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Exponentially Stable Manifolds
in the Neighbourhood of Elliptic Equilibria.

ANTONIO GIORGILLI - DANIELE MURARO

Sunto. – Si considera un sistema Hamiltoniano nell’intorno di un punto di equilibrio
che sia punto di minimo per l’Hamiltoniana. Si dimostra, sotto condizioni oppor-
tune di non-risonanza, che nell’intorno del punto di equilibrio esistono varietà di
dimensione bassa che presentano caratteristiche di stabilità esponenziale nel sen-
so di Nekhoroshev. Il risultato costituisce una generalizzazione del teorema di
Lyapounov sull’esistenza di orbite periodiche. Questo può essere interessante, ad
esempio, per la comprensione della dinamica di catene non-lineari del tipo di Fer-
mi, Pasta e Ulam (FPU).

Summary. – We consider a Hamiltonian system in a neighbourhood of an elliptic
equilibrium which is a minimum for the Hamiltonian. With appropriate non-reso-
nance conditions we prove that in the neighbourhood of the equilibrium there exist
low dimensional manifolds that are exponentially stable in Nekhoroshev’s sense.
This generalizes the theorem of Lyapounov on the existence of periodic orbits. The
result may be meaningful for, e.g., the dynamics of non-linear chains of the Fermi-
Pasta-Ulam (FPU) type.

1. – Introduction.

In the celebrated report published in 1955 [8] Fermi, Pasta and Ulam poin-
ted out the phenomenon of localization of energy in low frequency modes, or
freezing of high frequencies, in a discretized model of a string. The phenome-
non has been later investigated by many authors (see, e.g., [6], [2], [3], [12],
[13], [11], [15], [9], [4], [7] and the references therein). In particular in a recent
paper the existence of the so called «natural packets of modes» has been di-
scussed on the basis of a numerical experiment [1].

The present paper is devoted to a theoretical investigation of that pheno-
menon, with the aim of understanding the underlying dynamics. This is per-
formed by generalizing a theorem of Lyapounov on continuation of periodic
orbits combined with ideas coming from Nekhoroshev’s theory on exponential
stability.

The phenomenon of localization of energy is the following. One considers a
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nonlinear chain of N particles with a nearest neighbours interaction as descri-
bed by the Hamiltonian

H(q , p) 4!
j41

N pj
2

2
1!

j40

N

V(qj11 2qj ) , q0 4qN11 40 ,

where

V(r) 4
1

2
r 2 1

a

3
r 3 1

b

4
r 4 .

Here, q and p are the displacements of the particles from equilibrium and the
momenta of the particles, respectively, and a and b are parameters. It is well
known that the model above represents in fact a system of N harmonic oscilla-
tors with frequency spectrum

v k 42 sin
kp

2(N11)
,

and with a nonlinear coupling due to the cubic and quartic terms of the inte-
raction potential.

Starting (as Fermi, Pasta and Ulam did) with initial conditions with the
whole energy concentrated on the lowest frequency mode, one observes that
the energy flows in a short time only to a few modes of low frequency, that we
call the «natural packet», while the high frequencies remain frozen. A further
sharing of energy with the high frequency modes takes a longer time that gro-
ws very fast when the energy E decreases to zero. In the recent paper [1] the
size of the natural packet as a function of the specific energy E/N and of the
number N of particles has been investigated in detail, showing that the pheno-
menon of localization of energy may persist in the so called thermodynamic li-
mit, i.e., when the number of particles grows very large. This fact may be very
relevant for the foundations of Statistical Mechanics.

From the mathematical viewpoint we are actually dealing with a Hamilto-
nian system with n degrees of freedom in a neighbourhood of an elliptic equili-
brium, with Hamiltonian

H(x , y) 4H0 (x , y)1H1 (x , y)1R ,(1)

where

H0 (x , y) 4
1

2
!
l41

n

v l (xl
2 1yl

2 ) ,

v�Rn is the real vector of the frequencies, v 1 , R , v n are all positive, and
Hs (x , y) for sF1 is a homogeneous polynomial of degree s12. We assume
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also that the equilibrium is a minimum for the Hamiltonian, so that v 1 , R , v n

are all positive.
A possible interpretation of the phenomenon of localization of energy in

the FPU model is the following. Let us consider for a moment only the qua-
dratic part of the Hamiltonian, i.e., let H1 4R40. A packet of mEn modes is
easily constructed by considering initial condition with xm11 4ym11 4R4

xn 4yn 40, and with arbitrary values for x1 , y1 , R , xm , ym . In such a case, all
orbits lie on an invariant subspace of dimension 2m , defined by xm11 4

ym11 4R4xn 4yn 40, which is foliated in invariant tori of dimension m . The
problem is whether something similar may happen for the complete nonlinear
system. For m41 a positive answer is given by Lyapounov’s theorem on the
continuation of periodic orbits that reduce to the normal modes when the per-
turbation decreases to zero. For mD1 one is tempted to generalize the theo-
rem of Lyapounov in the most obvious way, namely by proving the existence of
an invariant manifold of dimension 2m that is still foliated in invariant tori of
dimension m , and reduces to the invariant plane for vanishing perturbation.
However, such an attempt will likely fail for two reasons. The first one is that
the construction of such an invariant manifold may be performed in a formal
sense, as we shall do below, but the resulting series are likely to be divergent,
as typically happens for perturbation expansions. The second reason is that,
according to the results of the numerical exploration, the internal dynamics of
the natural packet appears to exhibit a chaotic behaviour; thus the generaliza-
tion of the theorem of Lyapounov should not require that the invariant mani-
fold – if it exists – should be foliated in invariant tori.

Our suggestion is to overcome the two difficulties above as follows. First,
we look for an approximate normal form that possesses an invariant manifold,
but with no restrictions on the dynamics on that manifold. Second, we look
only for a quasi-invariance of that manifold in the sense of Nekhoroshev’s the-
ory on exponential stability, i.e., we prove that the orbit is confined in a very
small neighbourhood of the quasi-invariant manifold for an exponentially long
time.

We give now a formal statement. Let D r%R2n be a polydisk of radius r cen-
tered at the origin. Our main result is the following

TEOREMA 1. – Let the Hamiltonian (1) be analytic in a neighbourhood of
the origin, and assume that the frequencies v 1 , R , v n are all positive and
satisfy for any m , n� ]m11, R , n( the diophantine conditions

Nk1 v 1 1R1km v m 6v nNFgNkN2t ,

Nk1 v 1 1R1km v m 62v nNFgNkN2t ,(2)

Nk1 v 1 1R1km v m 6v n6v mNFgNkN2t for mcn
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where g and t are positive constants and mEn is a positive integer. Then
there exists a positive r* and a local analytic manifold V of dimension 2m ,
tangent at the origin to the subspace xm11 4ym11 4R4xn 4yn 40, such

that the following holds true: let rEr* /3t12 , and let s4expg2
1

2a
g r*

r
hah ,

with a41/(t12); then there exists a positive r Er such that for every orbit
with initial point (x0 , y0 ) �D r satisfying dist ((x0 , y0 ), V) Es/2 one has
(xt , yt ) �D r and dist ((xt , yt ), V) Es for

NtNET* expg 1

2a
g r*

r
hah ,

with a constant T*.

REMARK. – By a standard argument from diophantine theory one may
choose tDm21, so that there exist a set of good frequencies of large relative
measure satisfying the conditions (2) above. We recall that for t4m21 the
set of good frequencies is still not empty, but has zero measure.

The idea of looking for a quasi-invariant manifold has been suggested to us
by the papers of Cherry [5] and Moser [14], who in the case m42 prove the
existence of an invariant manifold, but with the assumption that the frequen-
cies v 1 , v 2 are independent over the reals. This result does not apply to the
case of an elliptic equilibrium. However, the technique that has been used in
[10] may be adapted in order to prove our theorem.

The paper is organized as follows. In sect. 2 we characterize the normal
form of the Hamiltonian and recall the formal algorithm. In sect. 3 we give the
quantitative estimates for the normal form and the remainder. In sect. 4 we
show how to use the normal form in order to complete the proof of the
theorem.

In order to make the paper self-contained, some technical details are de-
ferred to two appendixes.

2. – Formal algorithm.

We first discuss the formal algorithm that gives the Hamiltonian a normal
form up to a finite order r . The general method based on composition of canoni-
cal transformations via Lie series is rather well known. Thus we recall only the
relevant formulae. For completeness sake we include a short deduction in Ap-
pendix A. Our aim is to write the Hamiltonian after r normalization steps as

H (r) (x , y) 4H0 (x , y)1Z1 (x , y)1R1Zr (x , y)1 !
sDr

H (r)
s (x , y) ,(3)

where Z1 (x , y), R , Zr (x , y) satisfy the condition of being in «normal form»,
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in a sense to be made precise. The original Hamiltonian H0 fH is given in this
form with r40, so that it contains no function Z . The normalization procedure
is worked out step by step, using a generating sequence ]x 1 , R , x r (. Precise-
ly, we perform a sequence of r canonical transformations, r being arbitrary, by
recursively determining the new Hamiltonian as

H (r) 4exp (Lx r
) H (r21) ,

where Lf Q »4 ]Q , f(, the Poisson bracket with f , and

exp (Lf ) 411Lf1
1

2!
Lf

2 1R4 !
sF0

1

s!
Lf

s .

The generating function is determined by solving with respect to x r and Zr the
equation

LH0
x r 1Zr 4H (r21)

r .(4)

Assuming for a moment that a solution of the latter equation has been found,
the transformed Hamiltonian is determined as

(5)

.
`
/
`
´

H (r)
sr1m 4

1

s!
Lx r

s Zm 1 !
p40

s21 1

p!
Lx r

p H (r21)
(s2p)r1m

for rF2, sF1 and 1 GmEr ,

H (r)
sr 4

1

(s21) !
Lx r

s21g 1

s
Zr 1

s21

s
H (r21)

r h1 !
p40

s22 1

p!
Lx r

p H (r21)
(s2p)r

for rF1 and sF2 .

Let us now discuss how to solve equation (4). The usual remark is that LH0

is a linear operator mapping the space Ps of homogeneous polynomials of de-
gree s in x , y into itself. Moreover, LH0

may be diagonalized via the canonical
transformation to complex variables j , h

xl 4
j l 1 ih l

k2
, yl 4

i(j l 2 ih l )

k2
.(6)

For, in the new variables one has H0 4 i !
l41

n

v l j l h l , and one checks immedia-
tely that

LH0
j jh k 4 ia j2k , vb j jh k(7)

for any monomial j jh k 4j 1
j1QR Qj n

jnQh 1
k1

R h n
kn . Denoting by P the linear space

of all polynomials, the kernel 8 and the range C of LH0
are introduced in the

usual way, namely 84LH0
21 (0), the inverse image of the null vector in P, and

C 4LH0
(P). Both 8 and C are subspaces of P, and in view of LH0

being diagona-
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lizable we also have 8O C 4 ]0( and 85 C 4 P. A consequence of these pro-
perties is that LH0

restricted to the subspace C is uniquely inverted, i.e., the
equation LH0

x4c with c� C admits a unique solution x satisfying x� C.
We now come to make precise the meaning of «normal form» in our case.

Having fixed the positive integer mEn consider the disjoint subsets of Zn .

.
/
´

K l--l 4 ]k�Zn : km11 4R4kn 40( ,

Kl l–– 4 ]k�Zn : 1 GNkm11N1R1NknNG2( ,

KY4 ]k�Zn : Nkm11N1R1NknND2( .

(8)

One has Zn 4 K l--lN K
l l–– N KY , of course. Considering only integer vectors j , k

with non-negative components, introduce the subspaces of P

.
/
´

P l--l 4span ]x jy k : j1k� K l--l( ,

P
l l–– 4span ]x jy k : j1k� K

l l–– ( ,

PY4span ]x jy k : j1k� KY( .

These subspaces are clearly disjoint, and moreover one has P 4 P l--l5 P
l l–– 5 PY .

Let us now define the subspace

Z
l l–– 4 ] f� P

l l–– : ] f , In( 40, n4m11, R , n(

and split P
l l–– 4 Z

l l–– 5 W
l l–– where W

l l–– is the complementary subspace to Z
l l–– in P

l l–– .
Moreover, let us consider the subspaces Z and W of P defined as

Z 4 P l--l5 Z
l l–– 5 PY , W f W

l l–– .

One clearly has Z O W 4 ]0( and Z 5 W 4 P, and moreover we also have, by
construction, W % C (see below). With this setting the equation

LH0
x1Z4c ,(10)

with known c , admits a simple solution. Split c4c Z 1c W with c Z � Z and
c W � W; such a decomposition exists and is unique, since Z and W are com-
plementary subspaces. Then set Z4c Z and determine x4LH0

21 c W as the sol-
ution of (10) made unique with the prescription x� C.

It is also interesting to characterize P
l l–– and Z

l l–– using the complex coordina-
tes, and to investigate its relations with the null space 8 . By the way, this will
allow us to check in a direct way that W % C, which is essential in order to as-
sure the consistency of the whole construction. Let us consider j jh k � P

l l–– .
Then at most two of the factors j n , h n with n4m11, R , n may appear. Re-
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call that in complex variables In4 ij n h n , we have

]j jh k , In( 4 i( jn2kn ) j jh k .

Thus, a basis for Z
l l–– is the set of monomials j n h n Qf(j 1 , R , j m , h 1 , R , h m ),

where f is any monomial. This fully characterizes Z
l l–– . Let us now characterize

the subspace 8O P
l l–– . This is easily done by looking at (7). In view of the diago-

nal form of LH0
it is easily seen that a basis of 8 is made by all monomials j jh k

such that a j2k , vb 40. Thus, considering again a monomial j jh k � P
l l–– we ha-

ve either

a j2k , vb 4 ( j1 2k1 )v 1 1R1 ( jm 2km )v m 1l n v n with l n461 ,

or

a j2k , vb4( j12k1 )v 11R1( jm2km )v m1l n v n1l m8 v m with l n , l m8461 ,

the case m4n being allowed. In the first case a j2k , vb can not vanish in view
of the first condition (2); in the second case, in view of the second and third
condition (2) a j2k , vb may vanish only if m4n and l n1l m8 40, i.e., if j jh k �
Z

l l–– . Thus we have 8O P
l l–– % Z

l l–– , and in view of W 4 W
l l–– we conclude W % C, as

claimed.

3. – Quantitative estimates for normal form and remainder.

We first introduce a norm on the space Ps of homogeneous polynomials of
degree s . Pick a real vector R�Rn with positive components and consider the
domain

D R 4 ](x , y) �Cn : NxjNGRj , NyjNGRj , 1 G jGn( ,(11)

namely a polydisk which is the product of disks of radii R1 , R , Rn in the pla-
nes of the complex coordinates (x1 , R , xn ) and (y1 , R , yn ), respectively. Let
also

L4 min
1 G jGn

Rj .(12)

The norm V f VR of the function f4 !
j , k

fj , k x jy k in the polydisk D R is defined
as

V f VR 4 !
j , k

Nfj , kNR j1k.(13)

A family of polydisks D dR of radii dR , with 0 EdG1 will be considered below.
With a minor abuse the simplified notation V QVd in place of V QVdR will be
used.

The main technical tool is the following inequality, that resembles the Cau-
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chy’s estimate for derivatives of functions: assume that VxV12d 8 and V f V12d 8 are
known for some non negative d 8E1. Then for any positive 1 DdDd 8 and for
integer pF1 we have

VLx
p f V12dG

p!

e 2 g e

dL
h2p

VxV12d 8
p

V f V12d 8(14)

where d»4d2d 8 . The proof of this inequality is given in Appendix B.
We look now for quantitative estimates of all functions entering the con-

struction of the normal form according to the algorithm in section 2. We pro-
ceed as follows:

(i) we transform the Hamiltonian (1) to complex variables j , h via the
transformation (6);

(ii) we perform an arbitrary number of normalization steps, thus get-
ting the Hamiltonian H (r) in the form (3), in complex variables;

(iii) we transform back to real variables by applying the inverse of (6) to
H (r) .

We remark that the transformations to complex variables and back are
harmless for what concerns the norms of the functions. For, if f� Ps is given in
real (resp. complex) variables and f 8� Ps is the transformed function in com-
plex (resp. real) variables, then one has

V f 8VG2s/2
V f V .

Let the non increasing sequence ]a r (rF1 be defined as

a r 4 min
0 ENkNGr12

Nak , vbN for k� K
l l––

By the hypotheses of the Theorem we have a r D0 for all rF1. We consider
the solution of the equation (4) for the generating function. This is better done
in complex variables j , h defined by (6), because the operator LH0

takes a dia-
gonal form. We immediately get

Vx r V12dG
VHr

(r21)
V12d

a r

, VZr V12dGVHr
(r21)

V12d ,(15)

where we have assumed that VHr
(r21)

V12d is known for some positive dE1. We
look now for recursive estimates generated by the formal algorithm. To this
end, let ]dr (rF1 be a non increasing sequence such that !

r
dr 4dE1, and let

d 0 40 and d r 4d1 1R1dr . Let us define the sequence ]h r , s (rF0, sF0 as

h 0, s 4C s21 , h r , s 4C s21 m r , s
1

a 1 d1
2
R a r dr

2
Q g 1

a r dr
2 hs2r21

(16)
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where

C4
e 2 E

L 2
1h

and the sequence ]m r , s (rF0, sF0 is recursively defined as

m 0, 0 40 , m 0, s 41 for sD0 ,

m r , sr1m 4 !
p40

s

m r21, r
p m r21, (s2p)r1m for sF0, 0 GmEr .

We also consider the sequence of boxed domains D (12d r )R . The recursive esti-
mates are collected in the following

LEMMA 1. – If the Hamiltonian (1) satisfies (in complex variables)

VHs V1 Gh s21 E for sF1

with constants hF0 and ED0, then the following estimates hold true:

Vx r V12d r21
G

h r21, r E

a r

(17)

VZr V12d r21
Gh r21, r E(18)

VHs
(r)

V12d r
Gh r , s E(19)

PROOF. – By induction. For r40 only the estimate (19) is meaningful and is
trivially true in view of the definition of h 0, s . In order to perform the induc-
tion, first remark that if (19) holds true up to r21, then (17) and (18) are true
for r; this is a straightforward consequence of the inequalities (15), with d4

d r21 . Thus, it remains to prove only that (19) hold true for r as a consequence
of (17) and (18) and of the recursive definitions (5). Remarking that Zr and
Hr

(r21) are estimated by exactly the same quantity it is safe to estimate VHsr
(r)

V

by replacing Zr with Hr
(r21) in the second of (5). This is tantamount to exten-

ding the sum in the second of (5) to p4s21 and making it identical with the
sum in the first of (5), with m40. Thus, assuming that H (r21) is known, by the
general estimate (14) (with d4d r , d 84d r21 and d4dr) one has

VHsr1m
(r)

V12d r
G

1

e 2 g e

dr L
h2s

Vx r V12d r21
s

VZm V12d m21
1

1

e 2
!
p40

s21g e

dr L
h2p

Vx r V12d r21
p

VH(s2p)r1m
(r21)

V12d r21
for rF2, sF1, 1 GmEr

VHsr
(r)

V12d r
G

1

e 2
!
p40

s21g e

dr L
h2p

Vx r V12d r21
p

VH(s2p)r
(r21)

V12d r21
for rF1, sF2 .
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Let us first consider the estimate of VHsr1m
(r)

V12d r
. By the inductive hypothesis

and by (17) and (18) one has

VHsr1m
(r)

V12d r
4

1

e 2 g e

dr L
h2sg h r21, r E

a r
hs

h m21, m E1

1

e 2
!
p40

s21g e

dr L
h2pg h r21, r E

a r
hp

h r21, (s2p) r1m EG

C sg 1

a r dr
2 hs

h r21, r
s h m21, m E1 !

p40

s21

C pg 1

a r dr
2 hp

h r21, r
p h r21, (s2p)r1m E .

Replacing h r , s in the last estimate one gets

VHsr1m
(r)

V12d r
GC sr1m21 Q

1

a 1 d1
2
Ra r dr

2
Q yg 1

a 1 d1
2
Ra r dr

2 hs21g 1

a 1 d1
2
Ra m21 dm21

2 h m r21, r
s m m21, m1

!
p40

s21

a r dr
2g 1

a 1 d1
2
Ra r dr

2 hpg 1

a r21 dr21
2 h(s2p21)r1m

m r21, r
p m r21, (s2p)r1ml E .

Recalling that ]a r (rF1 and ]dr (rF1 are non increasing sequences, we
obtain

VHsr1m
(r)

V12d r
G

C sr1m21 1

a 1 d1
2
Ra r dr

2 g 1

a r dr
2 h(s21)r1m21

m r , sr1m E4h r , sr1m E .

Similarly one gets

VHsr
(r)

V12d r
G

1

e 2
!

p40

s21 g e

dr L
h2pg h r21, r E

a r
hp

h r21, (s2p)r EGh r , sr E

so that (19) follows. This concludes the proof of lemma 1. r

The estimates of lemma 1 hold true for any r , and depend on the arbitrary
choice of d1 , R , dr and on the quantities a 1 , R , a r , which in turn depend on
the frequencies v 1 , R , v n . However, it is immediate to realize that, e.g., Vx r V

grow at least as r!. For, by the diophantine theory we know that the best esti-
mate for the divisors a r is

a r Fg(r12)2t(20)

with gD0 and tD1; and the product of divisors in the definition of h r , r21 ge-
nerates the factorial. This prevents the possibility of proving the convergence
of the whole procedure for rKQ , with our estimates.
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Thus, we simply stop the construction of the normal form at some finite r ,
that we keep fixed although still arbitrary. Moreover we replace the sequence
a r with the diophantine estimate (20), i.e. we set a r 4g(r12)2t with constan-
ts gD0, tFm21, (see the remark after the Theorem). Finally we make the
choice d1 4R4dr 4d/r with 0 EdE1. With this setting we have

LEMMA 2. – For a fixed r the normal form is estimated by

VZs V12d GC1
s21 (s11) !t r 2(s21) E for sGr(21)

VHs
(r)

V12d GC2 C1
s21 (r12) !t (r12)(t12)s2t(r11)21 E for sDr(22)

where C1 , C2 are positive constants and dE1 is arbitrary.

The proof is just matter of replacing the diophantine estimate for a r and
the choice for dr in the definition (16) of h r , s , and performing some elementary
manipulations. The sequence ]m r , s (sFrF0 is estimated by

m r21, r Eb r21 , m r , s Er(b11)s for sDr(23)

with a positive constant b . The latter estimates are proven in Appendix B.

4. – Use of the normal form and proof of the Theorem.

So far we may write the Hamiltonian in normal form up to order r as

H (r) 4H0
l--l1H0

l l–– 1Z l--l1Z l l–– 1Z Y1 R l--l1 R
l l–– 1 RY(24)

where

.
/
´

H0
l--l 4 !

j41

m
v j

2
(xj

2 1yj
2 ) , H0

l l–– 4 !
n4m11

n v n

2
(xn

2 1yn
2 ) ,

Z l--l 4Z1
l--l1R1Zr

l--l, R l--l 4 !
sDr

(Hs
(r) ) l--l,

(25)

and similar expressions for Z l l–– , Z Y , R
l l–– and RY , where the superscript indica-

tes the projection of the function on the subspaces P l--l, P
l l–– and PY defined by (9).

Consider the harmonic actions of the oscillators, namely

Ij 4
xj

2 1yj
2

2
, j41, R , m ,

In4
xn

2 1yn
2

2
, n4m11, R , n ;

we use different subscripts j and n in order to identify the first m actions and
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the remaining ones, respectively. The crucial point is that we have

I
.

j 4 ]Ij , Z l--l(1 ]Ij , Z l l–– (1 ]Ij , Z Y(1 ]Ij , R(

I
.

n4 ]In , Z Y(1 ]In , R
l l–– 1 RY( ,

where R 4 R l--l1 R
l l–– 1 RY . For, the Poisson brackets between any of the ac-

tions I1 , R , In and H0 vanish because H0 is a function of I1 , R , In only. Mo-
reover, ]In , Z l--l( and ]In , R l--l( do vanish because Z l--l and R l--l depend on xj , yj

with 1 G jEm , while In depends on xn , yn with nDm . Finally, ]In , Z l l–– ( vani-
shes in view of the definition of the subspace Z

l l–– , to which Z l l–– belongs.
Let us now, for a moment, forget the remainder R which is not in normal

form. Then we have to consider only the equations

I
.

j 4 ]Ij , Z l--l(1 ]Ij , Z l l–– (1 ]Ij , Z Y( , I
.

n4 ]In , Z Y( � PY .

If we choose initial conditions such that Im11 (0) 4R4In (0) 40, which im-
plies xn4yn40 for n4m11, R , n , and with I1 (0), R , Im (0) arbitrary, then
we have Im11 (t) 4R4In (t) 40 for all t . This because the r.h.s. of the equa-
tion for In contains at least one factor xm11 , ym11 , R , xn , yn , which is zero.
Thus, the 2m2dimensional subspace Im11 (0) 4R4In (0) 40 is invariant.
Taking into account the near the identity transformation of coordinates to the
normal form, it turns out immediately that this subspace is a local analytic ma-
nifold for the original system. Concerning instead the dynamics on the mani-
fold, it is immediate to see that nothing can be said a priori. For, the dynamics
is clearly generated by the reduced Hamiltonian H(x1 , R , xm , y1 , R , ym ) 4

H0
l--l1Z l--l, with no restrictions on the nonlinear term Z l--l.
The manifold xn4yn40, n4m11, R , n is no more invariant if one takes

into account the unnormalized remainder R. In this case we proceed in the
spirit of Nekhoroshev’s theory, looking for a long time quasi-invariance in the
neighbourhood of that manifold.

From now on we fix the free parameters R and d by setting R1 4R4RN 4

1, and d41/4 . Then we proceed in two steps. First we prove that for small en-
ergy there is a neighbourhood of the origin that remains invariant. Next we
shall deduce exponential stability estimates for the quasi-invariant manifold.

The first step is a standard matter, due to the quadratic form of H0 , and in
view of the hypothesis that all the frequencies v 1 , R , v n are positive. For,
the Hamiltonian has a minimum of zero energy at the origin, so that for suffi-
ciently small energy E there are two polydisks D r

n and D r
n with r Er4

O(E 1/2 ), such that D r
n % DE %D r

n , where DE is a connected component of the in-
variant subset of phase space defined by H (r) (x , y) GE .

Thus, we proceed with the second step using the estimates (21) and (22).
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Let us consider a domain D r
m 3D s

n2m which is the product of polydisks

D r
m 4 ]xj

2 1yj
2 Gr 2 , j41, R , m(

D s
n2m 4 ]xn

2 1yn
2 Gs 2 , n4m11, R , n( ,

where r and s are positive, and sbr; a choice for s will be made below. Our
aim is to estimate I

N

n (x , y) in D r
m 3D s

n2m . Recalling that

I
.

n4 ]In , Z Y(1 ]In , R
l l–– 1 RY(

and using the more explicit expression (25) for Z Y , R
l l–– and RY we have

]In , Z Y( 4 !
s41

r

]In , Zs
Y(

]In , R
l l–– 1 RY( 4 !

sDr
]In , (Hs

(r) )l l–– 1 (Hs
(r) )Y( .

By the general estimate (29) of the Poisson bracket, and by (21) and (22) we
have

V]In , Zs
Y(V122d G

C1
s21

2d 2
(s11) !t r 2(s21) E ,

V]In , (Hs
(r) )l l–– 1 (Hs

(r) )Y(V122d G
C2 C1

s21

2d 2
(r12) !t (r12)(t12)s2t(r11)21 E .

The inequalities VZs
Y
V12d GVZs V12d and V(Hs

(r) )l l–– 1 (Hs
(r) )Y

V12d GVHs
(r)

V12d ha-
ve been used here. Remark now that ]In , Zs

Y( � PY is a homogeneous polyno-
mial of degree s12 which contains at least three factors xn , yn with m11 G

nGn; similarly, ]In , (Hs
(r) )l l–– 1 (Hs

(r) )Y( contains at least one such factor. Thus
for all (x , y) �D r

m 3D s
n2m , we have (recall that d41/4)

N]In , Zs
Y((x , y)NGV]In , Zs

Y((x , y)V1/2 2s12 s 3 r s21 for 1 GsGr ,

N]In , (Hs
(r) )l l–– 1 (Hs

(r) )Y((x , y)NG

V]In , (Hs
(r) )l l–– 1 (Hs

(r) )Y(V1/2 2s12 sr s11 , for sDr .

Adding up all contributions we get

NI
.

n (x , y)NG64 Q12t Es 3 !
s41

r

[2(s11)t C1 r 2 r]s21 1

32C2 Es
(r12) !t

(r12)t(r11)11
!
sF0

[2C1 (r12)t12 r]s C1
r (r12)(t12)(r11) r r12 .
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Assuming

rE
1

4C1 (r12)t12
(26)

and with a trivial use of the sum of the geometric series we readily
conclude

NI
.

n (x , y)NG128 Q12t Es 3 1

64C2 E(C1 e 2 )r (r12) !t12 sr r12 for n4m11, R , n .

We now follow the usual procedure for Nekhoroshev’s estimates. Having fixed
r we make the optimal choice for r

r12 4g r*

r
ha

, r*4
1

C1 e 2
, a4

1

t12
,(27)

which clearly satisfies (26). With a trivial calculation using Stirling’s formula
we get

(C1 e 2 r)r12 (r12) !t12 Cexpg2
1

a
g r*

r
hah .

Remark that (27) is sense only if rF1, which imposes the smallness condition
on r

rE
r*

3t12
.

This allows us to remove the arbitrary normalization order from our estimates,
thus getting

NI
.

n (x , y)NE
D

2
ks 3 1s expg2

1

a
g r*

r
hahl

where D is a positive constant independent of r and s . Finally, we impose the
initial point to be very close to the subspace Im11 4R4In 40 by setting

s 2 4expg2
1

a
g r*

r
hah .

This gives the final estimate

NI
.

n (x , y)NEDs 3 .(28)
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Now, assume that (x(0), y(0) ) �D r
m 3D s/2

n2m and consider the inequality

NIn (t)2In (0)NGNtNDs 3

which holds true for NtNEt , where t is defined as

t4 supmtD0 : NIn (s)NE
s 2

2
(NsNE tn .

In order that (x(t), y(t) ) �D r
m 3D s

n2m , we must have

NIn (t)2In (0)NE
s 2

4
.

By (28) this is certainly satisfied if

NtNE
1

4Ds
4

1

4D
expg 1

2a
g r*

r
hah .

Setting T*41/4D the proof of the Theorem is concluded.

A. – Deduction of equation (5).

A justification for equation (5) can be found as follows. Let us rearrange
the terms in the expansion of exp (Lx r

) H (r21) . Considering first H0 and
H (r21)

r together, one has

exp (Lx r
)(H0 1H (r21)

r ) 4H0 1Lx r
H0 1!

sF2

1

s!
Lx r

s H0

1H (r21)
r 1!

sF1

1

s!
Lx r

s H (r21)
r .

where H0 is the first term in the transformed Hamiltonian H (r) in (3). By equa-
tion (4) one can replace the unwanted term H (r21)

r with the normalized one Zr .
The two sums may be collected and simplified by calculating

!
sF2

1

s!
Lx r

s H0 1!
sF1

1

s!
Lx r

s H (r21)
r 4

!
sF2

1

(s21) !
Lx r

s21k 1

s
(Lx r

H0 1H (r21)
r )1

s21

s
H (r21)

r l4

!
sF2

1

(s21) !
Lx r

s21g 1

s
Zr 1

s21

s
H (r21)

r h .
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where both Lx r
s21 Zr and Lx r

s21 H (r21)
r are homogeneous polynomials of degree

sr12, that are added to H (r)
sr in the second of (5).

Let us now calculate the transformation for the functions Z1 , R , Zr21 that
are already in normal form. Recalling that no such term exists for r41, for
rD1 one has

exp (Lx r
) Zm 4Zm 1!

sF1

1

s!
Lx r

s Zm , for 1 GmEr .

The term Zm is copied into H (r) in (3), while the term Lx r
s Zm is a homogeneous

polynomial of degree sr1m12 that is added to H (r)
sr1m in the first of

(5).
Finally, consider all terms H (r21)

s with sDr , that may be written as H (r21)
lr1m

with lF1 and 0 GmEr , the case l41, m40 being excluded. One gets

exp (Lx r
) H (r21)

lr1m 4 !
pF0

1

p!
Lx r

p H (r21)
lr1m

where Lx r
p H (r21)

lr1m is a homogeneous polynomial of degree (p1 l)r1m12.
Collecting all homogeneous terms with m40, lF2 and p1 l4sF2 one gets

!
p40

s22 1

p!
Lx r

p H (r21)
(s2p)r , that is added to H (r)

sr in the second of (5). Similarly, collecting

all homogeneous terms with 0 EmEr , lF1 and p1 l4sF1 one gets

!
p40

s21 1

p!
Lx r

p H (r21)
(s2p)r1m , that is added to H (r)

sr1m in the first of (5). The latter case

does not occur for r41. This completes the justification of equation (5).

B. – Technical estimates.

This appendix is devoted to the proof of the estimates (14) and (23). Let
0 G max (d 8 , d 9 ) EdE1. We first prove a general estimate for the Lie deriva-
tive of a generic function f in a domain D (12d)R , namely

VLx f V12dG
1

(d2d 8 )(d2d 9 )L 2
VxV12d 8 V f V12d 9(29)

with L as in (12). A proof of this estimate can be obtained as follows. Write, ge-
nerically, x4 !

j , k
cj , k x jy k and f4 !

j , k
fj , k x jy k . Then compute

Lx f4 !
j , k , j 8 , k 8

!
l41

n j 8l kl 2 jl k 8l

xl yl

cj , k fj 8 , k 8 x j1 j 8y k1k 8 .(30)
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Using the definition of norm evaluate

VLx f V12dG !
j, k, j 8, k 8

!
l41

n Nj 8l kl2jlk 8l N

Rl
2

Ncj, kNNfj 8, k 8N(12d)Nj1kN1Nj 81k 8N22R j1k1j 81k 8G

1

L 2
!
j , k

!
j 8 , k 8

!
l41

n

Nj 8l kl 2 jl k 8l NNcj , kN((12d 8 )2 (d2d 8 ))Nj1kN21 R j1k3

Nfj 8 , k 8N((12d 9 )2 (d2d 9 ))Nj 81k 8 N21 R j 81k 8.

If f is a generic function, then in view of jl GNj1kN and kl GNj1kN one
has

!
l41

n

Nj 8l kl 2 jl k 8l NENj1kN !
l41

n

Nj 8l 1k 8l N4Nj1kN QNj 81k 8N .(31)

Replacing in the estimate above and using the elementary inequality (1)

m(l2x)m21 E
l m

x
for 0 ExEl and mF1(32)

one gets

(33) VLx f V12dG
1

L 2
!
j , k

Ncj , kNNj1kN((12d 8 )2 (d2d 8 ))Nj1kN21 R j1k3

!
j 8 , k 8

Nfj 8 , k 8NNj 81k 8N((12d 9 )2 (d2d 9 ))Nj 81k 8N21 R j 81k 8G

1

(d2d 8 )(d2d 9 ) L 2
!
j , k

Ncj , kN(12d 8 )Nj1kN R j1k3

!
j 8 , k 8

Nfj 8 , k 8N(12d 9 )Nj 81k 8N R j 81k 8,

from which (29) immediately follows in view of the definition of the
norm.

Let now pD1, and assume that VxV12d 8 and V f V12d 8 are known for some non
negative d 8 . We look for an estimate of VLx

p f V12d with d 8EdE1. Let d4d2

d 8 and dA 4d/p . Then by a straightforward application of (29) we have the re-

(1) The function x(l2x)m21 in the interval 0 GxGl has a maximum for x4l/m ,

and the inequality follows from x(l2x)m21G
l

m
gl2

l

m
hm21

E
lm

m
.
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cursive estimate

VLx
s f V12d 82sdA G

1

sd
A2 L 2

VxV12d 8 V f V12d 82 (s21) dA .

By recursive application of the latter formula we get

VLx
p fV12dG

p 2p

p!

1

(dL)2p
VxV12d 8

p
V f V12d 8 ,

and (14) follows in view of the trivial inequality p p Ge p21 p! .
We come now to estimating the sequences m r , r and m s , r with sFrF2.

Start by proving the following properties:

m 0, r EREm r21, r 4m r , r 4m r11, r 4R for rF1 ,(34)

m 1, s 4s for sF0 ,(35)

m r , s 4m r21, s 1m r21, r m r , s2r Gm r21, s 1m r , r m s2r , s2r for sFrF2 ,(36)

m r , r Gr1 !
j42

r21

m j , j m r2 j , r2 j for rF3 .(37)

Properties (34) and (35) follow from the definition. To check (36) let us write
s4kr1m with 0 GmEr and calculate

m r , kr1m 4m r21, kr1m 1 !
p41

k

m r21, r
p m r21, (k2p)r1m 4

m r21, kr1m 1m r21, r !
p40

k21

m r21, r
p m r21, (k212p)r1m

���
4m r , (k21)r1m

;

this gives the equality, while the inequality follows from (34). A proof of (37) is
obtained by a repeated application of (36), followed by use of (35). For,
calculate

m r , r 4m r21, r

Gm r22, r 1m r21, r21 m 1, 1

Gm r23, r 1m r22, r22 m 2, 2 1m r21, r21 m 1, 1

Q Q Q

Gm 1, r 1m 2, 2 m r22, r22 1R m r21, r21 m 1, 1 ;
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this is nothing but (37) since m 1, r 4r . Thus, the sequence ]n r (rF1 defined
as

n 1 41 , n 2 42 , n r 4r1 !
j42

r21 n j n r2 j for rF3(38)

is a majorant of ]m r , r (rF1 . An easy remark is that ]n r (rF1 resembles the well
known sequence ]l r (rF1 defined as

l 1 41 , l r 4 !
j41

r21

l j l r2 j for rF2 .(39)

Indeed it is an easy matter to see that n r Ga r21 l r for some positive constant
a (e.g., a42). Hence it is enough to study the latter sequence. It is known
that

l r 4
2r21 (2r23) !!

r!
G4r21 ,(40)

where the standard notation (2n11) !!41 Q3 QR Q (2n11) has been used. As a
check, let the function g(z) be defined as g(z) 4 !

rF1
l r z r , so that l r 4

g (r) (0 ) /r! . Then it is immediate to check that the recursive definition (39) is
equivalent to the equation g4z1g 2 . By repeated differentiation of the latter
equation one readily finds

g 84
1

122g
, R , g (r) 4

2r21 (2r23) !!

(122g)2r21

(check by induction). From this, (40) follows. Thus, m r , r Gb r21 for some positi-
ve b .

By equations (34), (35), (36) and the estimate for m r , r one also has

m r , s Gm r21, s 1b s22 GRGs1rb s22 Gr(b11)s

with bF1 and sFrF2.
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