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A Linear Magnetic Bénard Problem
with Tensorial Electrical Conductivity. (*)

A. GEORGESCU - L. PALESE - A. REDAELLI

Sunto. — Si studia, nell’ipotesi che sussista il principio di scambio delle stabilita, il
problema agli autovalori che governa la stabilita lineare della quiete per un problema
di Bénard elettroanisotropo, in presenza di correnti di Hall e di ton-slip. Si risolvono
due problemi agli autovalori dello stesso ordine derivanti dall’aver scomposto le
perturbazioni nelle loro parti pari e dispari, espresse come somme di serie di Fourier
di opportuni insiemi totali in spazi di Hilbevt separabili. Si determinano le curve
neutrali applicando il metodo di Budiansky-DiPrima St prova leffetto instabiliz-
zante delle correnti elettroanisotrope.

Summary. — For normal mode perturbations, in the hypothesis that the principle of
exchange of stabilities holds, the eigenvalue problem defining the neutral curves of the
linear stability for a magnetic electroanisotropic Bénard problem is solved by
Budiansky-DiPrima method. The unknown functions are taken as Fourier series on
some total sets of separable Hilbert spaces and the expansion functions satisfied only
part of the boundary conditions of the problem. This introduces some constraints to be
satisfied by the Fourier coefficients. In order to keep the number of these constraints
as low as possible we are lead to use total sets for the even velocity and temperature
fields different from the case when velocity and temperature are odd.The splitting of
the unknown functions into even and odd parts leads to two problems of the same
order as the given one each of which containing even as well as odd order parts of these
Sfunctions. The secular equations itnvolve series which are truncated to one and two
terms, the last situation corresponding to best results. A closed form of the neutral
curve is obtained. The presence of the Hall currents is proved to be destabilizing.

1. — Introduction.

One of the most important rheological parameters in magnetohydrodynamics
is the electrical conductivity. If the usual Ohm’s law is assumed to hold then it is a

(*) Work performed under the auspices of the Italian G.N.F.M.-C.N.R. and supported
by the Italian M.U.R.S.T.
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scalar quantity. If the generalized Ohm’s law, i.e.
. . B B (B ,
@ J=0E — w1, j x B Jrfzwe“:ewl‘fln [B <B 'J> J}

is assumed, then the conductivity becomes a tensor [31]. In (1) j, E, B stand for
the density current vector, electric field and magnetic field respectively, while o,
We, Te, WF, T, and f are the scalar electrical conductivity, the Larmor frequency
(i.e. ciclotron frequency of electrons), the mean electron collision time, the fre-
quency of ions, the (average) time of collision of ions with neutral particles and
the mass fraction of atoms which are not ionized, respectively.

The equation (1) represents the Ohm’s law for a partially ionized fluid. In the
case of a fully ionized fluid, i.e. there are no neutral particles, f = 0, and equation
(1) reduces to

j:aE—werejxg,
where the second term in the right-hand side is the Hall current. The last term in
the right-hand side of (1), that is the ion-slip current, becomes important at
“small values” of w,7, [31] at which the electron-ion collisions dominate the
electron motion. For moderate magnetic fields the Hall current can be neglected,
otherwise the tensorial property of the electrical conductivity must be taken into
account. In any case, if w,7, >> 1, transverse conductivities and, therefore,
tensorial electrical conductivity (which can be derived from (1) [20] [31]) must be
considered.

The problem of existence, continuous dependence, uniqueness, linear and non
linear stability of the thermodiffusive equilibrium for the Bénard problem has
been largely investigated in the hydrodynamic case [17] [18], in magnetohy-
drodynamic case [26], as well as in the presence of Hall and ion-slip currents [1],
[4], [5], [8], [9], [12]-[14], [19], [21], [22]-[25], [27]-[30]. In [13], [14] the problem of
the linear stability of the thermodiffusive equilibrium for the magnetic Bénard
problem in the presence of Hall and ion-slip currents is studied by the
Chandrasekhar-Galerkin method ; in [8] it can be found a first numerical esti-
mation of the stabilizing-instabilizing effect of the Hall and ion-slip currents. In
these two papers the boundaries are free. In [24], for rigid boundaries, we re-
formulate the equations governing the stability problem of the thermodiffusive
equilibrium for a magnetic Bénard problem in the presence of a Hall current.
Then we apply the energy method and solve the associated variational problem
by the Budiansky-DiPrima method. It is obtained the destabilizing effect of the
Hall current.

In this work , for a horizontal layer with free boundaries, we consider another
linear magnetic Bénard problem for a thermoelectrically conducting fluid and
study the linear stability of the thermodiffusive equilibrium in the class of the
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normal mode perturbations. The direct method of Budiansky-DiPrima type of
expansion in Fourier series is used.

In Section 2 we formulate the general mathematical problem, in Section 3 we
deduce the system in the Fourier coefficients for normal mode perturbations, in
Section 4, for even temperature and velocity and odd magnetic fields, we derive
some approximate neutral curves for the linear instability. They are obtained
from the secular equation involving series truncated to the first two terms. In
Section 5 we consider the same problem as in Section 4 for odd temperature and
velocity fields and even magnetic field. In Section 5.1 we treat the case f; = 0. In
Section 5.2 we consider the case f; # 0 and determine the approximate neutral
curve obtained by retaining one or two terms in the Fourier series representing
the secular equation. We find that the Hall current has a destabilizing effect [8]
[13] [14]; in the absence of the Hall current we obtain the smallest eigenvalue
leading to the neutral curve.

2. — Mathematical problem.

In the framework of continua and in the domain of validity of the Oberbeck-
Boussinesq approximation, consider a homogeneous thermoelectrically con-
ducting fluid with tensorial electrical conductivity. Assume that the fluid is si-
tuated in a horizontal layer S bounded by the planes np:z2=0and 7y : 2 =1,
both stress-free, perfectly thermally and electrically conductors. Furthermore a
constant vertical temperature gradient § > 0 is maintained, in the presence of a
uniform vertical magnetic field Hy. The dimensionless equations governing the
perturbation u, h, 0, p of the thermodiffusive equilibrium 7

mo E{U:07 H:H()k, T:_ﬁz+T07 p():p()(z)}

are [2], [20], [31]

2

%u =-—u-Vu—Vp+P,Au +PmM2(H0 +h)-Vh +R%0’€7
r

%h:Vx[u><(H0+h)]+Ah+/)’HV><[(H0+h)><V><h],

ey 9 P
= —u- . _m
ag— u V9+u k+PTA0,
V-u=0,
V-h=0,

where u is the velocity field, & is the magnetic field, k is the upwards positive unit
vector, 0 is the temperature, p is the pressure, the positive coefficients P,, P,,,
M? and R are the Prandtl, Prandtl magnetic, Hartmann and Rayleigh numbers
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respectively. The Hall coefficient occurring in the generalized Ohm’s law was
denoted by Sy [20], [31]. For the case of free perfectly conducting walls in the
presence of the Hall current the boundary conditions are [30]

u-n=0=0 nxD-n=0,
2
h-n=0 {Vxh+pylVxhxHy+h]} xn=0 z=0,1 t>0

where D is the velocity deformation tensor and n is the external normal to the

layer boundary. Assume that the perturbation fields are doubly periodic of

period 27/a and 27/ in x and y direction respectively and let us use the variables
2 2

k-u,k-V xuk- hk-Vxh[11]. Denote by Q = [oﬂ x [o,ﬂ % [0,1] the

periodicity cell. Thus, from the equations (1), linearized about the equilibrium

my, we obtain

0 2a P12n

&Aw = PmAAw+PmM %Ahg +RP—1A19,

0 5 0 .

&C—PmAé'i‘PmM &]7

0 0 0
3 — o = — B N

o. 0 . 0

a5t —&Cﬂ-Aj—f—ﬁH&Ah&

0 P,

. P ?

where w=k-u, hg3=k-h, (=k-Vxu, j=k-V xh, A1:W+a—y2.

Equations (3;), (32) and (84) are obtained by applying [2] the operators
k-V x Vx, k- -Vx to the equation (1;) and k - Vx to the equation (13) respec-
tively. The boundary conditions obtained by linearizing (2) are

2 g. 0
4) w—@w—hg—&j—ai—ﬁ—o at z2=0,1.
In spite of their similarity the problem (3)-(4) in this paper and the problem (2)-
(4) in [24] are different due to the boundary conditions. This will imply notable
differences in the solution and solution method. Assume that the perturbations
are normal modes, i.e.

®) (w, hs,j,C, 0) = {W(2), K(2), X(2), Z(2), O) exp [i(ax + By) + at],
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introduce (5 ) into (3), (4) and perform the change of variables z — z — 0.5 to get
(D? — a® — 0)K + DW — ;DX =0,
[P,.(D? — a®) — 61Z + P,,M*DX = 0,

PZ
6 { D= d)NPy(DF ~a®) — gIW + P, M*DW? — *)K — R5"a*0 = 0,
(D? — @ — 9)X + DZ + fyD(D* — a*)K =0,

Py,

D —a?)—a|O@+W =0,
P,

where a2 = o2 + f,

@) W=DW=K=DX=DZ=60=0 z=+05.

3. — Series solutions for the eigenvalue problem.

If the instability sets in as a stationary convection, then in (6) we must take
o = 0. In the following we consider only this case. Therefore consider the ei-
genvalue problem (6) (7) with ¢ = 0. It is not easy to find its eigensolutions by
using total sets in L2( — 0.5,0.5) of orthonormal functions satisfying all boundary
conditions and being quite simple [3], [6]. This is why we expand the unknown
functions in Fourier series on very simple expansion functions, namely sinus and
cosinus. However the last functions do not satisfy all boundary conditions. More
precisely, let us write the unknown functions as the sum of their even and odd
part, e.g.

W=W W' => Wi B 1+ Wi, Faus,
n=1 n=1
where Es, 1 = V2 cos ([(2n — D)rz)] and Fa,_1 = v2sin ([(2n — Drz)].

The sets {E1,E3, E5,---}, and {F1, F5, F5,- - -} are total in the subsets of even
and odd functions of L?( — 0.5,0.5) respectively [3], [6]. The boundary conditions
W(£1/2) =0 imply We@/2) + W°(1/2) =0, We(—1/2) + W°(—1/2) = 0 and,
taking into account that W¢(1/2) = W*(—1/2) and W°(—1/2) = —W°(1/2), it
follows that Wé(£1/2) = 0 and W°(£ 1/2) = 0. Similar relation hold for all other
unknown functions. Then, recalling that the derivative of an even function is a
odd function, (7) reads

) We=DW=K°=DX°=DZ°=60"=0 z=+05

7 Wo=D*W'=K°=DX°=DZ=6"°=0 z=+05.
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Taking into account that the equality of two functions, namely one odd and the
other even, implies that both functions are equal to zero, it follows that (6) de-
composes into two systems: one in W¢, °, Z°, X¢ and K°

(D? — a®)K® + DW* — ByDX° = 0,

(D* - a®)Z° + M*DX* = 0,

©) (D* — a®2W° + M2D(D? — a®)K° — Ra? % @ =0,
(D% — a®)X° + DZ° + By D(D? — a®)K° =0,
Py,

(D? - > + W =0

P,

and the other in W°, ©°, Z¢, X° and K*

(D% — a®)K® + DW° — fyDX° = 0,
(D? — a®Z° + M?DX° = 0,

6" (D? = a®W° + M*D(D? — a*)K* — Raz%@" =0,
(D* — a®X° + DZ° + pyD(D? — a®)K* = 0,
%(DZ — a6’ + W’ =0.
)

With (6") (resp (6”)) we associate the boundary conditions (7') (resp (7")).

The Fourier coefficients of the derivatives of the unknown functions can be
immediately obtained by taking into account the boundary conditions in the
general formulae [6]. Namely, let U¢:[ — 0.5,0.5] — R be an even function.
Then, by backward integration technique, the derivatives of its expansion in
Fourier series upon the set {E1, E2, }, i.e. Uz) = > o2, Us, 1E2,-1(2), read

D*U@) =Y Ul VFy 1), D*UR) =) Ui Eai(2),
n=1 n=1

where
ULD — 93/3( — 1y D% U(0.5) — @0 — DalS),

2k 2k—1
USSR = @2n — DU V.

Let U° : [ —0.5,0.5] — R be an odd function. Then, by the same technique, the
derivatives of its expansion in Fourier series upon the set {Fy, F,-}, namely
Uz) =352, Us, 1F2u1(2), read

D*HUG) = Us VB 1),  D*U°R) =) UsZh Fa1(2),
n=1

n=1



A LINEAR MAGNETIC BENARD PROBLEM ETC. 203

where

USEED =2 — DrUS UK =2v2(— 1" D*1U°(0.5)—2n — DU P.

4. — Neutral curves for the even case.

The case where the velocity and temperature are even functions of z is re-
ferred to as the even case. Then, by using the notation A, = 2n — 172 + a2,
problem (6') (7') becomes

A, K5, | —@Cn—DaWs, |+ fyg@Cn—DnX5, | =
= 2V2(— 1)"[a6 — fyadl,
—AZ8, | — MP@n — DX, | = 2V2(— 1) ayM?,
P
P,
=2V2(— 1)"@2n — DragM?,
-A, X5, 1+ @n—DnZy, | — py@n— DA, Kg, | =
=2V2( - 1)"@n — Drlagfy + a4,

AZWE, | — MPA,@2n — DnKy, | — " Ra*6%, | =

@®

PWL
—An P. @gnfl + Wgnfl =0,
B
where ag = DK°(0.5), ay = X°(0.5) and the constraints read
> 2V2ay — (- D" @n - DXy, 1=0, Y (-D"'K3, , =0.
n=1 n=1

Denoting X5, | = Ay /Ay, K3, | = Asu/Ay, We obtain

A=A (Ra? — ADAZ 1 A, - DO 1 A,
r
~M2A, (A, — d)[A2 + (A, — > )M?] }
Agy = 2v2(—1)" Z—m 2n — Dray [(Ai — Ra®)(A2 + MP?A,, + A%f%)
r

+MEALA, — @) + MUAXA, — a?)],

P m

_ R
Az, = 2V2(—1) P,

{a4azﬂHAn(Ra2 — Ai’;)} —2V2(—1)" %aﬁ.
n

Then the restrictions imply the following secular equation, yielding the eigen-



204 A. GEORGESCU - L. PALESE - A. REDAELLI

values R as functions of ¢? and physical parameters M and f;

YLy [amg(w —4) — CMPA, A, — 0)

A, =0.

n=1""" pn=1

Introduce the notation
9 H,= [Ai + A, - az)MQ]y Ly, = A (Ay, — CLZ), Xy = Ra* — H,A,.
Then A, = A, (P.y/PIIX,(H, + f5L,) + M?B%12] such that this equation be-

comes

(10) > =0,
~ X, (H, + L) + M2y L2

If the Hall effect is absent, i.e. f; = 0, the functions in (10) are singular at
X, =0,n=1,2---. Then, assuming that X, # 0 it follows that (10) fails to re-
present the secular equation. Therefore we are forced to consider this case se-
parately. A treatment similar to that in Section 5.1 shows that, in fact, the so-
lutions of the true secular equation are X,, = 0, » = 1,2, - - - and they correspond

A3+ (A, — d)M?A,

to the eigenvalues Ra? = H,A,, or, equivalently, R = pe The
2)3 2 2
smallest eigenvalue R = @ +a?) +£;[ T + o) defining the neutral curve

corresponds to # = 1 and it is equal to IV, (163) of [2].

If py #0 and n =1 the eigenvalue is still that from the case Sy =0, i.e.
R = H1A 072, and it corresponds to X; = 0. If 8 # 0 and n = 1 and 2, from (10)
we derive the equation in X;

X3 +Xo[Q + M*B5B. 1+ M*3QD = 0,
where @ = X1 — Xy = HyAs — H1 A1, the solutions of which are

~(@+ M2BB.)E/Q + M2FLB.F + AMABYC

2 )
where Bi = (A2L3+ A1L3)(A1Gs + AsG1) ™!, C = A1AL2LE(ALG2 4 AsGy) 77,
D= A1L3(AGz + AsGy) Y, G, = A% + (A, — a®)(M? + A,fi%), whence the result

¢85) XPe =

THEOREM 1. — Ifthe velocity and temperature fields are even functions while the
magnetic field is an odd function of the vertical coordinate z and only two terms of
the secular equation are retained, then the approximate neutral curve reads

(2 + a2)® + M2r2(n2 + a?)

Rf =
0 a?

)
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if the Hall effect is absent and

AsHy + X
12) R — L;W,
a
or, equivalently,
A H, +X®
13) RC — %,

if the Hall effect is present, where Xg) has the expression (11), X?) =Q+ X;Z). In
(a?; R)-plane the curves (13) are situated below the curve R, thus the Hall effect is
destabilizing.

Proor. — The equation in X; can be obtained from the equation in X, by
simply replacing @ by —Q. Then it is immediate that Xiz) < 0, hence the values of
R given by (13) are smaller than those given by Ef. Moreover, X§D > 0, hence the
corresponding values for R = [H1A; + XPla2 = [HpAp + XP]a~2 are higher
than those given by R{. Hence R is situated between the two curves from the case
Pu # 0, but only the last one is of interest for us. Since Xg)’(z) < 0 it follows that
both the corresponding curves R = [H2Az 4—X§1)’(2)]a‘2 are situated below the
curve R = AyHsa 2. Their expression computed by (11) show that as 5 — 0
these curves tends to the curves R = AsHsa 2 and R = A H a2 respectively
from the case of the absence of the Hall effect. Therefore, for a sufficiently small
Py the lower curve is the closest to R{. In addition, the neutral curve from the case
S = 01is situated between the two curves corresponding to the two solutions of
the secular equation (10) with S5 # 0.

If more terms in (10) are retained then higher degree equations in X; are
obtained. Due to the decreasing order of magnitude [6] of the additional terms,
their contribution to the solution diminishes and, thus, we expect that a limit
neutral curve exist under that for the case iz = 0. In fact, all involved series
converge at least like n~! as n — oc. In (10) the terms in Ra? are of order n 3
while those which do not contain Ra? are of order n 2 as n — oo and they are
negative. Indeed, for M?, B, and Ra® not too large, X,G, + M?f%L2 ~
X.G, ~ —A,H? ~ A3, A, X, = A,[Ra® — A,H,] = A,Ra* — A2H,, therefore
the coefficient of Ra? is of order A;* and that of A, H,, is of order A, ! as n — oo.
We emphasize that we are interested in the smallest R, therefore in the solution
X,(Ck) which corresponds to the value Ra? smaller than R{. This solution exists.
Indeed, all the smallest negative solutions of the k-th degree equation in Xj,
obtained by truncating (10) to k terms, has a continuous dependence on ﬁ?{.

Moreover for /)’Z — 0 the corresponding Ra? tend to H1A1, HyAsg, - - -, Hi Ay
In particular, the lowest corresponding curve R = R(a?) will tend to the neutral
curve defined by Rf.
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5. — Neutral curves for the odd case.

Assume that the velocity and temperature are odd while the magnetic field is
an even function of z. This case is referred to as the odd case and it corresponds
to the problem (6”) (7”). Since, in this case the use of the total sets {E;, E3, - - -},
{F1,Fs,---} introduce four constraints, we use the total sets {1,E2, Ey, -},
{F2,F4,---}. Then the Fourier coefficients of the unknown functions written as
fo+ Y0 1 fonE2y, (for even functions f) and Y7 | f5,F'2, (for odd functions) sa-
tisfy the system

— B,KS, + 2naWsy, — fu2naXs, = 2V2( — 1) ag — fyadl,
— B, Z5, + M*2n7X3, = 2V2( — 1) ayM?,

P
(14) — B, X3, — 2nnZs, + fu2naB, K3, = —2vV2( — 1) 2nalashy + a4l,
_Pu

P,
— 2a¢ + azag + 2ﬁH(14 =0,
— a2a1 + 2M2(14 =0

P
B2WY, + M?B,2nnKS, — -~ Ra*05, = —2V2( — 1) 2nnasM?,
r

Bn@gn + gn = 07

and the constraints
(15) 2a4+z[2¢§<— 1"y +2nnX§n} 1D'V2=0, @+ 1)'VEKS, =0,
n=1 n=1

where a4 = X0(0.5), Xg(l) = 2(14, Zz = dy, Kg = dg, DKe(O.5) = 0Ug, Kg(2) = 2a6 and
B, = @un)® +a?. From this system we obtain, for n >1, X§ = Agy,/Ay,
K, = Agy /Ay, where

P
Ay = P#W‘Bn{(RCL2 - BE,)),) [B727 + By — a2)(M2 + Bnﬁ%[)]

~M?B,(B, — a®)[B% + (B, — aOM?]},

P,
Mgy = 2VE(— 1" P 2nmay (Ra? — B})(BE + M?B, + B2fy)

~M*BY(B, — )M + B,)] .

P P, A
_ _qyptlim 2 2 _ p3y_ Lr/an
Aoy = 2v2(— 1) - {w Bub(Ra* — BY) — as 3" Bn}'
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Thus, the constraints imply the eigenvalue equation in the form of the following
determinant containing infinite sums of series converging at least like ! as
n — oo

(16) det | M1 ®12| _ ¢
21 Q22
where
>3\ 5 [(Ra* — B3) — M?B, (B, — a*)]
:1+20L22:B?Z L e ; a2 =0,
n=1 " P,
— a?f B, (Ra? B3) 1 <1
o=t 23 IIEEB) L3
a? n=1 An P:n a n=1"""

In the above we assumed that A, # 0.

5.1 - The case iy = 0.

Inthiscase A, = %Bn[(}m2 — B3 — M?B,(B,, — a®)1[B% + M*(B,, — a*)] and

Ay = 2V2(— 1" i—’”zmmBn[(Raz — B3) — M?B,(B,, — a)(B,, + M?), Ag, =

P

2V2( — 1)"ag 5 A“ , such that, if A,, # 0, the constraints imply the secular equation

B 1 >

2

<1+2a 232+M2(71L9 az))< +ZZE>:O'
n: V

n=1

This relation cannot hold because all involved terms are positive. Hence, our pro-
blem has no eigenvalue. Then assume that A, =0. In this case
Ra? = B3 + M?B,(B,, — ¢*), or, with the notation L, = B,(B, —a?) and

”Vl B n

H, = B2 + M?(B,, — a?), we have the eigenvalues R,, = . Let us prove that,

indeed, for these values non trivial solution of (6”), (7”) exist. First remark that for
S = 0 system (6”) splits into two non coupled systems

an (D? — a*)Z°¢ + M?DX° = 0,
(D? — a®X° +DZ° =0,
(D? — a®)K* + DW° =0,
P
2 2\21170 2 2 2\ 17e tm oo
18) (D? — a®*W° + M*D(D* — a*)K —H,ZB,@PTQ =0,

il

P D? - a®)O° + W° =0,
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By eliminating Z¢ between D(17;) and (175) it follows (D% — a2)*X°— M2DX° = 0,
while taking into account in (172) the boundary conditions for Z¢ it follows the
supplementary boundary conditions (D?> — a?)X° = 0 at z = +£0.5. If A; # Js are
the roots of the corresponding characteristic equation(A? — a2)* — M2)% =0,
introducing the general odd solution X° = A sinh /; 4+ B sinh 4, into these con-
ditions, we obtain the secular equation

(J3—a®tanh % (] —a?)tanh &
J2 - P '

The function (1) = 27142 — az)tanhg is monotone for A >0 and for 1 < 0.

Indeed, % =0 reads sinhl= —i(2 —a®)(%®+ a2 and the graphs of the

functions defined by the two sides of this equality are intersecting only for 1 = 0.
Therefore the secular equation has only the trivial solution. Consequently X° and
Z¢ are trivial functions.

Consider now the system (18) with the corresponding boundary conditions
from (7”). Then, using the expansion of the unknown functions on the total sets
{2}y and {F2,}, - We have

— B,KS, + 2naWy, = 2v2(— 1) g,

P

BEWS, + M®B,2nnKS, — P—TB%H,Z@;,Z = —2V2( — 1)""2nnagM?,
P

B ?TB”@(Z)M + é)n =0,

— 206 + a2a2 =0.

19)

Remark that —2naM?(19); + [BZ + M*(B,, — a®)(19)3 = (19), (we remind that
H, = B% + M*(B,, — a*)) therefore the equations (19); 2 3 are not independent, in
other words, equations (6”); 3sare not indipendent. This can be seen by per-
forming M2D(18); + [(D? — a?)? — M2D?](18); and add to (18), to obtain

(20) (D?—a2)’W°+M2D(D? — a®)K® + %[(DZ — a?)?— M2D*I(D?— ) = 0.

On the other hand, the elimination of W° and K¢ between (18) leads to the fol-
lowing equation in &
21) [(D? — a2 — M2D)(D? — a®)@ + Ra26 = 0,

Py o 242 2121/ 2 2 Py 1 9
therefore ?[(D —a°) — M*D*](D* — a”)O = —?Ra ® and so, for
Ra? = B, H,, (20) becomes (18)s.
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The operators M2D and (D? — a2)* — M2D? were constructed by taking into
account that a factor of 2nzi is generated by the application of the operator D
and, so, B, by —(D? —a?). This type of reasoning is generally useful when
wishing to express properties of the system in Fourier coefficients in terms of
those in the corresponding system of differential equations.

The characteristic equation for (21) reads

(22) (7% — a®f — M%J?] (7% — a®) + Ra® = 0.

Therefore  for every eigenvalue R, = B,H,/d% = a 2[2nn)* + 2]
{[(2%71)2 + a2 +M2(2mz)2} we can find the six solutions of (22) such that the
odd general solution ©° of (21) has the form 6°(z)= Aj,sin @nnz)+
Ag, sinh A3z + As, sinh /52, where 13 and /5 are given in the following, @° satisfies
the boundary conditions given in (7”) or deduced from (6”) and (7”) and it is not
identically equal to zero. The same can be said about W° and K° Really,
R, =H,B,/a® reads, equivalently, as R, =B,H,/d% = a2[2nn)* + aZ]
{[(Znn)2 +a?P+ M2(2mz)2} and, thus, (22) can be written in the form

22 28— (3a® + M + a?(8a® + M?))? — S+

[@nn)* + a?1{[@nn)? + a?F + M?@2nn)*} = 0.

Since this equation has two roots A2 = +2nni it follows that the other four
roots, written as 134 = £ (a + ¢f) and 455 = £ (a — 1) satisfy the equation

22" M= Ba® + M? + Pn)E + (3a® + M) (d? + 4n’r) + 16n*nt = 0,

whence the above quoted form for @°. By construction this function satisfies the
equation (21). It must satisfy also the following boundary conditions derived from
(6") and (7")

(23) °=D?0=D'0@=0 z2=+05

implying the secular equation in C

sin (nr) sinh (ll?’) sinh <@>

2
24) det | —4nn2sin (nm) 2 sinh (%3) J%sinh <§> =0,

AV

16n*n!sin(nn) 73 sinh (%) J3 sinh (%)

which is automatically satisfied for both real and complex values of /3 and 1s.
This determinant vanishes always. However, it is easy to check that there
exists a 2 x 2 non vanishing minor formed with the minor of the upper-right
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corner of (24). The corresponding equations in Ay, Asy, A5, read

Ay, sin (nn) + As,, sinh (a/2) cos (£/2) + Asy, sin (f/2) cosh (a/2) =
—4n27? sin (nm)A 1, +As,[(6® — %) sinh (a/2) cos (8/2) —2af sin (8/2) cosh (a/2)]+

Ayl sinh (a/2) cos (5/2) + (a® — /)’2) sin (f/2) cosh (a/2)] = 0,

implying As, = As, = 0. Therefore ©0° = Ay, sin (2nnz), where A, are de-
termined up to a constant factor: they are the Fourier coefficients corresponding
to the expansion functions sin (2nnz). Consequently for every R, we have one
non vanishing solution @° of the above form, i.e.R,, is an eigenvalue, indeed. The
system (19) gives the same result: R,, = H,,,B,,/ a? represent the eigenvalues for
the problem (19), (7”). Indeed, since the Cramer determinant for (19); 23 is null,
we choose equations (19);3 in W3, and K3, . The corresponding Cramer de-
terminant, which is a 2 x 2 minor of that for (19), 5 3, is non vanishing. Therefore
we can determine uniquely W§, and Kj, in terms of 65, and a, ie.

_ 7
2 = Pu —~B,,05,, and K§ = 2mn6;, P m while for m # n we
m P m n n P Bm
2v2(—1)"ag

have Wg, =05, =0, Ky, = . Since, by (19)4, az = 20502, the con-

By
2a4 m Pm - ag
straint (15); becomes —- +\/_ 2(—1)"2mnOs,, — P, 4 B = 0, or, because
n=1 n
1 — 1 a 1 3 _ m+1
Z EE T da coth 5 52 it follows that ag =(—1)
P,
\/— 20 tanh < 2mn -
2 By < (—1)Fecoskr 7 coshbr 1
Taking into ‘account formula [10] Z k2 R e e T
—n < <z, we find k=1
e _ m 0 _ qymAl cosh az
K(z) = 2v2mn =2 P, 6s,, [( 1) wosha/2 7 + cos (Zmnz)]

In addition W°(&) = \/_ Bm ., Sin (2mnz) and 6°(z) = O V2sin 2mnz),

2m

hence R,, = B,,H,,a 2 is an elgenvalue. The neutral curve corresponds to m = 1
i.e. it has the equation

(4r? + a2)® + AM2Pr2(4n® + a?)

25) R= =

Let us prove that no R, # B,H,a "2, n € N*, is an eigenvalue. Indeed (19)
has only trivial solutions. In this case the Cramer determinant is

PWL 2 1
A, =5"Bu(Ra® ~ B,H,) and Ws, = €5, =0, K3, = \/_(B =
n

P, which in-



A LINEAR MAGNETIC BENARD PROBLEM ETC. 211

troduced into the constraint implies as = 0, hence K3, = 0 = ag, hence the de-
sired result.
5.2 — The case i # 0.

In this case the secular equation (16) becomes

00 2
(26) 14202 (R — B, H,)B, =
(Ra — B3)(HS + f5L0) — M2LoHY

n=1

or, equivalently

0 2 0
(26/) 1 +2(12 Z : (ROL B?’LHn)an — -0
(Ra? — B,H%)GY + prM?LY

n=1
where LS = B,(B,, — a?), H, = B2 + M*(B,, — o) and G% = H + fHL2.
If in the sums in (26') a single terms is retained we obtain
r® + a®)’ + AMPrPUrn® + a®)
a2

@7 R=

16M2r (42 + a2)?

2
P a2{(4n% + a2)* + 4M27% + 2a2(4n2 + a?) + frAn(4n2 + a2)}

showing the instabilizing effect of the Hall current if compared with (25).
Now let truncate (26") up to terms corresponding to #n = 2 and introduce the
VOM?Ly — Q°
MZ3Ls

1

notation V¢ = (Ra® — B,H2)M2L°
becomes

. Then V2 = and so, (26")

(VO = V)PM?L T2(NST; + 2a°BoN9)+
(Vi = VOT1IMPLoPoT? — (PIMPLS + Q°Ty)

(28) (N3T1 + 2a°B2N?) + 4a* BiBoMPLi P} — 4a*B1Bo PY(PLMPL] + Q°Th) = 0
where N = H, + f5L0, P9 = f5L0, Ty = N +242B,, Q° = HyB, — H}B; and
V1is the solution of (26/) corresponding to n = 1, i.e. V; = —P;T7*. Due to the
fact that Ra? — BiH{ = VIM2LY = ViMPL{ + (Vi — V))M?L? this means that
the case with two terms shows destabilizing effect if V) — V;) < 0 and stabilizing
one oiherwise. The equation (28) shows that we have one positive solution
V- V(l) and other negative. It follows that the neutral curve corresponding to
this negative solution is better than (27).
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6. — Conclusions.

In order to obtain neutral curves for the Bénard magnetic convection, in the
presence of the Hall currents and for free boundaries, the Budiansky -DiPrima
method was used. It involves Fourier series expansion of the normal modes on
total sets of very simple functions (cosine and sine), in associate separable
Sobolev spaces, and satisfying part of the boundary conditions of the problem.
The other boundary conditions introduce some constraints. The system of or-
dinary differential equations was split into two systems for even velocity and
temperature fields (the even case ) and conversely (the odd case). In the even
case we used total sets leading to two constraints while in the odd case the same
choice would imply four constraints.This is why in the odd case we used other
total sets leading also to two constraints.The secular equation defining the
neutral curves were obtained in the form of a vanishing determinant the entries
of which were series involving the Fourier coefficients of the unknown func-
tions. Retaining one and two terms in these series we determined the closed
form solution of the equation defining the neutral curve that for two terms was
situated under the neutral curve corresponding to one term. This was to be
expected because the involved series were convergent at least as n 2 as n — oo.
In the first even case it was found that if the sums were truncated to a single
term, the stability bounds corresponds to the case f; = 0. In the case ot two
terms the neutral curves for S # 0 were situated below the neutral curves
from the case iy = 0. In the odd case the Hall effect was present even for a
single term in the sums. When trying to compare our results with the case
when the Hall effect is absent we found that our calculations implied a singu-
larity and so we treated this case separately. The comparison between the case
of absence and presence of the Hall current showed a destabilizing effect of this
one.
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