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Cauchy Problem in Multi-anisotropic Gevrey Classes
for Weakly Hyperbolic Operators.

DANIELA CALVO

Sunto. — St dimostra la buona positura del problema di Cauchy per sistemi debolmente
iperbolict nell’ambito delle classi Gevrey multi-anisotrope, generalizzanti le classi
Gevrey standard. Il risultato e ottenuto sotto le seguenti ipotesi: la parte principale ha
coefficienti costanti; 1 termini di ordine inferiore soddisfano delle condizioni di tipo
Levi; infine 1 coefficienti dei termini di ordine inferiore appartengono a un’oppor-
tuna classe Gevrey anisotropa. Nella dimostrazione viene utilizzata la tecnica della
quasi-simmetrizzazione di sistemi di tipo Sylvester, adattata alle classt Gevrey
multi-anisotrope e tenendo conto dei termint di ordine inferiore.

Summary. — We prove the well-posedness of the Cauchy Problem for first order weakly
hyperbolic systems in the multi-anisotropic Gevrey classes, that generalize the
standard Gevrey spaces. The result is obtained under the following hypotheses: the
principal part is weakly hyperbolic with constant coefficients, the lower order terms
satisfy some Levi-type conditions; and lastly the coefficients of the lower order terms
belong to a suitable anisotropic Gevrey class. In the proof it is used the quasi-sym-
metrization of Sylvster-type systems, adapted to the case of the multi-anisotropic
Gevrey classes and taking into account the lower order terms.

Introduction.

We consider the Cauchy problem for first order linear Kowalevskian N x N
systems:

Q) { duult, x) = A(t, x, Dyult, x) + B, x)K(D)u(t, ) + f(t, x)

w(0, ) = uo(x)

where A(t,x,D) is a first order partial (or pseudo-) differential operator and
K(D) is a pseudo-differential operator of order zero.

We recall that for weakly hyperbolic systems (i.e. the eigenvalues of the
symbol of A(t,x,D) are pure imaginary), without supplementary conditions,
the Cauchy problem is not well-posed in C* for operators with C* coefficients;
an explicit counterexample is constructed for instance by Colombini-Spagnolo
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[7] for a second order equation. Only for some classes of hyperbolic systems
the C>* well-posedness is granted, for instance the symmetric systems (i.e.
when the principal symbol is hermitian) or the smoothly symmetrizable sys-
tems, including the strictly hyperbolic case (i.e. the eigenvalues of the prin-
cipal symbol of A(t,x,D) are pure imaginary and distinet). For arbitrary
weakly hyperbolic equations, a general result has been obtained in the Gevrey
classes, that represent an intermediate case between the C* and the analytic
classes in which the well-posedness is given by the Cauchy-Kowalevsky
Theorem.

Namely, consider the following global version of the standard Gevrey classes:
we say that u belongs to 5., s > 1,if u € C*°(R") and there is a positive constant
C such that:

(2) HDau(ﬂﬁ)HLz < C‘GHI((I!)S’ Va € N”.

Therefore, the Cauchy problem is well-posed in the Gevrey classes y;, for
1 < s < 374, where M denotes the maximal multiplicity of the eigenvalues of the
matrix-symbol of the system, under the condition of the same Gevrey regularity
for the coefficients. The proof of this result can be found in Larsson [20] and
Cattabriga [6] (cf. also Hormander [16] and Rodino [25]) in the case of equations
with constant coefficients, Steinberg [26] in the case of equations with smooth
characteristic roots, and lastly Bronstein [2] in the general scalar case and
Kajitani [19] in the vector case. This result is optimal, unless we assume some
additional conditions on the principal part and the lower order terms (see for
instance Leray [21] and Leray-Ohya [22]).

In this paper we obtain a well-posedness theorem which generalizes in some
cases the above mentioned results, enlarging the class of admissible initial data.
Namely, let us begin by defining in short the multi-anisotropic Gevrey classes,
previously studied by Friberg [10], Gindikin-Volevich [13], Corli [8], Hakobyan-
Markaryan [14], [15] and Zanghirati [27].

We start with a convex polyhedron P ¢ R} = {x € R" : @; > 0,...,x, >0},
assuming that the origin belongs to P, all the other vertices have integer co-
ordinates and the normal vector v(x) at each point « € 9P (outside vertices and
coordinate hyperplanes) has strictly positive components. Then, we set:

1 .
= min v;(a)
2 1<j<n,x€dP

and
k(a,P) =inf{t >0:t 'a € P}, VaeR].

In Section 1 we present in detail the properties of the polyhedra satisfying these



CAUCHY PROBLEM IN MULTI-ANISOTROPIC GEVREY CLASSES ETC. 23

conditions and define the following function associated to P:

(3) lp = ( > 52”> , VEER",

veV(P)

where V(P) is the set of the vertices of P.

Therefore, in Section 2 we define the multi-anisotropic Gevrey classes yzf,
s > 1, associated to the complete polyhedron P: namely, we say that « belongs to
ny (R™ if w € C>*(R™) and there is a constant C > 0 such that:

(4) [1D%ul| > < C1*H (e, PY*P) | Yo e N™

In particular, for every P we have the inclusion:
72(R") C gz (R).

In Section 2 we also present the properties of the multi-anisotropic Gevrey
classes. In particular, we prove the equivalence with a new definition of ny by
means of the Fourier transform (cf. Theorem 2.1); namely, we will prove that
belongs to yif if and only if its Fourier transform 4 satisfies for suitable positive
constants C, ¢ the condition:

i@ esp(eleh) | < ¢

Then we discuss the inclusions among the classes associated to different poly-
hedra and with different Gevrey orders, and finally describe their topology and
algebraic properties. Note that the classes yif are not closed under multi-
plication, as already observed by Hakobyan-Markaryan [14]; we study the lar-
gest class 777 " such that vy - 58 € 937 (see Definition 1.3 and Proposition 2.3).

In this functional frame we study the Cauchy problem (1) for first order
systems. In particular, we deal with N-block Sylvester systems, that will be
described in formulas (22) and (23).

Let us announce our main result, cf. Theorem 3.3.

We fix a polyhedron P C R" and ask in (1) the following conditions:

1. the principal part At,x,D) is a Sylvester block matrix, has constant
coefficients (we shall then simply write A(D)), is weakly hyperbolic and its ei-
genvalues have maximal multiplicity equal to M;

2. the coefficients of the lower order terms B(t,x) are in C*°([0, T, }’Zf (R™),
where P* is assoctated to P as before, cf. Definition 1.3;

3. f(t, ) belongs to C=([0, T], ;7 (R™);

4. the lower order terms satisfy the following Levi-type condition for a po-
sitive constant k < M:

%

@Mil, véE e R

(5) K@) < C<
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Then the C(mchy problem (1) admits a unique solution in C*([0, T, yif (R™)) for
any data in yy, P(R™) if:

M
1<s<?.

Similarly, we may also treat weakly hyperbolic partial differential operators
of higher order, which can be reduced to first order systems in the standard way.
Let us give the following elementary example of a fourth order operator in
Ry x R and test on it our result, compared with Bronstein [2].

We ﬁx first the polyhedron P c R? of vertices:

The corresponding multi-anisotropic Gevrey classes yif are then defined by the
condition:

IDLDIu)| < CHH @i+ )", (i, 5) € N2

Such ny represent an example of the simpler anisotropic Gevrey classes, re-
levant subset of the multi-anisotropic ones, cf. Section 1; for them P = P* and
therefore yi’f " coincides with ny .

For the 4—th order operator P = P(t,x,y,D,,D,,D;), the conditions of
Theorem 3.3 with M = 4,k = 3 turn out to be equivalent to the following:

P = Py(Dy, Dy, Dy) + P3(t, 2, y, Dy, Dy, D)+

Pz(t7 may7Dtan7Dy) +P1(t7 xay7Dtan7Dy) + CG(ta €, ?/)7

where P4(Dy,D,,D,) is any weakly hyperbolic operator with constant coeffi-
cients, and the lower order terms are of the form:

Py =t x,y)D;,

Py = ca(t, ,y)D?,
Pl - 63(t7 X, y)Dﬂc + 04(t7 X, ?/)Dy + C5(t7 X, y)Dt

with coefficients ¢;(t,x, ) € 7}, P(R).

So Theorem 3.3 ensures the well-posedness in yLZ ,for 1 <s <3 2 Observe
that y (RZ) strictly includes yLz(Rz) given by the result of Bronstem [2].

For more examples involving the multi-anisotropic Gevrey classes, we ad-
dress to Section 3.

The techniques used in the proofs are Fourier analysis, the quasi-symme-
trization of Sylvester matrices (cf. D’Ancona-Spagnolo [9], Jannelli [17]), ap-
proximated energy estimates and the algebraic properties of the multi-aniso-
tropic Gevrey classes proved in Section 2.

Concerning the quasi-symmetrization, the novelty here with respect to the
preceding literature is that we use it to deal with the lower order terms; this
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shows in particular that the standard Gevrey results under Levi conditions (cf.
[22]) can be recaptured, at least in part, by means of this technique.

1. - Complete polyhedra.

In this section we recall some definitions and properties concerning complete
polyhedra and prepare the study of the multi-anisotropic Gevrey classes treated
in the next section.

We recall that a convex polyhedron P in R” is the convex hull of a finite set of
points in R". To P is uniquely associated a finite set V(P) of linearly independent
points, called the set of vertices of P, that is the smallest set whose convex hull is P.

Moreover, if P has non-empty interior and the origin belongs to P, there
exists a finite set of vectors in R™:

N(P) = No(P)| JN1(P),

such that |v| = 1,Vv € Ny(P), and
P={zeR"v-2>0,Yve NoP), v-z<1,¥veNi(P)}.
The boundary of P is made of faces of equation:

v.z=0 if ve NP,
vez=1 if veNi(P).

DEFINITION 1.1. — A complete polyhedron is a convex polyhedron P C R’}
satisfying the following conditions:

1. V(P) c N" (i.e. all vertices have integer coordinates);

2. the origin (0,0, ...,0) belongs to P;

3. dim(P) = n;

4. No(P) = {e1,e2,...,6,}, with e;=(0,0,...,0,1;_4,0,...,0) € R" for
j=1....m

5. every v € N'1(P) has strictly positive components.

We note that 5. means that the following inclusion is valid:

Q) ={yeR"0<y<z}cP ifxeP,

and if & belongs to a face of P and y > x then y & P.
We can associate to a partial differential operator with constant coefficients a
convex polyhedron as in the following:

DEFINITION 1.2. — Let P(D) = Zlalém c.D* (¢, € C) be a differential operator
m R" and P(&) = > lal<m c.&%, & € R, its characteristic polynomial. The Newton
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polyhedron, or characteristic polyhedron, associated to P(D), or equivalently to
P(&), is the convex hull of the set:

{0} {a e N":¢, #0}.

We observe that the Newton polyhedron of an operator P(D) that is hy-
poelliptic in the sense of Hérmander [16] is complete, but the converse is not true
in general (for the proof see f.i. Friberg [10] or Boggiatto-Buzano-Rodino [1]).

REMARK 1. — We can consider also polyhedra with rational vertices instead of
mteger vertices, as in Zanghirati [27]; the properties in the following remain
valid also in this case.

There follow some notations related to a complete polyhedron P:
FuP)={aeP:v-a=1}, Vv € N1(P), the face of P with normal vector v;
F = Usen,p F(P) the exterior boundary of P;

V(P) the set of vertices of P;

P={acR":5acP}, 6>0

k(a,P) =inf{t > 0:t'a € P} = max,cp,p)v-a, Va € RY;

m; = m;(P) = maXyeypy vy, 1 =1,...,7;

15 = 1(P) = max,en,p) v; '3

u = u(P) =maxj_i_ , & the formal order of P;

©OP) = min,cyepy oy [7| the minimum order of P;

uOP) = max,cyep) |y| the maximum order of P;

_ ([ #P) «(P) .
Q(P)_(Z(P>7am>7
1€lp = (X verim &0y, VE € R”, the weight function associated to the poly-

hedron P.
In the following, we shall sometimes refer to the asymptotically equivalent

1
. p “ a0l
expressions (Zvev(p) |f”|)“, or else >,y |EVk.

REMARK 2. — The function |&|, is a particular case of weight function, as
defined in Liess-Rodino [23]. Writing (&) =1+ ||, we have for positive con-
stants ¢, C:

o) o)

c{&) 7 < [Elp < ClE) 7

REMARK 3. — Any a € R} belongs to the boundary of k(a, P)P.
k(a, P) is bounded as follows:
la] |a|
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PROPOSITION 1.1. — Let P be a complete polyhedron in R"™ with natural (or
rational) vertices v' = (v}, ... v\), 1=1,...,n(P), then:

1. for every j = 1,...,m, there is a vertex v of P such that:

l; l I
©,...,0,v/,0,...,0) = ?}_7:79]-, 7)]:7 = rgleagwj =m.

2. We have:

P = ﬂ {ae R} :v-a <1}
\’G./\/I(P)

3. for every j =1,...,m there is at least one v € N'1(P) such that:

c— L
mj=v;;

4. if the boundary F of P has at least one vertex lying outside the coordinate
axes, then the formal order u(P) is strictly greater than the maximum order
1P P).

5. if a belongs to P, then:

n(P) . n w
<31, (é‘*zHé/).
=1 j=1

For the proof let us refer for example to Boggiatto-Buzano-Rodino [1] and
Hakobyan-Markaryan [14].

Following Hakobyan-Markaryan [14], we define the complementary poly-
hedron associated to a complete polyhedron P and give a subadditive property
for the related weight functions.

DEFINITION 1.3. — Let P be a complete polyhedron and let 1, j =1,...,n, be
as before, then we define the complementary polyhedron P* associated to P as:

(M Pr={xeR": x- 1" <1},
where:
1 1
8 /10:(—,...,—>.
( ) M1 Hy

REMARK 4. — The polyhedron P* has only one face (besides the faces on the
coordinate hyperplanes) and P C P*; the polyhedra P and P* coincide if and
only if P has only one face (the anisotropic case, see the following Example 2).

REMARK 5. — The formal orders of P and P* coincide by definition.
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The following proposition shows an important property of the complementary
polyhedron, involving the weight functions (for the proof we address to
Hakobyan-Markaryan [14]) .

PRrROPOSITION 1.2. — Let P be a complete polyhedron and let P* be its
complementary polyhedron as in (7), then the associated weight functions
satisfy for a constant C > 0:

9) IE+nlp < CUElp + nlp), VEneR™

In the opposite direction, for all polyhedra P' such that u(P') = u(P) and
P ¢ P, the property (9) is mot valid;, namely theve are two sequences
{E" Y enis (1P} pens of points in R" such that:

€0 + 40
koo | W] 4 )]
REMARK 6. — When P has more than one face, the inclusion P C P* is strict,
so it follows from Proposition 1.2 that there are two sequences {¢®}, ., (1P} on

such that: “
|& ’Y(k)|7> _

im— 7 —
k=00 |f(k)|7> + [ ®|p

For sake of evidence to the reader, let us add here a divect proof of this last as-
sertion. Consider any complete polyhedron P C R" having a vertex not lying in
the coordinate axes. Arguing by contradiction, if the subadditive property is valid:

&+ nlp < C(Slp + [lp);

for a positive constant C, then by iteration also the gemeralized subadditive
property s true:

(10)

SO <oy 1@,
j=1 j=1

for any m € NN and for a positive constant C (eventually depending on m).

So if v is the normal vector to the hyperplane containing the vertices
{mje;, j =1,...n} of P lying on the coordinate axes, then the other vertices v of
P satisfy:

P

v-v>1.
So, taking m = n and & = te;, 3 =1,...,n, we have:
1
> = ( > '“‘”') >0 3 =0 3 & vC >0
1<<n ) veV(P) 1<j<n 1<j<n

for t large, and so (10) can’t be satisfied for all t > 0 by any C > 0.
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In fact, forallj =1,...,m, vyjm; = 1, whereas in the second sum there exists
v € V(P) such that v-v > 1.

Now we give some examples of complete polyhedra:

1) If P(D) is an elliptic operator of order m, then its Newton polyhedron is
complete and is the polyhedron of vertices:

V(P) = {0,me;, j =1,...,n},
therefore P is so defined:

n

P={reR":4;>0,j=1,...,n, Y a<m}.

j=1
The set N'1(P) is reduced to a vector:
n
yv=m! Zej =m™, ..., m)
=1

and:
m;(P) = ;(P) = 1OP) = D(P) = w(Py=m, j=1,...,n
k(a, P) =m ol =m™ Y7 0, ae€RL

The weight associated to P is:
Ilp = (&) =1+ [&].

2) If P(¢) is a quasi-elliptic polynomial of order m (cf. for example Hérmander
[16], Rodino [25] and Zanghirati [28]), then its characteristic polyhedron P is
complete and has vertices:

V(P) = {0,mje;, j =1,...,m},

where m; are fixed strictly positive integers.
The set N'1(P) is again reduced to a vector:

n
— -1,
V= E m;e;.
J=1

The polyhedron P is given by:
n
P={reR":4;>0,j=0,...,n, Y m'e; <1}
j=1

and:
w(P)y=mj, j=1,....m
wO(P) = minj_y_, mj;
w(P) = 1 D(P) = maxj_y__, m;j = m;
k(a,P)=m71q-a, a€cR.
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The weight associated to P is:

[Elp = 1+ &7+ ..+ & PF.
3) Take as P C R? the polyhedron of vertices:
V(P) = {(0,0),(0,3),(1,2),(2,0)},

then P is complete and:

NI(P) = {Vl = (é?%)? V2 = (%ai)}

So P is defined by:

1 1 1 1
= 2> >0 —x+-y<1 —x+-y<1".
P {(ac,y)eR x_O,y_0,3x+3y_1,2x+4y_1

The quantities related to P are the following:
mi(P) = (O(P) =2,
ma(P) = fM(P) = m(P) = 3,
w(P) = 4.
We observe that in this case the formal order u(P) is strictly bigger than the

maximum order m(P), as P has a vertex lying outside the coordinate axes. We
have:

a-w :%al +§a2 if az > 2ay

a~vz:%a1+ia2 if g < 2ay

k(a, P) = {

The weight associated to P is:

Elp = (L + || + |E3] + &1 G2

2. — The multi-anisotropic Gevrey classes.

We now define the multi-anisotropic Gevrey classes associated to a complete
polyhedron.

We give two equivalent definitions, one in terms of the estimate of the de-
rivatives, the other in terms of the Fourier transform. Aiming at a self-contained
presentation, we also study the topology, the inclusion of multi-anisotropic
Gevrey classes of different order and associated to different polyhedra, and the
related algebraic properties.

DEFINITION 2.1. — Let P be a complete polyhedronin R" ands € R, s > 1. We
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denote by )7, P the multi-anisotropic Gevrey class of order s associated to P, i.e. the
set of all uw € C*(R") such that:

(11) 3C>0: ||D*u@)||. < ClM (uk(a, PP va e N”,

with the notations of the previous section.

REMARK 7. — The following conditions are equivalent:
1. u belongs to yLz ;
2. there 1s a constant C > 0 such that:

||Dau(90)||1} C}+l S

N7

for any a € N", where j = j(a) = min{i € N : k(a,P) <i}.
This follows 1mmediately from the inequality:

J—1<ka,P) <j.

REMARK 8. — It follows from (11) that if u belongs to yL2 , then u satisfies for a
new constant C > 0:

ID“u@)| o < CUF Gak(a, PP, Vo € N,

i view of the Sobolev embedding theorem.

From now on P will denote a complete polyhedron and we shall suppose s > 1
for the Gevrey order

The space yLz can be endowed with a natural topology. Namely, we denote by
yLZ o C > 0, the space of the functions % € C*°(R") such that:

(12) ol e = sup C~“l(ue(a, P 4P | Do) 2 < o
aeN"

With such a norm, yzf ¢ 1s a Banach space. Then:

VLz = U VLz ok

C>0

endowed with the topology of inductive limit.
The multi-anisotropic Gevrey functions can be defined also by means of the
Fourier transform, using the weight ||, as in the following theorem.

THEOREM 2.1. — The following two conditions are equivalent:

1. u belongs to ;7 ;

2. there exist two constants C,e > 0 such that the Fourier transform of u
satisfies:

(13) Hﬁ(é)exp<s|§|%3> =C.
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We use the following two lemmas. The proofs are analogous to the ones in
Corli [8] and Calvo [3] for the local Gevrey classes G*7; but here we don’t need a
cut-off function and can proceed in an easier way, thanks to the properties of the
Fourier transform in the space L?. In order to be self-contained, we give full
details of the argument.

LeMmMA 2.1. - If u belongs to ybLf , then there is a constant C > 0 such that:
o (18 N\
eV N < N=12,...
‘u(f)< CN° Lz_C7 2,

ProoF. — By means of the properties of the Fourier transform we have:
[ U2 = ID"u|2 = @HID*u(@)] > < CONYHP

ifa-v<N,forallve Ni(P),ie. k(a,P) <N.
Let now a = vN for any v € V(P), then summing up the previous inequalities
for a =0, a = vN, for all v € V(P), we obtain:

J@ NN + 3 @™ |2 < CCNYY.

veV(P)
Using the following inequality:
Py Y N <t < 2P S e,
veV(P) veV(P)

where n(P) denotes the number of vertices of P different from the origin, we can
conclude that:

. 2. UN \E\W
NN S 1E] N
wé) 5 <) —— o —
C(CNsY* L C(CN#Y!

LZ

s\ 4N
< |l (5'57;]\7) <c,
LZ
foral N =1,2,.... O

LeEMMA 2.2. — The function u is of class yif if and only if its Fourier
transform i satisfies:

o (1)
(1) i (60

L2
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PrOOF. — The proof of the necessity of (14) is obvious from Lemma 2.1.
Now let us fix ¢ € N" and assume that condition (14) is satisfied.
We know that:

) < e

In fact, given a € N then 7 belongs to 7 and so, by the definition of convex
hull, told v, ... v the vertices of the face where ;7 lies, we have:

a= k(a,P)ZWf, Zzi =1, 4 >0,
=1 1=

and using the inequality:

xf < Z cex*,

acA

for any linear convex combination f = Y ., Cqa, where A is a given subset of R”}
(cf. [1]), we obtain:

O\ kP
I —H &) < Zz <H|fj|?f>

j=1
e(a,P)
n 17.
<{ X Ile | <.
eV(P) j=1
Now we can estimate:
ID“u@)| 2 = @m) 8| D@2 = @m) ¢ E )| 2
< Cm) ||El P ) 1 < o IIEl e N el )|
< C(CNG),uN” |é|étjk(a,7))f/xN”L2 < C/(C/NS),uN

if N is big enough to satisfy pk(a, P) < uN — o with |||é|7§5|| 72 < 00, then condi-
tion (11) is trivially satisfied by eventually enlarging C. This implies that « be-
longs to ny . O

Now we prove Theorem 2.1.

PRrOOF. — Let us suppose that u belongs to y;. 5P then in view of Lemma 2.2, the
Fourier transform of u satisfies:

u@<|é| )

suN
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As N! < NV and N¥ < NN/, this condition is equivalent to the following:

N Si
W) ('Zf]—TC”N“> <C, N=12, . ...
! B
Taking ¢ = 2‘50”, we get:
AN 11
; P
"o <€N N!) =V gpuaN
LZ

Summing up for N =1,2,.. .

X\
u(®) (Z & ﬁ,'f)

N=0

LZ
and hence for a new constant ¢ > 0:
1
() exp (e[| . < C

and so u satisfies (13). X
Conversely, if u € L*(R") satisfies (13), i.e. ||a(&) exp (€&]p) 2 < C, then,
writing the Taylor expansion:

. e 1 /48_ 0 P N|f‘%7; ”S> e N‘é|%p us
ewaih = (en(1eh) ) = (X(5) W) = ((5) )

forall N =1,2,...; we get:

NI AN
u(f)((lE) N

L
(1
u(é)<C,N>

so u belongs to yst by Lemma 2.2. O

Theorem 2.1 allows us to define in yif an equivalent topology to (12). Namely,
for any ¢ > 0, we define the Banach space ny . as the set of the functions u € yst
for which the following norm is finite:

< | exp(elefi)|| < c.

that implies:

sulN

<,

1
[llpz pe = [ exp (elSlp)| e
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Then:

sP s, P
Ve = U VL2

>0

endowed by the topology of inductive limit.

Now, using the two equivalent definitions of the multi-anisotropic Gevrey
functions in Theorem 2.1, we can analyze some examples:

1) If P is the Newton polyhedron of an elliptic operator (see Example 1 of
Section 1), then y‘zf coincides with y7,, the set of the standard s-Gevrey functions,
i.e. of the functions u € C*°(R") such that for a constant C > 0 it is satisfied:

[D*u)| ;> < C"*H(al)’, Vae N
cf. (2), or equivalently there are two constants C, & > 0 such that:

(&) exp (&(&))]| 2 < C.

2) If P is the Newton polyhedron of a quasi-elliptic operator (see Example 2
of Section 1), then:

m m

sP _ 84 —
yLZ —VL27 Whereq_<ﬂl>"'am_n>7

is the set of the anisotropic Gevrey functions (see Hérmander [16], Rodino [25],
Zanghirati [28]), i.e. the functions u € C*°(R") satisfying for a C > 0:

[ D u(@)|| 2 < ClHla**e = Clt1gfon | glon Vg € N,

where o; = sq;, 1 = 1,...n; or equivalently there are two constants C, e > 0 for
which it holds:

(&) exp (a1 + [EM | + ... + & ]| < C.
3) If P C IR? is the polyhedron of vertices
V(P) = {(0,0),(0,3),(1,2),(2,0)},

as in Example 3 of Section 1, then the multi-anisotropic Gevrey class yif is the
set of the functions u € C*°(R") satisfying for a constant C > 0:

1D u(@)]| 2 < C1* (uke(a, PP Ya e N,

where k(a, P) is calculated in Example 3 of Section 1; or equivalently there are
two constants C,& > 0 such that:

(&) exp (e(1 + [E] + |E3] + & DD 2 < C.

In the next Proposition we study the inclusions of the multi-anisotropic Gevrey
classes associated to different polyhedra and with different Gevrey orders.



36 DANIELA CALVO

PROPOSITION 2.1. — Let P, P be two complete polyhedra of formal orders u
and 1 respectively. Then, for any s,s' > 1, we have the following inclusions of
Gewey classes:

1. if s’ <s, then yL2 C yLZ,
2. if P C P, then yLZ C yLZ @f" >1;
3. more genemlly, forany P, P, if H=max{h € Q: hP C P'}, then

3/2237) L2 1fH>land1f”>1

REMARK 9. - If % < 1orH < 1wemay reset Proposition 2.1, in order to have
the Gevrey order bigger than 1. More precisely, we have the other cases:

/l P/
szCP' then VL? CVL? 2f” <1 1in case 2;
yst/ C L’ﬁ’“ ifH <1and zf” > 1;

Hsk P’
yL;" C yLZ ifH>1and zf" <l

sk
P

P . . .
yLz C ny;’ ifH <1and zf% <1 in case 3.

PRroOF.
1. The proof is obvious, in view of (11).
2. Since u belongs to yLz , then there is a constant C > 0 such that:

< ClH (W k(a, PP g € NP

1D u(@)l| 2
and as P C P implies that k(a, P") < k(a, P), so u satisfies:
ID*u(@)]| > < C ket PY™P) va € N"
for a suitable constant C’ > 0 depending on C, u, /. This implies that « belongs to
sLp
A

3. Let P, P be two complete polyhedra and let H = max{h € Q : kP C P'},
then:

Ko, P) < ko, HP) = 3 b(a, ), Va € N,
so, if % belongs to yLs 7 then:
1D @)z < CH (k(a, PYPHEP), g € N

Vi
for a suitable constant C’ > 0 depending on C, u, 1/, H. And so u € yi’;’P. O

COROLLARY 2.1. — Given P, let u©, u® be defined as in Section 2. Then we
have the following inclusions involving the standard Gevrey classes:

() ,<o)
e C VLZ C VLz C m :
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The proof is obvious, by using Proposition 2.1.

We can observe that the ratio ﬁ depends on the slope of the faces of P, so it
can be as large as we want by varying P; this implies that for all k¥ > 0 and all
s > 1 there is a complete polyhedron P such that y’zz C yif .

We now present the algebraic properties of the multi-anisotropic Gevrey
classes.

PROPOSITION 2.2.
1. for any u,v € yLZ, weh(weu+veyy,

2. for(myueyLZ, keC, wehcwekueyy,
3. for any u € yLZ , a € N" we have D*u ¢ yLZ .

The proof follows easily from Definition 2.1 or from (13).

By multiplying two functions in the same multi-anisotropic Gevrey class, we
don’t remain in this class, except than in the anisotropic and standard case. The
following proposition solves the problem of finding the largest class, whose
product with yLZ is yLz .

ProposiTION 2.3. — Let P be a complete polyhedron and P* its complemen-
tary polyhedron as in Definition 1.3, then for any s > 1 we hawve:

(16) yor el il

whereas for any complete polyhedron P' such that w(P') = u(P) and P* ¢ P we
have:

(17) Vs vy €

REMARK 10. — From the inclusion P C P* and u(P) = u(P*), it follows from
Proposition 2.1 that yst C yif and the inclusion is strict except than in the
anisotropic case.

Now we prove Proposition 2.3.

Proor. — We first observe that it is not restrictive to suppose that P has
formal order u = 1, so also P* has formal order equal to 1.

Now let f € yLz , g€ ny Then, referring to Theorem 2.1, there are two
constants ¢, C > 0 such that:

1 7@ exp elefp)]l,z < C,
16(2) exp (]

P

L <C.
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It is easy to see that the second inequality implies also:

H?J(é) exp (g | ;)

So, for a suitable & > 0, that we will determine in the following, we have:
179(&) exp (0|2 = IF() = 560) exp @)l 2

’ff‘(é — i exp (1€ — n + ) dy

‘ <C.
2

L2
< flf(f — G| exp (C'(| = nlp + |nlp ) dn
12
<C” feXp (C"e(|& - ’7|§>)lf(f — )| exp (C”a’|;7|};3*)|g(;7)| dn

LZ
< OV 7 exp (C"¢ (1€ 1216 exp (€& |Efp)l| 1 < C

by means of Young inequality and Proposition 1.2. Therefore, if ¢ < 54,
obtain:

we

(& exp ||, < C.

That means that fg belongs to yif , as we wanted to prove.
Now if 7’ is a complete polyhedron of formal order u = 1 such that P* ¢ P/,
we shall actually prove that the pointwise product is not continuous as a map:

s,P s, P s,P
V2 X Ve Ve -

In fact, arguing by contradiction, we shall prove that if for every ¢, > 0, there
are ¢ > 0 and C > 0 such that for all f € y“gfgl,g € y‘ngZ:

(18)  [fg(@ exp @l < CIIF ) exp (e i)l 2 19(0) exp (ealE[i)l 2,
then the weight functions must satisfy for a suitable ¢ > 0:
(19) 10+ nlp <005+ [nlp), ¥0,n€R".

This contradicts the second part of Proposition 1.2 and gives the conclusion.
To prove the claim, let us observe first that, writing for a given complete
polyhedron Q and ¢ > 0:

1
(20) A(C) = exp (¢[¢]p),
we have for suitable ¢, C > 0:

4 _ A . C
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That follows trivially from the inequality:
Elg < Clelgle —nlo,

see for example [12].
Now, inspiring to the proof of Theorem 3.8 in Garello [12], let us take two
functions ¢ € 37,y € 57 such that:

Gy 20, >0, W& >0,

supp ¢, supp iy € {& € R": [¢] <},

where the constant ¢ > 0 will be taken sufficiently small, to satisfy (21) with the
inequalities below. Now, fixed 0,7 € R", we define:

f@) = gla)e™,

i0x

g(x) = y(x)e

Let us observe that obviously f € y?f g € ySLf B
We have:

f@)gx) = py(x)e .

Taking into account the support of g% and ¥, we can estimate for suitable con-
stants Cy,Ce,Cs > 0:

2 L
= [ewealhioric

Jexp (aalefs ) 7@

| esp@aldplee - mde

[E—nl<e

< Cy exp Qe 4|2

Jexp(exiet Yo, = [ exp@asietacer? de =

[ esp@alie - ok d

[E—0)<c

< Cy exp ez |0 || [32-

Jexp(e1ei )@, = [ exp el e =

| eweddiane -0+ mPa

[E=(O+m)|<c

.
> Czexp (2¢]0 + ]3| | ¢ |7
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So, if (18) is satisfied, it would imply (19) for a suitable large ¢ > 0.
This concludes the proof of Proposition 2.3. O

3. — The Cauchy problem in multi-anisotropic Gevrey classes.

In this section we prove the result announced in the Introduction, cf.
Theorem 3.3, that ensures the well-posedness of the Cauchy problem in the
multi-anisotropic Gevrey classes under suitable hypotheses. At this aim, we first
introduce the notion of Sylvester system and recall the technique of quasi-
symmetrization, useful to obtain the well-posedness for systems coming from
partial differential equations. Let us consider a vN x vN hyperbolic symbol
A(t, x, &), homogeneous of order one in &, of N-block Sylvester type, i.e.

By 0
(22) At 2,0 = C (),
0 By

where the v blocks By are the same N x N Sylvester matrix:

0o 1 ... 0
0 1
(23) : ;
01
by by ... by

with symbols b;(t, x, &) homogeneous of order zero in ¢.

REMARK 11. — We obtain Sylvester matrices from the standard reduction of a
scalar equation to a first order system.

We recall the notion of quasi-symmetrizer for a hyperbolic system:
Ou(t,x) = A(t, x, Dyu(t, x) + B(t, ©) K(D)u(t, x) + f (¢, x),

where A(t, x, &) is a hyperbolic matrix-valued symbol of Sylvester type as in (22).
We denote by S™ the set of the symbols of matrix-valued m—th order clas-
sical pseudo-differential operators in R".

THEOREM 3.1. — (¢f: D’Ancona-Spagnolo [9])

Assume that A(t, x, &) belongs to C’“([O, TJ; SY), is homogeneous of order 1 in &
for large & k > 2 and that:

1. A(t,x, &) has only pure imaginary eigenvalues;
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2. <é>71A(t, x, &) is a uniformly bounded N-block Sylvester matrix.
Then there exists a quasi-symmetrizer:

Q. = Q:(t,x,&) € C*([0,T];S°)

satisfying the following conditions for all (t,x,&) € [0,T] x R" x R" and all
e>0:

82(N71) < Qs = Qj < CI,
(24) QA+ AQ,; < Cﬁ<f>Qev
—CeNQ, < Q, < CeVQ,.

Here Q. is the time derivative of Q. and C > 0 is independent of ¢,t,x,& if P,Q
are two matrices, P < Q means that (Pv,v) < (Qv,v), Yv € C".

The following result takes into account the multiplicity of the roots of the
matrix A, x, &).

THEOREM 3.2. — (cf. Jannelli [17])

Under the same hypotheses of Theorem 3.1 and assuming that the eigenva-
lues of each Sylvester block of the matrix A, x, ) have maximal multiplicity
equal to M, there exists a quasi-symmetrizer:

Q. = Q.(t,x,&) € C([0,T7; 8%

satisfying the conditions (24) with M in place of N, i.e. for all (t,x, ) €
[0,7T] x R" x R" and all ¢ > 0:

FMV<Q,=Q; <1,
(25) QA +A"Q, < Ce(0)Q:,
—Cet™MQ, < Q, < CetMQ,,

where C > 0 is independent of ¢,t, x, &

We shall use Theorem 3.2 to prove our result.
Let us consider the pseudo-differential system in [0, T x R" (for all T > 0):

Sw(t, x) = ADw(t, x) + B, ©) K(Dyw(t, x) + f (¢, x),

where:

(i) A(¢) is a N-block-Sylvester matrix-valued symbol homogeneous of order 1
in ¢ for large & (with v Sylvester blocks of order N as in (22));

(ii) K(¢) is a vN x vN matrix-valued symbol of order < 0.

Let us fix a complete polyhedron P in R" and let s > 1.
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Then we have the following:

THEOREM 3.3. — Let us assume that:

(1) A() has only pure tmaginary eigenvalues and the eigenvalues of each
Sylvester block have maximal multiplicity equal to M;

(ii) the symbol K(&) of K(D) satisfies the following Levi-type condition for a
fixced k, 0 < k < M:

[543
@M

(26) |K(&)| < C< ), fora C>0andVeeR",

(iii) B(t,x) belongs to C>(|0,T], yzf "(R™), where P* denotes the com-
plementary polyhedron of P;

(iv) f(t, %) belongs to C>([0,T], ;. P(R™)).

Then the Cauchy problem

(27)

duw(t, x) = ADYw(t, ) + B(t, x)K(D)w(t, x) + f (¢, )
w(0,x) = wo(x) € y5T (R™)

admits a unique solution w € C*>([0, T], yLz P(R™)) for:

s< ¥
R

We have for Theorem 3.3 the following slightly more general version:

THEOREM 3.4. — Let (i) and (ii) in Theorem 3.3 be satisfied. Fix a complete
polyhedron P and s > 1 such that ny R") cyy P(R™) for some r with 1 <r < M,
cf. Proposition 2.1. Substitute the hypotheses (122) and (iv) with the following:

(iii) B(t,x) belongs to C>([0,T],7}, P(R™), where P* denotes the com-
plementary polyhedron of P';

(iv) £(t, ) belongs to C>([0, T}, 757 (R™).

Then the Cauchy problem

(28) { dyw(t, x) = AD)w(t, x) + B, ©)K(D)w(t, x) + f (¢, x)

w(0, 1) = wo(@) € y57 (R")
admits a unique solution w € C*=([0, T), yst /(R”)).

REMARK 12. — The hypothesis (26) on the lower order terms implies the Levi
condition in the case of the standard Gevrey classes, and it is essential in orderto
obtain the result of existence; in fact, for an arbitrary hyperbolic operator
without Levi conditions, it is not possible to obtain a better result of well-po-
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sedness than in y;,, s < L, where M is the maximal multiplicity of the roots of
the principal symbol (cf. Bronstein [2]).

REMARK 13. — Since M < N, under the assumption:

k
(29) K@) <C (@lfl'fl)’ for C >0 and V¢ € R”,

with k < N, Theorem 3.3 is valid for s < & and Theorem 3.4 for every s > 1 with
ny "(R") y%?ZP(R"), basing the proof on the quasi-symmetrization of D’Ancona-

Spagnolo (cf. Theorem 3.1).

REMARK 14. — For Sylvester systems coming after the standard reduction
from a scalar Kowalevskion equation:

(30)  Dyu+ > ayDiDju+ S ayt,x)DiDu+f(t,x) =0

[v+7=m.j7#m V[ <m

with hyperbolic principal part of order m and maximal multiplicity of the
characteristics equal to M, the Levi-type condition (26) with 0 <k <M 1is
equivalent to the following: for all (t,x) € [0,t] x R", there is a constant C > 0
such that:

(31) layi(t, 2)E| < CIE5E"™ ™M, VEe R, Wn,j: v +j<m—1.

It was proved in [4] that the condition (31) implies the well-posedness fors < % in
the case of operators with constant coefficients.

Instead, the condition (29), for systems coming from a differential equation
of the form (30) with hyperbolic principal part of order m, is equivalent to ask for
0 <k < m: forall t,x) € [0,f] x R", there is a constant C > 0 such that:

(32) i, )| < ClERE ™, VEER", Wj: | +j<m—1,

that implies the well-posedness for s < 7., in the case of operators with constant
coefficients (cf. [4]).

REMARK 15. — The hypothesis (26) can be weakened only if we assume some
restrictions on the principal part. In the case of scalar equations, if
P(D) = D" + 37, jmm, jm 0iD2Dt 4 i1 0Dy is a differential op-
erator such that its principal part is hyperbolic with characteristics of maximal
multiplicity equal to M < m, and its principal symbol satisfies for a constant
C > 0 the condition:

(33) b, &' < ClE[p ™M for | +j=m, j#m,
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then, if the lower order terms satisfy for some k < M the condition:
(34) jaye'| < clélp?(@" M for vl +j<m 1,

then P(D) s (% , P) -hyperbolic. Condition (33) is satisfied for instance when A is
the null matrix.

REMARK 16. — If'|&|, = (&), t.e. P is the Newton polyhedron associated to an
elliptic operator, the hypothesis (32) with k = m — 1 is trivially satisfied by any
differential operator, and so we recapture for operators with constant principal
part the above mentioned result of Bronstein [2] of well-posedness in y; ., for all
s <5 see also D’Ancona-Spagnolo [9] in the case when the coefficients of the
principal part are x-independent.

REMARK 17. — If we let ||, = (&) in (26), we obtain the well-posedness in y; ,,
SJoralls < %, corresponding for our system to the result of Leray-Ohya [22] in the
case of operators with variable coefficients and constant multiplicity.

Now we prove Theorem 3.3.

ProoF. - By performing the Fourier transform with respect to the space
variables, we get the equivalent formulation of the Cauchy problem (27):

{ vt &) = Ain(t, &) + (B, ) K(Dywt, )Y + (¢, )
w(0, &) = wo(&)

Let Q., ¢ >0, be the quasi-symmetrizer of the matrix A(¢) constructed in
Theorem 3.2, and define the matrix:

(35) QO = Q. &= afa ™,

that satisfies the following conditions (in view of Theorem 3.2):

i) Q) € SUR™),
(36) i) e e M < g <1,
i) AQ + QA* < C|¢[1Q.

As @, has constant coefficients, then @/ is the null matrix.

We observe that the choice of ¢ in (35) will allow us to get the best estimates for
the terms that will appear in (38) below, as we have to balance between the estimate
1) in which it appears a negative power of ¢ and %) that has a positive power of ¢.

We define the radius function:

POy =py— 2ot te[0.7)



CAUCHY PROBLEM IN MULTI-ANISOTROPIC GEVREY CLASSES ETC. 45

with p, depending on the initial data and on f (¢, x). Therefore we introduce the
following two formal energies for any vector function w(x):

£(t,w) = [ exp (O QY &), it O d,
(37) ) 1 |
Ett,w) = [ exp (o eft, O, it D% e,

the integral being extended over all R".

We observe that the boundedness of £(f, w), defined in terms of the matrix
Q(&), gives indeed a regularity result in view of the estimates (36), ii).

If we used the standard symmetrizer P of A, we could not obtain a regularity
result as P is not a positive definite matrix in the case of weakly hyperbolic
systems, as pointed out by Jannelli [18].

In fact, for a solution w of the Cauchy problem, we can estimate:

d Al 1
dt 2(Qib, WY

= % [(QAw, 1) + (QB(t, 2)QD)wY, ) + (Qf , 1)
2(Qw, )

+ (Qiv, A) + (Qiv, (B(t, 2)Q(DYw)) + (Qiv, f)]

= # [(QA + A*Q)ib, W) + (B(t, 2)QD)wY, 1)
2(Qw, w)?

+(QF, ) + (Qiv, (B, )QDW)) + (Qiv, ).

We further estimate these terms as follows:

[(QW', i) + (Qib, )]

Tol—

(QA + A*Qyiv, iv) < C|E[B(Qiv, )
from (36), and:
(QF ) < (Qib, WXQF.FP < IfI(Qiv, vy,
(QUB(t, )QUDYWY, ) < (Qiv, WP QB(t, )QDYwY, (B(t, )QD)w)
< |(B(t, ©)QD)w)| (@i, )

by means of (36) and the Schwartz inequality for the scalar product associated to
Q. So we obtain:

& Qv v < CleE@Qin i+ (B KDY + 1.

In view of the condition (i) on K(¢) and (iii) on B(¢, x) and the estimates (36), we
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obtain:

E(t, B, x)K(D)w)

= [ exp (OB DKD) de

= |exp (p|E)B(E, &) + KDyt )|,

= H f exp (p(t)|n + (& — n)l%a)fg(t, MKDyw(t, & — ) dy

1

< | [ exp @bt 1Bt ml exp (01 — ) KDyt & — )| d

(39) 2

= [(exp (pB)IE[ )| B, ) * (exp (o] i) KD Y]

< || exp (OIElp B, )11 || exp ()| K D0 13
[53

e

k(M -1

< [eppolgmien @i i de

<C w

exp (p(B)|E[h)

L

— [ e eI @u, ) dz,

where we have also used Proposition 1.2 and the Young inequality.
So we get the following estimate for £'(¢, w):

1 1 1,k 1 ~
40)  E¢tw) < f exp (p(0)|E[)|E[5 10 @) + CIElp (@b, ) dE + ELf).
If -1+ .k <0,ie s <%, we can estimate:

E't,w) < CE®t,w) + EE,f)

that, in view of Gronwall’s lemma, allows us to conclude that £(¢, w) is bounded for
any solution of the Cauchy problem (27).

Till now we have obtained an estimate with the L! norm, but by means of the
same arguments applied to the first order derivatives D*w we get the estimate:

Il exp (ol )| 2 < C,

which gives the regularity of w in C>([0, 71, y‘Zf ) for any s < % as we wanted to
prove.
Finally we prove the uniqueness of the solution of the Cauchy problem (27). If
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u,v are two solutions of (27), then their difference w = u — v satisfies the fol-
lowing Cauchy problem:

Sw(t, x) = AD)w(t, x) + B, ) K(D)w(t, x)
w(0,x) =0

So, proceeding as in the previous steps of the proof, we get
E't,w) < CER,w),
that gives, by means of Gronwall’s inequality,
Et,w) < CEO,w) = 0.

So w = u — v is the null solution, implying that the solution of (27) is unique. [

PrOOF OF THEOREM 3.4. — It is analogous to the proof of Theorem 3.3 and is
obtained by taking instead of (37) the following energy functions:

tt,w) = [ exp (0L QN &), it O d,
8t,w) = [ exp (OIEl}) e, O, it ) de.

The estimate (39) becomes:
E(t, B(t, x)K(D)w)
— [ exp phIEl) (B KD de
— |lexp (pOIE + (7 — OB &) KDy
— |I(exp (pOIE[LIBE O * (exp (pIE) KDYt O
< O exp (o)1l St

k—(M-1)

< [exp Nt lets Qi it az
= [ exp (o) i) e @i, i de.
that allows us to conclude in a similar way as (40):

't,w) < [ exp (UOIELIEL (') + CIEl 1) Qi it dé + £t 1),
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1 s D . . s P’
If €] < €] forr < Lk ie. y‘Zf C yzg), then wis in C*(|0, T],yzg))as we wanted

to prove.

REMARK 18. — We can prove Theorems 3.3 and 3.4 also in the case that the
matric A = A(t, D) depends on the time variable, under the hypothesis that the
quasi-symmetrizer Q defined in (36) satisfies the condition:

k
) Q < CiEpQ
wnstead of Q' < C|¢ |Z_k<é>M ~1Q true in the general case. This reflects on some
conditions on the matrix A(t, D); anyhow, we are not able to express them in
terms of the matrix A, except in the case when A has constant coefficients and

therefore @ =0, or P is the Newton polyhedron of an elliptic operator and
k=M-1

Now we give some examples exploiting the result of Theorem 3.3; for sim-
plicity we refer to scalar operators satisfying (31).
1. Let P be the complete polyhedron in R? of vertices

Applying condition (31) with M = 3 and k = 2 to the differential operator of
order 4:

P =P,Dy,D,,D,) + Ps(t,x,y,Ds, Dy, Dy) +
Pz(t7 mayaDtaDﬂhDy) +P1(t7 x7y7Dtan7Dy) + CG(ta €, ?/)7
we obtain:
P, is hyperbolic with M = 3,
P3 = Cl(ta v, ?/)Dg + CZ(tv v, y)Dngv
Py = c3(t,x, y)Di + ca(t, 2, y)DDy, + ¢5(t, 2, y)D.Dy,
P, is any operator of order 1,

so we get the well-posedness in yi‘f (R?), 1<s< g, under the condition that the
coefficients are also in y‘Zf (R?) (as P* coincides with P).

We observe that the hypothesis on the multiplicity allows us to ask a less
restrictive condition on the lower order terms and to obtain a better Gevrey
order than in the case k = 3, M = 4 mentioned in the Introduction.

2. Let P be the complete polyhedron in R? of vertices
V(P) = {(0,0),(4,0),(2,2),(0,3)},

so 1 = 6 and the corresponding weight function is

(€l = A1+ 1] + 1D
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The complementary polyhedron P* of P has vertices
V(P) = {(0,0),(6,0),(0,4)}.
Applying the condition (31) to the differential operator of order 4:
P(t,x,y, Dy, Dy, Dy) = Py(Dy, Dy, Dy) + Ps(t, 2, y, Dy, Dy, Dy) +

Pyt,x,y,Ds, Dy, Dy) + P12, y, Dy, Dy, Dy) + @, 2, y),

we ask that:

P, is hyperbolic,

P3;=0,

Py = ¢1(t, 2, y)D?% + cat, 2, y)DyDy + c3(t, 2, y)DyD,,

Py = c4(t, ,9)Dy + c5(t, ,y)Dy + c(t, 2, y) Dy,
and the coefficients are in C”([O,T],yif *(Rz)), then the solution belongs to
C>([0, T}, 757 (R®)) for any data in y57 (R?),if 1 < s < §; this extends the classical

result as y%z(Rz) C y%L’f(Rz).
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