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Bollettino U. M. 1.
(8) 9-B (2006), 221-245

Distributional Dunkl Transform and
Dunkl Convolution Operators.

JORGE J. BETANCOR

Sunto. — In questo lavoro, che é diviso in due parti, studiamo la trasformata distri-
buzionale di Dunkl su R. Nella prima parte studiamo la trasformata di Dunkl e gli
operatori di convoluzione di Dunkl sulle distribuzioni temperate. Dimostriamo che le
distribuzioni temperate che definiscono operatori di convoluzione di Dunkl sullo
spazio di Schwartz S sono gli elementi di O.,, lo spazio degli operatori convoluzione
usuali su S. Nella seconda parte definiamo la trasformata distribuzionale di Dunkl
usando il metodo del nucleo. Introduciamo gli spazi funzione di Fréchet contenenti il
nucleo della trasformata di Dunkl. Nella dimostrazione delle proprieta della trasfor-
mata distribuzionale di Dunkl, definita sugli spazi duali corrispondenti, alcune
rappresentaziont degli elementi degli spazi duali giocheranno un ruolo tmportante.
Queste rappresentazioni ci permettono di semplificare, in contrasto con 1 metodi
usuali e precedenti (vedi, per esempio [T] e [13]), le sopracitate dimostrazioni. La nostra
nuova, procedura st applica anche ad altre trasformate distribuzionali integrali che
sono state studiate da altri autort (trasformate di Hankel ([7] e [13)), fra le altre).

Summary. - In this paper, that is divided in two parts, we study the distributional Dunkl
transform on R. In the first part we investigate the Dunkl transform and the Dunkl
convolution operators on tempered distributions. We prove that the tempered dis-
tributions defining Dunkl convolution operators on the Schwartz space S are the
elements of O, the space of usual convolution operators on S. In the second part we
define the distributional Dunkl transform by employing the kernel method. We in-
troduce Fréchet function spaces containing the kernel of the Dunkl transform. In the
proof of the properties of the distributional Dunkl transform, defined on the corre-
spoding dual spaces, certain representations of the elements of the dual spaces will
play an itmportant role. These representations allows us to simplify, in contrast with
the previous and usual methods (see, for instance [7] and [13]), the mentioned proofs.
Our new procedure also applies to other distributional integral transforms that had
been investigated by other authors (Hankel transforms ([7] and [13]), amongst others).

1. — Introduction.

An extension of the notion of hypergroup of Jewett ([11]) was introduced by
Roesler ([16]). She considered the concept of signed hypergroup by modifying
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the hypergroup axioms in several points, mainly in abandoning positivity and
support continuity of the convolution. A special case of commutative signed
hypergroup is that one is associated with Dunkl operators and closely connected
with the Bessel-Kingman hypergroups ([12]).

The Dunkl operator 4,, a > —1/2, associated with the reflection group Z5 on
R is defined by

Aaf(%)zdj;izc)+2a;1f(x) —9{(—90)’

x#£0,

and 4,f(0) = 2(a + 1) % (0). This operator was studied for the first time by Dunkl
([4]) in connection with a generalization of the classical theory of spherical har-
monics.

Assume through this paper that a > —1/2. The initial value problem

(1.1) Auf@) = if @),  fO) =1,
has, for every 4 € C, a unique solution that is called Dunkl kernel and is denoted

by E,(J.), A € C ([17] and [19]). E, is related with the Bessel function J, of the
first kind and order a as follows

E.(2) = T.(2) + ﬁnﬂm, zeC,
where
00 z2n
Tyz) = '(a+1) ; T ey <€

Note that T,(z) = 24I"(a + 1)(iz) “J,(iz), z € C.
Associated with Dunkl kernels, integral transforms F', are defined as follows

Fy($)(x) :fEa(_ wa)p(y)dw,(y), x <R,
R

where, for instance, ¢ is in the Lebesgue space L;(w,) and

‘x|2a+1

= 2{1+1]"(a + 1) dx.

dwq ()
The classical Fourier transform on R coincides with F_; 5.
By S we represent the Schwartz function space, that is endowed, as usual,
with the topology generated by the family {7, ;}, zcy of seminorms, where, for
every n,k € N,

Vi dk
x ’qu(x)

k() = sup , ¢€8.



DISTRIBUTIONAL DUNKL TRANSFORM AND DUNKL CONVOLUTION OPERATORS 223

The space of pointwise multipliers of S is constituted by all those functions f that
are in C*(R) and for which, for every k € N there exists n; € V such that

dk
—Ny
ilel}? 1+ |x|) dk fle)] < oo.

The Dunkl transform F', is an isomorphism from S into itself ([10, Corollary
4.22]). Moreover, the inverse mapping F, ! of F, is given by, for each ¢ € S,

fE iy dw.y) = Fo@)(—x), x€R.

For every ¢ € S, we have that
Fo(4,9)(x) = iwFy()(x), x€R.

The Dunkl transform F, is defined on S, the dual space of S, by transposition.
That is, if T' € §', the generalized Dunkl transform F/ T of T is given by

(12) (FIT,¢) = (T,F.8), $€S.

The convolution operation associated with Dunkl transform was investigated
by Roesler ([17]). The Dunkl translation ,7,, « € R, is defined through

T(@)1) ff A0, #40,)2), yER,

where d(J, # .0,)(z) is a signed measure given, for every x,y € R, by
d(0:#40,)(2) = Ky (2, y,2)dw,(2), x,y € R\ {0},

d(0g#40y)(2) = 0y, y € R, and d(5,#400)(z) = ., ® € R\ {0}. Here J, repre-
sents the Dirac measure in «, for every x € R, and K|, is a function defined in [17]
as follows

Ka(xa?/a z)=(1- Oxyzt Ozay + O'z,y7x)pa(|x|a ‘?/|» |Z|)7
where
(@ +9y? —2%) /2wy, if v,y € R\ {0}
Oxyz =
0, otherwise

and

]

2 2\(s2 (|l [0s\2))4—1/2 .
i@ 1y, 2l) = {ba (el +|y* =2z Zfl\x\ lyD*) it el e el = Wl 2] + ]I,

0, otherwise

being b, = 21-*(I'(a + 1))*\/al (a + 1/2).
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The Dunkl convolution f #,g of f and ¢ in L;(dw,) is defined by

(F#0@ = [ g Par(Ndw,y), @ <R.
R

The following interchange formula relating to #, and F,
(1.3) Fo(f#.9) = F.(f) Fu(g)

holds for every f,g € Li(w,).

Throughout this paper, to simplify, we will write 7., * € R, K and #, instead
of 47, x € R, K, and #,,.

This paper is divided in two parts.

Our objective in the first part of this paper is to investigate the Dunkl
transforms, the Dunkl translations 7., « € R, and Dunkl convolution on the space
S’ of tempered distributions. Our study is inspired in the classical investigation of
Schwartz ([18]) about the usual convolution operators and in the analysis of
Betancor and Marrero ([3] and [14]) for the distributional Hankel convolution.
We characterize the tempered distributions that defines Dunkl convolution op-
erators in S and we prove that the space of Dunkl convolution operators on S
coincides with the space O, ([18]) of usual convolution operators on S.

Dube and Pandey [7] and Koh and Zemanian [13] studied the distributional
Hankel transforms by using a procedure usually called the kernel method. This
procedure has been used by other authors to investigate different integral
transformations (see, for instance, [1], [6] and [22]). In the monograph of
Zemanian [23] the interested reader can to find the studies of several distribu-
tional integral transformations by employing the kernel method and other
procedures. When an integral transform is defined in spaces of distributions by
using the kernel method, the main property that must be proved is the inversion
formula. Usually, this inversion theorem is very difficult to prove (see [7], [13]
and [22]).

In the second part of this paper we propose to investigate the distributional
Dunkl transform in two different spaces, inspired by [7] and [13], by using the
kernel method. We introduce new ideas that allows us to simplify the proofs of
the most of properties of the distributional Dunkl transforms considered (in
contrast with the method of proofs in [7] and [13]). We remark that our ideas,
supported by certain representations of the elements of the corresponding dual
spaces, apply also for the Hankel transforms and they allow us to obtain new and
simpler proofs of the properties of the distributional Hankel transforms estab-
lished in [7] and [13].

We emphasize that our results complement the ones obtained by Ben
Mohamed and Trimeche ([15]) about the distributional Dunkl transforms and
convolutions in other spaces of distributions.
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By C always we represent a suitable positive constant that can be changed
from one line to another.

2. — Dunkl transformation and Dunkl convolution on tempered distribu-
tions.

2.1. - Some new properties of the spaces S and S'.

In this paragraph we present two properties of the spaces S and S’ that will be
useful in the sequel. We firstly describe the space S of Schwartz through the
Dunkl operators.

ProposITION 2.1. - We define, for every n,k € N,

Vi@ = sulg " Ap(w)], peS.
xre

Then a function ¢ € C*(R) is in S if, and only if; y; () < oo, for each n,k € N.
Moreover the topology generated by the family {V?z,k}n,keN of seminorms on S
agrees with the usual topology of S.

Proor. — To prove this property it is sufficient to proceed as in the proof of [5,
Proposition 4.4]. [ |

We now establish a new representation for the elements of S’. This re-
presentation can be proved in a standard way (see, for instance, [2] and [20]) by
using the Hahn-Banach and Riesz representation theorems.

PROPOSITION 2.2. — Let T be a functional on S. Then T € S if, and only if,
there exist r € N and complex regular Borel measures wy, i, n,k € N, n,k <1, on
R, such that

2.1) o)=Y [ apwi ), ses

n,k=0 R
]

Suppose that f is a Lebesgue measurable function on R such that, for some
m €N,

22) f (1 + |2 ™™ £ @) die < oo.
R
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Then f generates an element, that we continue denoting by f, on S’ through

|90|20+1

(f,8) = ;! FRw) gt da, peS.

In particular, in this way, the space S and the space of pointwise multipliers of S
can be seen as subspaces of S'.

As it was mentioned in the introduction, the Dunkl transform F', is an iso-
morphism from S into itself ([10, Corollary 4.22]) and the Dunkl transform is
defined in the the dual space S’ of S by transposition.

2.2. — Dunkl convolution operators on tempered distributions.

In this section we analyze the behaviour of Dunkl translations and Dunkl
convolutions on the spaces S and S'.

The Dunkl transform F';, and the Dunkl translations 7, # € R are related by
the following formula ([15, (2.25)])

Fy(t,¢) = E,(ix)F,(¢), ¢S and x<cR.

Then, if x € R, 7, defines a continuous linear mapping from S into itself provided
that E,(ix.) is a multiplier of S.

PROPOSITION 2.3. - Let x € R. The Dunkl translation t, defines a continuous
linear mapping from S into itself.

Proor. — We are going to see that E,(ix.) is a pointwise multiplier of S. It is
sufficient to prove that, for every k € N there exists n;, € IV for which
e

sup (1 + [¢) ™"
teR

a(tt)

< 00.

d
WE

This can be proved by using well-known properties of Bessel functions (see [21, p.
199] and [23, (7), p. 129]). ]

Proposition 2.3 allows us to define the Dunkl convolution 7'#¢ of T' € S” and
¢ € S as follows

(23) (TH#HP(x) = (T1), (:9)(=1)), we€R.
IfT € S"and ¢ € S, itis not true always that T# ¢ € S. Indeed, assume that T
is the functional defined on S by

(T.¢) =f¢(x)|x|2a+ldx, eS8
R
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Itis clear that T € S’. We have that, by taking into account the properties of the
function K ([17]), for every ¢ € S,

(T#8)@) =(T(0), (@)~ )
=[ @) - ar
R

_ | |2’1+1 d t2a+1dt
¢ X, W 2[¢|
2a+1

. . 2a+1 L
- Rf 6(2) Rf Ko, —t, 2t by de

2a+1

. . 20+1 L

- f $2)z*dz, xeR.
R

Hence, if ¢ € S such that [$(z)[z[** " dz # 0, then T#$¢ S.
R

PROPOSITION 24. — Let T € S and ¢ € S. Then T#¢ is a pointwise multi-
plier of S.

Proor. — By Proposition 2.2 we can assume without loss of generality that

(T, ) = f o Ay @dw), weS,
R

where 1,k € N and w is a complex Borel regular measure on R.
Then, we have

(TH#)(x) = f Y A @)= y)duty)
R
—(= 1 [y i)~
R
V[ F B i) F A~ 0))danty)
R

1 [ FuBu— A~ )~ pduty), R,
R
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Moreover, for every [ € N,

dl i o . .
L oW =(-1) R] y n(WEa(fm)Fau ¢)(,t)>(,y)dw(y)
I o dl . k
=(—1) Z»LI!-FQ (A{';Jf (WE,,(f W) F o (A" P)(— t))) (—ydwly), x€R.

The derivation under the integral sign is justified because E(ix.) is a pointwise
multiplier of S (see the proof of Proposition 3.1).

A straightforward manipulation, by taking into account properties of the
Bessel functions ([23, (7), p. 129] and the boundedness of the functions z'/2J,(z)
and z7%/,(z) on (0, 00)) and that the Dunkl transforms is an automorphism of S,
allows us to obtain r € IV such that

dl
PP (T#¢)(x)

<Cl+x))', =xz€eR.
Thus we establish that T'#¢ is a pointwise multiplier of S. [ ]

REMARK 1. — Note that in the proof of the above proposition we prove that if
T € S, then for every k € N there exists n, € N for which

dlc
sup (1 + |a|) ™" W(T#@(%)

rER

< 00,

foreach ¢ € S.

As a consequence of Proposition 2.4 we can also get the following.

PROPOSITION 2.5. — Let T € S'. For every k € N there exists n, € N such
that

sup (1 + |=)) "™ |45 T #¢)(z)| < oo,
ze€R

for every ¢ € S.

Proor. — By invoking Proposition 2.2 we can write

P

1.8 = Y [e"dpwidw,w),  peS,

n.k=0 R

where r € N and wy, n,k € N, n,k <7, are complex Borel regular measures
on R.
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Let | € N. By differentiation under the integral sign we obtain

AT#) @) = f y A At (@) = y)diw, ()
nk 0 R
=3 f Y A AL~ i, i)
nk=0 R
—(T#A P @), xcR and peS8.

Now Proposition 2.4 allows us to conclude the proof of this proposition.

REMARK 2. — Along the proof of Proposition 2.5 we establish that
AT H#Y) = TH#(A),

foreveryT €S, ¢ € Sandk € N.

229

According to (1.3), [10, Corollary 4.22] and since the elements of S are

PrOPOSITION 2.6. — Let T € S" and ¢,y € S. Then
TH#(p#y) = (TH#HP) #w.

pointwise multipliers of S, we can see that the # convolution defines a con-
tinuous linear mapping from S x S into S. Now we establish an associative
property for the distributional #-convolution.

PRrOOF. — According to Proposition 2.2, without loss of generality, we can

consider that 7 is defined by

(T,y) = f " A y(e)dw(x), weS,
R

where n,k € N and w is a complex Borel regular measure on R.

Then

(T G#u)@) = [ " A GHp)(~ pduty)
R

= [y At v~ pduty)
R

—(—1F f YD) # () (— y)dwly)
R

| |2a+1

: — 1 ff‘[_y /1 ¢ (Txl// WdZd@U( )
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20-+1
)k k 2|
1) k[rx fy T (M) (— y)dw(y 2‘1+1F(a+1)dz

=((T#P(y), (tzw)(—y)), xeR.

The interchange of the order of integration is justified because w is a complex
regular Borel measure on R and ¢,y € S. [ |

From Proposition 2.6 we can deduce the following interchange formula for the
distributional Dunkl transform.

PROPOSITION 2.7. - Let T € S" and ¢ € S. Then

FI(T#S) =F (T)F,().
ProoF. — By Proposition 2.6 we can write, for v € S,

(Fo(T#¢),w) =(T#¢,Fow)
=(T#&) W), F (p)(—y)
=(T(y), @#F, 'w)(—y))
—(T,F,NF($#F, y)(— )
=(T(y), F; (Fup)p)(— 1))

=(F(DF (@), ).
n

Let now m € Z. We define the space A, ,, that consists of all these functions
C>(R) such that, for every k € N,

" (@) = sulg A + Ja)" ]| Ax ()| < 0.

., 1M

A, is endowed with the topology associated to the family {7’
norms.

Ben Mohamed and Trimeéche ([15, Proposition 3.1]) established that, for every
m €N, A,y does not depend on a > —3 and Ag_m =S_y, where S_,, is de-
fined as follows (see [9]). Let m € N. A functlon ¢ € C*(R)isin S_,, if and only
if, for every k € N,

}een of semi-

k

L 4

B (@) =sup (1 + |x)™" s

reR

< 00.
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S_,, is endowed with the topology generated by {f};'},cy- It is clear that S is
contained in S_,,. We define S_,, as the closure of Sin S_,,. We have that S_,, is
continuously contained in S_,, 1. The union space O, = UmeNS_m is endowed
with the inductive topology. O., the dual space of O, is the subspace of S’
constituted by the elements of S’ that define usual convolution operators in S ([9]
and [18]).

Our objective is to show that the elements of O, can be characterized also
as the Dunkl convolution operators on S. First we need to prove the fol-
lowing useful representation result that can be proved in a standard way by
using Hahn-Banach and Riesz representation theorems (see, for instance, [2]
and [20]).

PROPOSITION 2.8. — Let T € O.. For every m € Z, there exist r € N and
complex Borel regular measures wy, wy,...,w,, on R, such that

r

(1.9) =" [+ [a)" Agwidm),  ¢eS.

k=0 R

Next we establish the main result of this section.

PRrOPOSITION 2.9. — Let T € S'. The following conditions are equivalent.
) TeoO.
i) FI(T) is a multiplier of S.
iii) Forevery m € N, there exist v € N and continuous functions fo, fi,-...frs
on R, such that

Z [ dgw@eflde,  pes,
=0 R

and sup,cg [y"fi(@)] < oo, j =0,1,..,7
iv) The mapping ¢ — T # ¢ is continuous from S into itself.

PROOF. — (i) = (#9). Assume that T € O.. According to Proposition 2.8, for
every m € Z, we can write

r

f 1+ 2" A d)dw @), ¢ eS8,
=0 R

where » € NV and wy, wx,..., w, are complex Borel regular measures on R.
Then, fixed m € Z, m <0, that will be specified later, we have, for
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every ¢ € S,
(F,T,¢) =(T,Fy$)
f1+|x\ )" AEF () () dawy ()
0 R
- f (1 + &) F () ¢l — 2)) (@) daog (@)
k=0 R
P 20+1
-3 [+ e [ Bz s )%drddwk(m)
=U R R
r /m |z|2a+l
R = R
Hence
Fl(T)@) (—i2) f 1+ o) "E(— izz)dwy(x), zeR.
k=0 R

Let I € N. Leibniz’s rule leads to

d T (1 d , di .
dlea(T)(z)—Z(—z)kZ<>dH( f+\| 25 B~ )dw @), z€R,

k=0 7=0

provided that m < —m, for some m; large enough. Then by using again [23, (7),
Chapter 5] and by boundedness properties of the Bessel functions we conclude
(by choosing m suitably) that

& Fne

sup (1 + [z)) ™™
zeR

< 00,

for a certain n; € N. Hence F',T is a multiplier of S.
(it) = (177) Suppose that F(T) is a multiplier of S, that is, for every I € N
there exists n; € IV such that

sup (1 + [a]) "™ | F,(T)(x)| < co.

dl
xeR d

We define the function
Gl@) = 1 +2°) "Fi(T)(x), xeR,

where k € N will be specified later.
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Note that, if &£ > % 4+ 2(a + 1) then
[16@llafde < ¢ [ @+ a0 a2 e < co.
R R
Hence (F;)_lG = F1G. Indeed, for every ¢ € S, we have
(F))7'G,¢) =(G,F,"¢)
- f Gla)(F 1) () P e

—fF |x‘2(l+1dx
Thus we obtain that
=(F)7H (1 + 1) G))
k
Z <k> F/ Z]G
=0\
ko rk
Z( ) — 1Y AZ(F)HG)
J=0 J
k
:Z (j) ~ 1Y AVFNG),

[
Il
(=]

where A, is here understood in a distributional sense.
Let m € N. If k is large enough we can write

(= )" Fu(@)(y) =F, (47 (G)(~y)

—fE iy A"G )| de, yeR.

Then, for a suitable ¢ € N and provided that & is large enough,

ly"F L (G)y)| < Cor<nax 75:(G) <00, yecR.

Thus we prove that (i7) is true.
(122) = (7). Assume that (:22) is true. Let m € N. There exist » € N and con-
tinuous functions f;, j = 0,1, ...,7, such that 7' = Z A ]3, where 4, is under-

stood in a distributional sense, and sup,cg (1 + [y|) m+2‘”3| fiy)| < co. Then, we
have that

(2.4) Z f A @) f@) e, peS.

J=0 R



234 JORGE J. BETANCOR

Hence

(T, |<CZSHP 1+ |2 ™" 4 ()]

] 0 xreR
i2as3 |x|2a+1
~§161£(1+|x|) Ifj |f1+ |2a+3 ¢esS.

Thus we prove that T can be extended to S_,, as an element of S’ in a unique
way given by (2.4).
(1) = (). By Proposition 2.7, for every ¢ € S, we can write

T#¢=F (F)TFu(9).

Since, if (¢7) is true, F(T) is a multiplier of S, the mapping ¢—T #¢ is con-
tinuous from S into itself.

() = (i7). Assume that (7v) holds. Then, according to [10, Corollary 4.22] and
Proposition 2.7, the mapping ¢ — ¢F" (T) is continuous from S into itself, where
F!(T) € S'. Then, by invoking the Fourier transform, we conclude that 7 (7) is a
multiplier of S. ]

For every T € 8’ and R € O, we define the Dunkl convolution T'#R of T and
R as the element of S’ given by

(2.5) (T#R,§) = (T,R#4), $€S.

Proposition 2.6 allows us to see that the definition (2.5) is an extension of defi-
nition (2.3) because each element of S is also a multiplier of S.

It is immediate to prove the following interchange formula for the distribu-
tional Dunkl transform.

PROPOSITION 2.10. — Let T € S’ and R € O.. Then

Fy(T#R) = F,(T)F,(R).
n

The following algebraic properties of the distributional Dunkl convolution can
be proved by using Propositions 2.9 and 2.10.

PROPOSITION 2.11. — Let T € S" and R, L € O.. Then
i) R#L € O, and R#L = L#R.
i) T#R#L)=(T#R)#L.
iii) T#0 = T, where o denotes the Dirac functional.
iv) A(TH#R) = (A,T)#R = T# (A,R), where A, is understood in a dis-
tributional sense. [ |
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3. — Distributional Dunkl transform by using the kernel method.

In this section we define the distributional Dunkl transforms by employing
the kernel method. In this method we need to define function spaces containing
the kernel of the Dunkl transform. We will define the Dunkl transform in two
different distribution spaces according to the ideas developed by Dube and
Pandey [7] and Koh and Zemanian [13] to investigate the distributional Hankel
transforms.

3.1. — The function spaces Hp and their duals.

We consider a function & that is continuous and zero free on R and such that
&) = O(xel’), as || — oo, where ff € R.

The space Hj of functions is defined as follows. A smooth function ¢ on R is in
Hy if, and only if, for every m € N, the quantity

wh (@) = sup |E(@) 4} $(a)]
reR

is finite. Hy is endowed with the topology associated with the family {wﬁm}m6 n of

seminorms.

PROPOSITION 3.1. — The space Hy is Fréchet.

ProoF. — To see this property we can use Proposition 2.1 and that the space
C>*(R), equipped with the usual topology, is Montel ([9, p. 239]). Indeed, assume
that (¢,).cn is a Cauchy sequence in Hg. It is not hard to see that, for every
meN, ( T;, &, nen is a Cauchy sequence uniformly in every compact subset of
R\ {0}. We choose a function ¢ € C*(R) such that p(x) = 0, || > 2, and p(x) = 1,
|¢| < 1. Then the function ¢,¢ € S, n € N. According to Proposition 2.1 we have
that, for every m € N, there exists » € IV and C > 0 for which

m d’WL
sup |—¢, (x s (¢, @)p(x))
o | g 9] < 2 o)
<C> sup| 43,0 @)
=0 ©
<Cz<supl/ff;(¢n x)|+ sup |4 ¢n<0)(x>|>
j=0 o] <1 1<jx|<2

J
<03 (il + s |75 @o))

e|<1 1<]x|<2

<C, meN.
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Hence, the sequence (¢,,)»cn is a bounded sequence in C*(R). Then, since C*(R)
is a Montel space, there exists a subsequence (¢, Jren of (¢, )ney and a function
¢ € C*(R) such that ¢, — ¢, as k — oo, in C*°(R). Therefore, for every m € N
and x € R,

(3.1) Ay, (@) — A'¢(®),  as  k— oo

Since (¢,,)uen is a Cauchy sequence in Hy, standard arguments allow us to infer
from (3.1) that ¢nk — ¢,as k — oo, in Hg, and then that ¢, — ¢, asn — oo, in Hp.
|

In Proposition 3.1 we also prove that H; is continuously contained in C*(R).
Moreover, since /1, is a continuous mapping from S into itself (Proposition 2.1), S
is continuously contained in Hjy. Then Hy is dense in C*(R). However, if $(0 the
space S is not dense in Hy. Indeed, let £(0. It is clear that if S is a dense subspace
of Hpg, then lim . ¢(x) =0, for every ¢ c Hz. We define the function
@ € C(R) such that

Thus ¢(x) does not converge to 0, as |x| — oo. However, ¢ € Hy. Hence we
conclude that S is not dense in Hg, for every (0. Moreover, since A, is a con-
tinuous mapping from S into itself, S is continuously contained in Hj.

The dual space of H; is denoted by ’H};. By using again Hahn-Banach and
Riesz representation theorems (see Propositions 2.2 and 2.8) we can obtain the
following representation for the restriction to S of the elements of .

PRrOPOSITION 3.2. — Let T be a functional on Hp. If T € H;;, then there exist
r € N and complex regular Borel measure wy, ws, ..., w, on R such that

P

1.6) =Y [ddewadn), ¢es.

k=0 R

3.2. — The Dunkl transform on the space H}j.

Assume now and in the sequel that f < a + 1. Our objective is to define the
Dunkl transform of the generalized functions in H;),. The main result of this
section is Proposition 3.7 where we show an inversion formula for the distribu-
tional Dunkl transform introduced.

PROPOSITION 3.3. — Let y € R. Then the function E,(— iy.) is in the closure of
S into Hp.
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Proor. — We firstly prove that £/,(— #y.) € Hg. Let m € N. According to (1.1)
we have that

AE(—ixy) = (—iy)"E.(—ixy), «cR.

Then, by taking into account the behaviour of the Bessel function at infinite ([21,
p. 199], we obtain, when |x| is large, that

|E) A", (— iya)| < Claeff 712,
Hence, since £, is a smooth function on R,

W (B, (—iy.) < oo

m

Thus we show that E,(— iy.) € Hg.

Let ¢ be an even and C*°-function on R such that ¢(x) =1, || <1, and
@) =0, [x| > 2. We define, for every n € N, ¢,(®) = ¢(x/n), x € R. It is clear
that ¢, E,(—1y.) € S, for each n € N. We are going to see that ¢, E.(—1y.)
— E,(—1y.), as m — oo, in Hy.

Let m € N. By invoking [5, Proposition 2.1, (iii)], for every n € N,

|45 (@, () Eo( = iyz) — By (—iyz))| < C( ;xm (¢, (@) E,(— iyx) — E,(— iyx))
m—1
d’ ) _
+ W(¢n( - W)Ea(lyﬂc) - E',L(Zyac)) >>7 |90| >1.

By taking into account several properties of the Bessel functions, namely:
27"J,(2) is an entire function for every v > — 1/2; the behaviour of J,(z) for large
|z] ([21, p. 199]), and the differentiability property ([23, (7), p. 129]), we can
conclude that, for every ¢ > 0, there exists xy > 0 such that

|E(@) A (@, () E o (— iyx) — Ey(—iyx)| <& |¢| > a9 and n € N.
On the other hand, if » € N and n > xp,
2) A" (¢, (@) E,(— iyx) — Eo(—iyx) =0, || < .
Thus we establish that
w’ (¢, E.(—iy.) — E.(—1iy.)) — 0, as n — oo.

Hence ¢,E,(—1y.) — E,(—1y.), as m — oo, in Hp, and E,(—ty.) is in the
closure of Sin Hg. W
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IfT e H’ﬂ we define the Dunkl transform F,(T) of T by
(3.2) Fo(D)(y) = (T(x),E,(— tyx), yeER.
Assume that T € H}g. According to Proposition 3.2, for certain complex reg-

ular Borel measures wy, wy, ..., w, on R, we have

P

(3.3) (1.9 =" [cwsigwanw), ses.

k=0 R

Moreover, the right hand side of (3.3) defines an element of H’ﬁ. Indeed, for
every ¢ € Hg, we have that

> [ s

k=0 R

< sup @) Afg()| Y Jwe|(R)
xeR k=0

being >~ [wi|(R) < oo.

Hence
-

(1,6) =" [ @ digtmdu )
k=0 R

for every ¢ being in the closure of S into ;.
Then, by Proposition 3.3, for each y € R, we can write

F,(T)(y = (T(x) E, (—1iyx))

f (@) A" B, (— iya) () daog ()

(3.4) —

<

0 R
= —1y) ff —wyx)dwg(x), ye€R.
= o

In the following we establish several properties of the generalized Dunkl
transform. Note that our proofs are simpler than the ones for the corresponding
properties for the distributional Hankel transforms in [7]. Representations (3.3)
(and then (3.4)) will play a main role in our proofs.

PROPOSITION 3.4. — Let T € H;;. Then there exists | € N and C > 0 for which

|F,(D(y)| < CU+y),, yeR.

ProoF. — It is sufficient to use (38.4) and to proced as in the proof of
Proposition 3.3. ]

PROPOSITION 3.5. — Let T € H’ﬁ. Then F,(T) is m-times continuously differ-
entiable in R, provided that f < a—m +1/2.



DISTRIBUTIONAL DUNKL TRANSFORM AND DUNKL CONVOLUTION OPERATORS 239

PRrROOF. — According to (3.4) we can write that

P

F,(T)(y = Z (— iy)kfé(%)Ea(— wyx)dw(x), yER,
R

k=0

where r € N and wy, is a complex regular Borel measure, for k =0, ..., r
Let j € N. A straightforward manipulation allows us to obtain that

> i (ydyy

for certain ¢; ; € R and d; ; € N, 1 = 1,2, ...,j. Then, by invoking [23, (7), p. 129]
we get
d’ . d (., "
WEG(— iyx) = i (2 I'(a + D)((wy) “J,(ey) —iley)” Ja+1(902/))>

J
= — 2“1—'((1 + 1) ( Z Ckljydk«fxzk(xy)fakaaJrk(xy)
k=1

J
+1 Z ijydwx% (%y)faikelaﬂcﬂ (xy)
k=1
j-1

i) ooy wy) T ke (acy)) , wyeR.
k=1

By using now [21, p. 199] we have

d/ |2, || > 1

w(lyIE( x)l{

1, le| <1

where w is a polynomial with positive coefficients.
Then, differentiating under the integral sigh we can see that F',(T') is m-times
continuously differentiable provided that f < a —m + 1/2. ]

Since S is continuously contained in H, if T' € H’ﬁ, then the restriction of 7' to
Sisin S’. Hence we can define two distributional Dunkl transforms of 7": by (1.2)
as an elementof S’ and by (3.2) as an element of H};. We now establish that the
two distributional transforms of T coincides as elements of S'.

PROPOSITION 3.6. — Let T € H;;. Then, F,(T) defines an element of S" and, for
every ¢ € S,

(35) <Fa(T),¢> = <T’ Fa(¢)>
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PrOOF. — Note firstly that, by Proposition 3.4, F,(T) defines an element of S’
according to (2.2). We have that, for every ¢ € S,
o0 20+1

[ Famsw) 1y

md?] = (T,F.(9).

—00

By invoking Proposition 3.2 it is sufficient to prove the property when 7 takes
the form

- f @A @)dwlx), €S,
R

where m € N and w is a complex regular Borel measure. Then

Py = (—iy)" [ @B~ iyo)dwi),  yeR.
R

Now, by interchanging the order of integration, that is justified by the properties
of the Bessel functions and the measure w, and by (1.1) we obtain

20+1 2a+1

i 1y ly]
f F“ (y ¢(y 2“+1Fa+1 d’y f ¢ *ly fé ZZ/% d?/l)(x)mdy
2a+1
_fé Aquﬁ )E,(— iyx) 2a+|1y]!‘( )dydw( x)
—(T,F,($), ¢ES.
|

The inversion formula for the distributional Dunkl transform on H}; is proved
in the folllowing.

PROPOSITION 3.7. — Let T € Hj. For every r > 0 we define

2a+1

(3.6) T.(x) fF E,(izy) v

mdy, r €R.

Then, T, — T, as r — oo in the weak * topology of S'.

PrOOF. — Note firstly that according to Propositions 3.4 and 3.5 the integral
defining 7'.(x) is absolutely convergent, for every » > 0 and « € R. Moreover, for
each r > 0, T, is bounded on R and then, it defines an element of S’ by

2a+1

||
fT Vorra ™ €S
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We are going to see that, for every ¢ € S,
(3.7) (Tr,9) = (T,9), as r— oo,

when T takes the form

7,¢) = [ do arg@dn),  $es,
R

where m € N and w is a complex regular Borel measure. Then
F,(T)(y) = —1ymfé (—yx)dw(x), yeR.

For every r > 0, we have

2a+1

7, () = f (= i) Bulie) s f @B iyw)duw()dy,
and, for every ¢ € S,
f @) 2a+‘19i2aa+11 ’"( )" Baliy) 2a+‘1yr‘2atl f @~ ty2)dw(z)dydv
= f &) f )" By (— iyz)% f P@)E, (iyx) %dwdw(@
- f @) f W= ) @yt

On the other hand, we can write, for every ¢ € S,

:ff ) Ay plac)daw(ae

20+1

m |
fff )4 fF E,(— zyw)mdydw(m

2a+1

— [ @ [ (=" @B~ i) dydute).
R R

20+ + 1)

Then, (3.7) is proved when we see that, for every ¢ € S,

T 20+1

i [eo] (- )mEa(—iyz)%F @)yt

(38) - | |2a+1
; - Y
—f f f (— 2y90)F,1 1(¢)(?/) mdyd?/{)(%)
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Let ¢ € S and r)0. We can write, by proceeding as in the proof of Proposi-

tion 3.4,
e (f f > V"F @B~ iyly dydw()
R

< [ 1@ [ " F @) B~ iy [y dydlaol @)
R

[y|=r

<c f diwl@) [ 1y/'1F; @w)ldy.

ly|>r

for some [ € N. Hence, since Fa’l(cﬁ) € S ([10, Corollary 4.22], (3.8) is established.
Thus the proof is finished. ]

From Proposition 3.7 follows immediately the following uniqueness property.

PROPOSITION 3.8. - Let T € H};. IfF,(T) =0, then T = 0 on S.
[

By arguing as in [7] we can present some applications of our theory to some
differential-difference equations involving the operator A,.

3.3. — The complex distributional Dunkl transform.

Koh and Zemanian [13] investigated a complex version of the distributional
Hankel transform by using the kernel method. In this paragraph we present an
analogous study for the Dunkl transforms but now the properties can be proved,
as in the previous case, by using the corresponding representation of the ele-
ments of the dual space and the distributional Dunkl transforms. Since the
proofs of these properties are similar than to those presented in the previous
sections we will omit here the proofs of the properties.

We firstly introduce new spaces of functions. Let & > 0. A function ¢ € C*(R)
is in M, if, and only if, for every m € NV,

P = supe —all| A" ()| < o0

The space M, is endowed with the topology associated with the family {p}'},,cn
of seminorms. By proceeding as in the proof of Proposition 3.1 we can show that
M, is a Fréchet space. Moreover the inclusions S ¢ M, C C*°(R) are continuous.

By J!, we denote the dual space of M. A representation of the restriction to S
of the elements of J, that, as we have mentioned, plays a crucial role in the
following.
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PROPOSITION 3.9. —- Let T be a functional on M. Then, if T € M ;, there exist
r € N and complex Borel reqular measures wy,ws, ..., w,. on R such that

(3.9) (T, ¢) = i f e~ A p(w)dwy (), peS.

k=0 R

Note that the right hand side of (3.9) defines an element of M;
The kernel of the Dunkl transform is in the closure of the space S in M, in a
suitable strip of the complex plane.

ProposiTION 3.10. — Ify € C where |Imy| < a, then E,(— iy.) is in the closure
of Sin M,

Proor. — It is sufficient by taking into account that
(@2) T p(2)| < Ce®l™zl 2 c R and z € C
([13, p. 950]), and to proceed as in the proof of Proposition 3.3. [ |
If T € M, we define the Dunkl transform F,(T) of T by
Fo(T)w) = (T@), Eo(— iyx)),  [Imyl(a.

By combining Propositions 3.9 and 3.10 and by (1.1) we obtain that, if 7 € M,
then

F.(T)(y) = Z(— yi)kfe‘“mEa(— wyx)dw(x),  |[Imy| < a,
k=0 R

where » € N and wy, wy, ..., w, are complex regular Borel measures on R.
We now establish the main properties of the Dunkl transform on M’,. Each of
them can be proved as the corresponding one in the previous case on H};.

PROPOSITION 8.11. — Let T € M',. Then
i) There exist r € N and C)0 such that

Fu(T)y) < CA+[y))",  [Umy| <a.

ii) F,(T) is a holomorphic function in the strip {y € C : |Imy| < a}.
iii) For every ¢ € S we have that

2a+1

dy = (T, F.(¢)).

R
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iv) If, for every r > 0, T is defined by

2a+1

1,0 = [ FulD By o0y,

201 (0 + 1)

then T, — T, as r — oo, in the weak * topology of S'.
v) If T € M, and F,(T) =0, then T = 0 on S. ]
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