10 [0000] representa-
tions contained in H3(A;, @ N H**(A,). The last cycle necessarily must be
contained in A*[0010], ® A*[0010], otherwise, using the SL,-action, the num-
ber of cycles necessarily increases. ®

4. — Hodge structure of dimension 7.

Now we consider Kuga-Satake varieties constructed from a 7-dimensional
K3-type Hodge sructure. We show that these varieties can be decomposed in
Abelian 8-folds of quaternionic type and, repeting the same argument of the
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previous section, we compute the number of 3, representations contained in
the space of their codimension 4 Hodge cycles. We obtain the following

THEOREM 4.1. — Let (V, h, v) be a general weight 2 polarized Hodge
structure  of dimV=7 and dimV*»°=1  with  polarization
Y =Hyp@®Hyp® [a]l D [b]1®B[c] (a, b, ceQ-,), the associated Kuga-Satake
variety s isogenous to four copies of an Abelian variety A of dimension 8.
The space of codimension 4 Hodge cycles of A contains one 9-dimensional,
one 5-dimensional and two 1-dimensionals Sly-representations.

PRrROOF. — The matrix of the representation % : S'— GL(Vy) can be diago-
nalized on Vi as h(z) = diag (2%, 1,1, 22,1, 1, 1) e SO;(C) (see Lemma 3.2),
therefore

4
L;(h(2)) = {
1

(see 3.2). From the isomorphism C " = gl,(H) (analogous to Lemma 3.1, see
also [vG]), we have the decomposition KS ~ A* where A is a simple Abelian va-
riety of dimension dimgA = 8 with End (A) = H. In similar way to Lemma 3.2,
C* (y¢) = gl(S) where S is the spin representation of 30;(C) which has dimen-

sion 8 and weights %(tLl + Ly, + L3). The Dynkin diagram associated to
50,(C) is Bs (see [F-H])

O— 'OND D

[100] [010] , [001]

Dynkin diagram B,

therefore we can write S =[001]. Now, we repeat the argument of 3.3; the
Hodge structure on this space is given by 16 =diag(z, z, 2, 2, %, %, %, %),
H(A, C)=[001],&[001], and we find a SLy-representation of dimension 9
in H¥A,Q NH*"*(A) starting from AZ*[001]=[000] which has type
(4, 4).

We can also compute (with the aid of the computer program «Lie»)
the number of the [000] representations in each component of
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A8([001],8[001],) and we obtain

weights spaces number of cycles
t8 A8[001], 1
6 AT[001],®[0011, 1
t4 AS[001], ® AZ[001], 2
t2 AP[001],® AP[001], 2
t0 A*[001], ® A*[001], 4
2 A3[001],® A°[001], 2
t 4 AZ[001], ® AS[001], 2
t=6 [001], ® AT[001], 1
t=8 AS[001], 1.

Obviously, we have the following situation

(1) one 9-dimensional representation generated by A%[001],
(2) one 5-dimensional representation generated by the cycle contained in
AS[001], ® AZ[001], and not contained in the previous 3, representa-

tion

(3) two 1-dimensional representations contained in A*[001],® A
4
[001],. m

REMARK 4.2. — We observe that, starting from a 6-dimensional K3-type
Hodge structure, we obtain (see [L]) that KS ~ A* where A is an Abelian four-
fold of Weil type. The endomorphism ring of A is an imaginary quadratie field,
and H'(A, C) =[001]6[010] where [001] and [010] are the half-spin repre-
sentations of 504(C). These representations are not isomorphie, so in this case
we don’t have a 3l,-action and we cannot find conjugacy classes. A direct com-
putation of the [000]-representations shows that we have 3 cycles, A*[010],
A%[001] and a third cycle contained in A2[010]® AZ[001] (this cycle is [E?]
where E denotes the polarization of the variety).

5. — Abelian Varieties of quaternionic type.

Let now X be an Abelian variety of dimension 2m with Endy(X) a totally
definite quaternion algebra H. From [Abl] we have that the Mumford-Tate
group of X is isomorphic to SO(2m, C) and H*(X, C) = W& W where W is the
standard representation of SO(2m, C). Hence, as is 3.3, we have a 3l,-repre-
sentation of Hodge cycles corresponding to the action of H. Now, we study
this situation more in detail and we prove the following

THEOREM 5.1. — Let X be an Abelian variety of type I11 of dimension 2m.
The space of codimension m Hodge cycles contains a Sly-representation of di-
mension 2m + 1.
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ProoF. — Let € H be a generical element of H with non trivial imaginary
part, Q(x) is a imaginary quadratic field therefore there are a, be @ such
that %+ ax+b=0 and A, BeQ such that *" + Ax*" + B=0. Let M, be
the action of  on H?"(X,Q), on H?*"(X,C) M, has eigenvalues
ko lE, ., ™. Now, we consider Ker(M?2+AM,+B); if ve
(H2"(X, 0))" " we have that (M2 + AM, + B)v = (x*" % + Ax"Z' + B)v. Ob-
serving that the equation %%+ Ay + B =0 has solutions y = x*" and y = T*"
we obtain that

2m, 0 0, 2m

V=Ker(M2+AM,+B)=(H*"(X, )" & H"X, )"

From [Ab1], the element x € @(x) acts as « on the first copy of W and as ¥ on
the second, and each copy contains m (1, 0) forms and m (0, 1) forms. Sum-
marizing, we have the decomposition H'(X, C) =H} '@ HY "o HY '@ H"!?
(where + and — mean the action as x or as ¥ respectively). From this decom-
position, we have that the subspace Vj such that V,®,C =V is contained in
H?"(X, @) N H™ ™(X). Hence, using the H-action on V we obtain a 2m + 1 di-
mensional representation contained in H2"(X, Q) NH™ ™(X). =
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