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Asymptotics of Potentials in the Edge Calculus.

D. KAPANADZE - B.-W. SCHULZE

Sunto. — I problemi al contorno su varieta con singolarita coniche o di tipo edges (spi-
goli) contengono operatori potenziali come operatori di traccia e operatori di Green, 1
quali svolgono lo stesso ruolo dei corrispondenti operatori nel calcolo pseudo-dif-
ferenziale per problemi al contorno su varieta lisce. Esiste allora uno specifico svi-
luppo asintotico di questi operatori nell’intorno delle singolarita. In questo lavoro
caratteriziamo gli operatori potenziali in termini di azioni di operatori pseudo-
differenziali di tipo conico o di tipo edge, su densita che sono supportate da sotto-
varietd che hanno anch’esse singolarita coniche e di tipo edge. Attravevso un bipro-
dotto mostriamo che tali potenziali sono operatori continui tra spazi di Sobolev di
tipo conico o di tipo edge e sottospazi con asintotiche.

Summary. — Boundary value problems on manifolds with conical singularities or edges
contain potential operators as well as trace and Green operators which play a similar
role as the corresponding operators in (pseudo-differential) boundary value problems
on a smooth manifold. There is then a specific asymptotic behaviour of these op-
erators close to the singularities. We characterise potential operators in terms of
actions of cone or edge pseudo-differential operators (in the neighbouring space) on
densities supported by submanifolds which also have conical or edge singularities. As
a byproduct we show the continuity of such potentials as continuous operators be-
tween cone or edge Sobolev spaces and subspaces with asymptotics.

Introduction.

Potential operators are known to belong to the structure of parametrices of
elliptic boundary value problems, e.g., potentials with respect to Poisson kernels
in problems with smooth boundary, c¢f. Agmon, Douglis and Nirenberg [1],
Boutet de Monvel [2]. If the boundary is not smooth and has, for instance,
geometric singularities (say, edges, as is the case in crack configurations in
mechanics) asymptotic phenomena play a specific role, and it is interesting to
analyse the interplay between geometric singularities and (local and global)
asymptotic contributions of the involved operators. The present paper is aimed
at representing potential operators on configurations with conical (or edge)
singularities with boundary in terms of operators from the respective cone (or
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edge) calculus in the neighbouring space by their actions on corresponding
‘surface densities’. As a consequence we obtain asymptotics of potentials which
we express in the framework of weighted Sobolev spaces. Other aspects of
surface potentials with asymptoties have been studied before by Chkadua and
Duduchava in [3]. More precisely, solutions of crack problems in [3] are re-
presented as surface potentials with the surface being the crack. The corre-
sponding density is obtained as the solution of a pseudo-differential equation on
the crack.

By asymptotics (in its simplest form) we understand a behaviour of (say, C*)
functions u(r) on R, of the form

(1) w(r) ~ Z Z (;jkqﬂ‘f?i logk r

J=0 k

oo 00

0

as r — 0, with exponents p; € C, Re p; — —oc as j — oo, which means that for
every M > 0 there is an N(M) € N such that u(r) — ijx; o0 S0 e Pi logh s
flat of order M at » = 0 for every N > N(M). As is well known by Kondratyev’s
work [8], solutions to elliptic equations of Fuchs type on a manifold with conical
singularities (locally modelled on a cone with base X) have asymptotics of the
form (1) (in this case the coefficients c;. belong to C*(X)).

The nature of asymptotics of solutions to elliptic equations on a configuration
with edges (locally modelled on a (stretched) wedge X x , for the (stretched)
cone X" := R, x X and an open set Q C RY, the edge) requires more explana-
tion. Denoting the points of X" x Q by (r,x,%), the asymptotic expansion of
solutions u(r, x,y) contains y-depending coefficients cj.(x, ) where the Sobolev
smoothness in i depends on Rep;. For instance, in the case of a ‘trivial’ wedge
R % R? with edge R, elliptic regularity may refer to standard Sobolev spaces
H? (RgJrl x RY). Writing elements of that space in polar coordinates
(r,x) € Ry x 8" with respect to the variables & € R"*"\{0}, for s > 2L the
Taylor coefficients at # belong to C>(S”, H¥ "7 (R%)) for 0 < j < s — 241 (in this
case we have p; = —j and m; = 0 for all j).

For non-trivial wedges, say, X" x R? with an arbitrary base X, the operators in
question are assumed to be edge-degenerate, cf. the notation below. Examples are
Laplace-Beltrami operators to wedge metrics of the form dr? + v2gx(r,y) + dy?,
when gx is a family of Riemannian metrics, smoothly depending on (r,y) (up to
r = 0). Solvability of elliptic equations can be described in weighted edge Sobolev
spaces W*'(X" x RY) and subspaces with asymptotics, cf. [12] or [13]. A similar
calculus is known for boundary value problems on manifolds with edges and
boundary, cf. [9]. In particular, this theory yields parametrices of elliptic crack
problems, cf. [6]. In this connection it is natural to ask the asymptotics of potentials
of ‘densities’, supported by a hypersurface with boundary and with ‘edge-asymp-
totics’ at the boundary, also motivated by the approach of [3]. The potential refers
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to a parametrix of a given elliptic operator, and the task is to characterise the
asymptotics of the potential in the neighbouring space close to the boundary. Other
observations of that kind are contained in [14].

In this paper we give the answer in terms of operators in the edge algebra
from [13] under the assumption on y-independence of the asymptotic data. A
similar structure in simpler form (for smooth boundary and Taylor asymptotics)
is known from boundary value problems with the transmission property at the
boundary, cf. [2], and, in fact, we also employ some information from that case on
the smooth part of our surface. The case of non-constant exponents of the
asymptotics could be embedded into the framework of continuous asymptotics,
cf. [13], but this is voluminous and goes beyond the scope of the present paper.

1. — Asymptotics in weighted edge Sobolev spaces.
1.1 — Cone and edge Sobolev spaces.

We first establish basic facts on differential operators in so called cone and
edge Sobolev spaces. Given a differential operator

A=) a,@D;

la|<u

in R™ > & with coefficients a, € C*(R™) we can interpret a hypersurface R? in
R™ as a fictitious edge and reformulate A as an edge-degenerate operator. That
means, writing R™ = R"™ x RY for m =mn +1+¢, and inserting polar co-
ordinates (r, ) in R"™\{0}, the operator takes the form

J
2) A=r* ‘ Z ap(r, y)<—7ﬂ§) (TDy)ﬁ
JHBI<u

with coefficients a;s(r,y) € C=(R x RY, Diffr U+ ‘)(S”)); here S"™ is the unit
sphere in R™ and Diff"(M) for a C* manifold M denotes the space of all dif-
ferential operators of order v on M with smooth coefficients (the space Diff" (M)
is Fréchet in a natural way). A differential operator of the form (2) will be called
edge-degenerate (clearly such operators are much more general than the ones
induced by smooth operators via polar coordinates). Note that when the operator
A is elliptic in R™ in the sense that the homogeneous principal symbol in (%, &)
does not vanish for ¢#0 and all & the homogeneous principal symbol
a,(A)r,x,y, p, &, n) of (2) in the variables (v, x,y) and covariables (p, &, ;) (in local
coordinates & on S") is elliptic in the ‘edge-degenerate’ sense, i.e.,

o, (A, w, g, p, Er ) #0

for all (p, &, 1) # 0 and (r,x,¥), up to r = 0.
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Instead of S™ it also makes sense to insert any other compact C*° manifold X,
and ¥ may vary in any open set Q C RY; then edge degeneracy refers to the
splitting of variables (r,x,¥) in the (open stretched) wedge R, x X x Q with
edge Q and (stretched) model cone X" := R, x X. The operator A can be written
as a pseudo-differential operator

A = 0Op,(a)
with an operator-valued amplitude function
o\’
(3) aly, ) = W"j%;ﬂ @ (7, y)(—rm) (rn)",

Op,(@yu(y) = [f e V=" a(y, muly)dy'dy, dy = 2n) ?dy. To study the nature of
the operator function (3) we need some notation on the Mellin transform and
weighted Sobolev spaces.

The Mellin transform will be used in its classical form, namely,

Mu(z) = f P Lu(r)dr,
0

first on functions u € C3°(R;), z € C and then extended to various larger func-
tion and distribution spaces, also vector-valued ones. Then z usually varies on a
‘weight line’

I's={2€C:Rez=p}

for some appropriate f € R. Function spaces on I, e.g., the Schwartz or Sobolev
spaces in the real variable Im z € I's, will be denoted by S(I'3), H*(I'p), ete.
Recall that the map M, : u — Mul| I Cr(Ry) — S %_},) extends to an iso-
morphism 2

M, 7 LA(Ry) — LA(I'y)

with inverse M lgor) =L [ r, T 79(2)dz. Let us set
2 7

(4) opy, (Hulr) = f f (;) _(%_}urip)f(fr, r’,z)u(r’)d%/dp,

2= % —y+ipel L dp = (2n) 'dp, interpreted as a pseudo-differential op-
erator with respect to the weighted Mellin transform M,. Here, in the scalar
case, the amplitude function belongs to C*(R . x R+,S/‘(F%,7)) with S/‘(F%ﬂ)
being Hormander’s space of symbols (with constant coefficients) of order x in the
covariable p = Imz, z € I - We will mainly need (4) for operator-valued am-
plitude functions, namely, parameter-dependent pseudo-differential operators

on a C* manifold X with the parameter as covariable.
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In general, by L, (X; R") we denote the space of families A(4) of pseudo-
differential operators of order 1 on X, dependent on a parameter 1 € R’ (sub-
script ‘(cl)’ means that corresponding considerations are valid both for classical
or non-classical elements, and we write ‘cl’, if we talk about the classical case). By
definition, we have L~°(X; RY = S(RZ,L*OO(X )) which is the Schwartz space of
functions in R’ with values in L=°(X), the space of smoothing operators on X.
The elements A(A) € Lélcl)(X ; R! ) are defined by local (classical or non-classical)
amplitude functions in the covariables (&,1) € R"”, n = dimX, modulo
L~>(X; R,

Let us now assume that X is a closed compact C* manifold, and let H*(X)
denote the standard Sobolev space of smoothness s on X.

It is well known that for every p€ R there exists an element
RA(2) € L’C‘l(X ; RY) that induces isomorphisms R*(A) : H3(X) — H*#(X) for all
LeR, seR.

Let us fix such an R*(z) € Liy(X; I w1,) for p = s; then H™(X ") denotes the
completion of the space C;°(X") with respect to the norm

. :
{2_m' i ||R’”’(z)Mu(z)||iz(X)dz}.

n+l
e

The space L?*(X) refers to a measure associated with a fixed Riemannian
metric on X. Clearly the specific choice of R*(z) only affects the norm of H*7(X")
up to equivalence.

Let us also consider the space H; . (X") which is for the case X = S” the
subspace of all u € Hj (R x 8")|y .. such that yu € H3(R™) for any excision
function y in R (i.e., C*, vanishing for |¥| < Ry, and equal to 1 for | > R; for
some 0 < Ry < Ry). In the latter relations R, x S” is identified with R"™\ {0}
via polar coordinates.

For X in general we can define H; . (X") by a simple localisation procedure
on subsets R, x U for coordinate neighbourhoods U on X such that R, x U is
diffeomorphic to a conical subset of R\ {0}; more details may be found in [12].

In this paper, a cut-off function on the half-axis is any real-valued
w(r) € CgC(R) that is equal to 1 in a neighbourhood of zero.

We now define the space

(5) K57 (X™) = {ou + (1 — o) 1 u € H7 (XM, v € HE, (X"},

cone

where o is any cut-off function. Clearly this space is independent of the specific
choice of w. The space (5) is endowed with the structure of a non-direct sum of the
completions of wH*’(X") and (1 — w)H; ,,(X") in the respective spaces (cf. [13]
for the general definition of non-direct sums).

The spaces (5) play a crucial role in future. Concerning more details, cf. [12] or
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[13]. Let us only mention here the relations
KOO = HOXM) = v LA (R, x X),
with L? referring to drdx. Moreover, we have
I (X = kTN

for arbitrary s, y,0 € R and any cut-off function w.

REMARK 1.1. — The spaces K*"(X") are Hilbert spaces with suitable scalar
products. Setting

Gowr,a) == 2T uQr,x), L€ R,

n = dimX, on the space K*"(X") we obtain a strongly continuous group {x;},
of isomorphisms. If necessary we also write K(") nstead of k;.

AERL

REMARK 1.2. — Assume that the coefficients a;z in (2) are independent of r for
r > R for some R > 0. Set

o J
aly,m=r"3_ 0{7’/?(7",.7/)<_7"5> ().

JHBI<u
Then
(6) aly, n) : K XN — ICHIHXN)

1s a family of continuous operators for every s € R, smoothly dependent on (y,n)
in the operator norm.

It will be essential in the following to interpret (6) as an operator-valued
symbol in (y, ), according to the following definition.

DEFINITION 1.3. — (i) Given a Hilbert space E with a group x; : E — E,
J € Ry, of isomorphisms, i, = K, for all 1, 2" € R, and strongly continuous
m A e, ke € C(Ry, E) for every e € E, we say that E is endowed with a group
action.

(i) If E and E are Hilbert spaces with group actions {i;} ser, ond {K;}er
respectively, the space S*(U x RY; E E) of operator-valued symbols fmﬂ open
UCR?, ueR, is defined as the set of all aly,n) € C*(U x RY, L(E, E)) such
that

—+|f —
SUPy, ek xR (m™ w ||K ) {D“ija(% M}yl LB .E)

is finite for every KcU, and multi-indices o € N?, f € N4,
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(iii) The space Sé‘l(U X Rq;E,E’) of classical operator-valued symbols is de-
fined as the subspace of all a(y,n) € SYU x RY;E,E) such that there are
aq—py,n) € C*(U x (RN\{0}), E(E,E’)), 7 € N, which are homogeneous of order
w—7j1imn#0n the sense

a(;tfj)(yv /1’7) = }vﬂ_jfcla(#fj)(yv }’])}c;jl
Sor all (y,n) € U x (RI\{0}), A € R, such that

N
aly,m) — x> aup(y,m € SN x R, E, E)
=0

for all N € N and any excision function y (i.e., any y € C*°(R?) such that
2Gn) = 0 for || < co, x(n) = 1 for || > c1 for certain 0 < ¢y < c1).

ExAMPLE 1.4. — The operator function (6) represents an element
aly,n) € S"(RZ xR [CHN(XN), C7HT=H(X™)) for all s,y € R. The symbol a(y,n)

n?
1s classical, if the coefficients ajp are independent of r.

DEFINITION 1.5. — Let E be a Hilbert space with group action {i;} . - Then
the space W' (R, E), s € IR, is defined to be the completion of SR, E) with ve-
spect to the norm

1
2

{ Il <n>28||x<:,§a<m|édn}

(with w(n) = Fu(y) being the Fourier transform of w). We call W' (R, E) an
(‘abstract’) edge space of smoothness s, where R is the edge.

REMARK 1.6. — The definitions, both of edge spaces and symbol spaces have an
mmmediate generalisation to the case of Fréchet spaces K or E with group actions,
cf. [13], [6]. By a Fréchet space with group action we mean that E is written as a
projective limit of Hilbert spaces im E* with continuous embeddings E*1—

keN
—Ef— . E forall k, such that there is a group action on E® which vestricts to
group actions on E* for all k.
ExXaMPLE 1.7. - () For E = H(R'™) with (x;u)(®) = /l%u(/li), AER, we
have
WHRY, HA(R'™™) = HA(RM)

for every s € R
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(i) The case {k,} =idg for all 1 € R, is an admitted (trivial) choice of a
group action in E; in this case we write H*(R?, E) instead of W/ (RY, E). Also note
that the space WX(R?,E) is independent of the choice of {x;}, cr, ond
W>(RY, E) = H*(R?, E).

(iii) For E = K*"(X") endowed with the group action from Remark 1.1 we set
WH(XN x RY) := WH(RY, K*"(X")), called a weighted edge space of smoothness
s € R and weight y € R, with respect to the edge R? and with (stretched) model
cone X"

Similarly as the ‘comp’ and ‘loc’ version of standard Sobolev spaces we have
spaces of the kind Wiomp(Q,E) and Wi .(Q,E) for any open set Q C R?. The
following continuity is similar to a corresponding result in the scalar case (cf. [12]

or [13]):

PROPOSITION 1.8. - Let QC R? be an open set, and let a(y,y/,n) €
SH(Q x Q x RY E, E). Then Op,(a) (defined in a similar manner as before,
now with a(y,y)-dependent amplitude function a) induces continuous opera-
tors

Op,(a) : W

comp

(Q, B) = Wi, (Q, E)

for every s € R. If a is independent of y,y' then we obtain continuous operators
Op,(a) : W(R?, E) — W' *(R%, E)

Jorall s € R.

1.2 — Edge asymptotics.

In this section we single out subspaces W' (X" x R?) of W*(X" x RY) >
u(r,x,y) with so called discrete asymptotics for » — 0 of type P. This will be
formulated in terms of corresponding subspaces IC}’"’(XA) of K¥'(X") with
asymptotics. By an asymptotic type P we understand a sequence

(7) P =A{(pjm;, L)}ty N

for an N =N(P) € NU{oo}, such that following properties hold: p; € C,
mj € N, and L; is a subspace of C*(X) of finite dimension. Moreover,
neP = {p;};_.. . is required to be contained in {z: Re z <1 — 3} for some
weight 7, and ncPN{z € C:c<Rez <" —y} is a finite set for every
c<™l—y If mcP is finite and contained in a strip {zeC:%H—
—r+0<Rez< ”T“ — 7} for some —oo < 6 < 0 we say that P is associated with
the weight data g = (y, @) for the weight strip ® = (6, 0]. Let As(X, g) denote the
set of all P associated with g. For the case dimX = 0 we simply write As(g).
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Let us set
Kg/(X") :=lim K*7~0~4(X")
0
considered in the Fréchet topology of projective limit. Moreover, for
P c As(X,g) and finite O, let £p(X”) denote the linear span of all functions
c(e)r—? logk re(r) for arbitrary

(p,m,L(p)) € P, k<m, celL{p)

and some fixed choice of a cut-off function w. The space Ep(X") is then of finite
dimension and has the properties

Ep(X") C KX

for some 0 < ¢ < dist(n-P, I %7},), furthermore Ep(X") N K*"(X") = {0}. We
now define

®) K3 (X7 = K5 (XM + Ep(X™)

with the Fréchet topology of the direct sum. For the case ® = (— co0,0] we
choose any sequence of numbers 0 < 0, 0, — —oo as k — oo and form the set
Py :={(p,m,L) € P: %1 —y+ 0, < Re p <1 —y}. We then have continuous
embeddings ’C;;:+1 X A);»Kf[;z(X M) for all k € N. Then
K5 X" = lim lCi;Z(XA)
keN
is a Fréchet space in the topology of the projective limit.
For the purposes below we set

(9) SpX") 1= lim (r) K (X7

keN

in the corresponding Fréchet topology.

REMARK 1.9. — The space IC;‘V(X M), P € As(X, g), can be written as a projective
limit of Hilbert spaces E* C KC*7(X"), k € N with group action, induced by that of
Remark 1.1, and continuous embeddings E* ' —E*f— ... E0 = IC*7(X") for all
k. A similar remark is true of the spaces (9).

We now introduce subspaces of W*"(X" x R?) > u(r, x, %) with asymptotics
for » — 0, which are discrete and constant with respect to the edge variable y.

Using Remark 1.9 we can write K3'(X") as a projective limit of {r;}, ¢ -
invariant Hilbert spaces E*, k € N, which gives us the edge spaces W(R?, E¥)
with continuous embeddings W¥(R?, E¥1)—W5(R?, E*) for all k, and then we
define

(10) WX x RY) := W(RY, KF'(XM)
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as the projective limit lim WH(RY, E*) with the corresponding Fréchet structure.
kelN

It can easily be proved that (10) is independent of the specific choice of the se-
quence {E"*},_., with the properties of Remark 1.9. Similarly as the ‘comp’ and
‘loc’ version of abstract edge Sobolev spaces on an open set Q C R? we have the
spaces

(X" % Q) = (Q,K¥"(X7M)

comp(y comp

as well as those with loc(y) and subspaces with asymptotics Wcomp(y) pX AN x Q) ete.

To characterise the singular functions of the edge asymptotics we first ob-
serve that when £ is a Hilbert (or Fréchet space) with group action, we have
canonical isomorphisms

T()) == F ', }F : W(R", E) — H*(R", E)

for all s € R, cf. Example 1.7 (ii) and [12]. Let £ = Ey & E; be a direct decom-
position of £ into closed subspaces, not necessarily invariant under the group
action {x;},cr  on E. We then obtain H(RY,E) = H*(RY,Ey) ® H*(RY, E1) which
generates a direct decomposition

(11) WIRY E) =T 'H* (R, Ey) ® T *H¥(RY, E))

into closed subspaces.

Let us apply this construction to the space (8) for an element P € As(X,g),
g = (y, ©), where the weight interval @ is finite. The space IC?;)’V(X M) is closed with
respect to {r;} ser, > this gives us

TP (RY, K (X)) = WH(RY, K (X)),
also denoted by WZ;’(XA x RY). However, Ep(X") is not preserved under the
group action, but we can form
VH(X" x RY) := T 'Ep(X™)

which is as a closed subspace of W3'(X”" x RY). In other words, we have a direct
decomposition

WE(X" x RY) = Wg' (X" x RT) + VX" x RY)

into a component of distributions of edge-flatness @ and a space of singular
functions with discrete (and constant in %) edge asymptotics of type P.

REMARK 1.10. — Every f(r,x,y) € WPV(XA x RY) for a (discrete) asymptotic
type P = {(p;,m;,L; )}] —o..np) € As(X,9), =(,0), 60=(0,0] finite (ie.,

N(P) < 00) can be written in the form

f(7'7 X, ?/) :féing(ra X, ?/) +f@(7', X, ?/)
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for singular functions
NP)

fangrp = 3 S P i i@t log (rTDietn

7=0 k=0

with suitable vy, € H(RY), coefficients cj, € Lj, 0 < k < mj, for all j, and a flat
remainder, i.e., fo(r,x,y) € W(‘;’y(X N x RY). Note that in the case s = oo we may
write

NP) my

Fangr,,y) = > > o)eq @iy logk r
=0 k=0
mod Wg' (X" x RY) = H*(RY, K5 7"(X")) with elements wy, € H*(R), ¢f also
Example 1.7 (ii).

One may ask to what extent our notation of singular functions of the edge
asymptotics depends on the choice of the function # — [#]. One can prove, cf. [6],
that when p(») is any other element of C*°(R?) such that ¢;1[5#] < p(y) < coly] for
all n € R?, with constants ¢; < ¢z, then fing(r, %, %) can be reformulated into an
equivalent expression with p(y) in place of [#] and other coefficients c;;, vji, mod
W' (X" x RY) + W, "(X" x RY). Also the choice of w is unessential.

2. — Mellin representation of parametrices.

2.1 — Mellin operators in spaces with asymptotics

First, let X be a closed compact C* manifold, and introduce operator-valued
Mellin symbols with asymptotics. Let us start from the case of discrete
asymptotics. A sequence

(12) R = {(pj7M7"Lj)}je‘Z

with ncR = {p;};c,, C C, m; € N, is called a discrete asymptotic type of Mellin
symbols if
ncRN{z:¢<Rez <}

is finite for every ¢ < ¢/, and L; is a finite-dimensional subspace of operators in
L=°(X) of finite rank. Let As (X) denote the set of all such sequences R.

If U C Cisanopen set and £ a Fréchet space by A(U, E) we denote the space
of all holomorphic functions in U with values in E.

DEFINITION 2.1. — (i) The space M{5(X) for i € R is defined as the set of all
h(z) € A(C, LE(X)) such that
h(B +1ip) € LG R,)

holds for every f € R, uniformly in c < f < ¢, for arbitrary ¢ < c.
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(i) Mzp>*(X) s the space of all f(z) € A(C\ncR,L™>(X)) that are mer-
omorphic with poles at p; of multiplicities m; + 1 and Lawrent coefficients at
(z — pj)—““) in Lj, 0 <k <my,, for all j € 7, and satisfy

IrB+ip)f (B+ip) € L™*X;R,)

Sfor every p € R, uniformly in ¢ < p < ¢, for arbitrary ¢ < ¢; here yp(2) is any
ncR-excision function (ie, any yp € C*(C) such that yp)=0 for
dist(ncR,2) < &, () =1 for dist (nc R, z) > & for some 0 < g < ¢1).

The spaces in Definition 2.1 (i), (ii) are Fréchet in a natural way.
Let us set

(13) MyE(X) := My(X) + Mp>(X)

in the Fréchet topology of the non-direct sum. The elements of M} (X) are in-
terpreted as Mellin symbols, i.e., amplitude functions in corresponding Mellin
pseudo-differential operators.

THEOREM 22.-[12] Let f € M" X), and let w(r),d(r) be cut-off functions.
Then wop MZ (o induces contmuous operators

wopl,’ (Nd: KX — K5 17(X")

and
a)opM2 (N : K/ X") — ICZ;W(XA)

for all s € R, and every discrete asymptotic type P € As(X, (y, ©)) with some
resulting Q € As(X, (7, ©)) (not depending on s).

In order to discuss potential operators we now assume that X is a compact
C*> manifold with boundary 0X. Moreover, let X be embedded into its double
2X (i.e., two copies X, of X, glued together along their common boundary 0X,
with X being identified with the positive side X ), where 0X is an interface in
2X of codimension 1. (Clearly every smooth X with boundary can be doubled
up in that way; for instance, the double of the half-space Wi is equal to R", cf.
also Remark 2.10.)

We want to apply Mellin pseudo-differential operators on (2X)" in the sense
of Theorem 2.2 to surface densities % on (8X)" and then restrict the result to
(int X)" (recall that we always set M = R, x M). The problem to be discussed
here is to what extent asymptotics of # near » = 0is inherited by such potentials.

The problem will be treated for Mellin symbols with the transmission prop-
erty at 0X. Let us denote this class by

Mp@2X)y,
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u € 7. The caleulus of boundary value problems in a cone X" with boundary
(0X)" contains potential operators that are also connected with Mellin symbols
with asymptotic types.

Let B'(X, 0X) denote the space of all potential operators

K:H©OX) — H7'X)

of order v € R in Boutet de Monvel’s calculus in X. There is then a natural
parameter-dependent version, namely, B"(X, 0X; RY) of families K(J) of potential
operators with parameter A € Rl, cf. [2], see also [13, Chapter 4]. For the defi-
nition of potential Mellin symbols we need corresponding asymptotic types. A
sequence (12) is called a discrete asymptotic type of Mellin potential symbols if
(pj, mj) are as before, while L; is a finite-dimensional subspace of operators of
finite rank, with kernels in C*(X x 9X). Similarly as before, As(X,0X) will
denote the set of all such asymptotic types of Mellin potential symbols.

DEFINITION 2.3. — () M,(X,0X) for ve R is defined as the set of all
h(z) € A(C,B"(X,0X)) such that
h(p +ip) € B"(X,0X; R))

holds for every f € R, uniformly in c < f < ¢, for arbitrary ¢ < c.

(i) Mp>*(X,0X) ts the space of all f(z) € A(C\ncR,B~>*(X,0X)) that are
meromorphic with poles at p; of multiplicities m; + 1 and Laurent coefficients
at (z — pj)’(’”l) m Lj, 0 <k <my, for all j € 7, and satisfy

1B+ ip)f (B +ip) € S(R,, C(X x 0X))
for every f € R, uniformly in c < p < ¢, for arbitrary c < ¢’ and for any ncR-

excision function yp.

Similarly as before, the spaces M,(X, 9X) and M >(X,0X) are Fréchet in a
natural way, and we set

(14) Mp(X,0X) := MyX,0X) + Mp™(X, 0X)

in the Fréchet topology of the non-direct sum.

THEOREM 2.4. — Let f € Mp(X, 8)5), let w(r), w(r) be cut-off functions, and
assume nc RN Iy, = (. Then o op;‘,; 2 (f) @ induces continuous operators

wopl, (@ : KK H(@X)") — KX
and

woply ()i K H@X)") — K5 X
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foralls € R, and every discrete asymptotic type P € As(0X, (y — §, ©)) with some
resulting @ € As(X, (y, ©)) (not depending on s).

A proof of Theorem 2.4 may be found in [11], see also [6].
Let us now consider an element

f@) € Mb@X)y, nEZ
for a Mellin asymptotic type R € As (2X). By definition, we have
f@) € A(C\ncR, L} (2X)y,)
where subscript ‘tr’ indicates the subspace of all elements of Lf;(2X) with the

transmission property at 0X, as well as the other properties from Definition 2.1.
According to (13) we write

(15) F@) = h@ + 1)

for b € M{52X)y,, | € Mp>(2X).
A basic result from boundary value problems is the following observation.
Let A € Lf(2X)y, 1 € 7, and apply the operator to an element u € £'(2X)
defined by a surface density v ® dgx for some v € C*(9X), i.e.,

e — (u,p) = f V(@) (0] px) @)/
ox
p € C°(2X). Then
K:v— AW ® 0ox)|inex

defines a continuous operator
K : C*(0X) — C™*(X)

which belongs to B* (X, 0X).
In other words, A — K gives us a map

(16) L @2X), — B"H(X, 0X).

We want to apply (16) to f € M’é(ZX )ir Which is a holomorphic z-dependent family
of elements in L (2X)y.

THEOREM 2.5. — The correspondence (16), z-wise applied to f € Mp(2X)y, for
an R € As(2X), defines a continuous operator

(17) MUy@X), — My (X, 0X)

for a resulting asymptotic type R' € As(X, 0X). In particular, the map (17) in-
duces a continuous operator

ME@X ), — MYHX, 0X).
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ProoF. — Let us write f in the form (15). Let {Uy, ..., Uy} be a cover of 2X by
coordinate neighbourhoods, {¢;,..., ¢y} a subordinate partition of unity, and
Y1, - -, Wy asystem of functions y; € Cg°(U;) such that y = 1 on supp g; for all j.
We then have

N
(18) F@ =Y ¢; f@y;+m)
=1

J

for a certain element m € M;>(2X). The discussion of m(z) will be postponed to
the consideration in connection with /(z) in the relation (15). So we concentrate on
the terms ¢; f(2)y; which can be expressed in local coordinates in the form

(19) f G, 7, 2, Oul@) i dé

for a symbol a(x,Z,z,&) € Sé‘l(Ri’}c x C x R’g) (recall that d¢ = (2n) "d¢). The
meaning of the latter notation is as follows. By S}, (U x C x R%) for any open set
U CR? we denote the set of all a(x,z,¢) € A(C,C®U x R’g’)) such that
alx, f+ip, &) € SH(U x R;E") for every € R, uniformly in ¢ < f < ¢’ for arbi-
trary ¢ < ¢. Since we want to restrict the operator to surface densities on 9X it
suffices to consider such charts y: U — R" > & = (%1,...,%,) on X for which
U N oX # (. Without loss of generality we then assume that X induces by re-
striction to U’ = U NoX a diffeomorphism y': U’ — R" 1 for o = (x1,...,
Lp_1) € R”’l, where x,, corresponds to the normal direction to 9X. Let & = (¢, &,)
be the associated covariables. Because of the special form of the summands on the
right hand side of (18) we may draw the factors y; in local coordinates to the
argument function u. Then it suffices to consider the case of symbols
alx,z,8) € Sé‘l(R;’ x C x R’g)tr. ‘We now obtain for (19)

[[eeetnsia w2, ¢, & ul 507 4,0 &,

which we apply to distributions u(z', Z,,) = v(¥') ® da1. To express the potential
operator we have to consider

Op, (k) (&) v

for the operator-valued symbol
(20) k(' z,&)e = f errala w2, & ENAE, |, oo - €

acting on scalars ¢ € C. By construction, a(x’, x,,z, &, &,) has compact support in
x = (&', x,). Let us first ignore the dependence on x,, i.e., look at a(x’,z, &, &,).
The general case with non-trivial dependence on x,, will be discussed afterwards.
To analyse the structure of (20) it is helpful to compose the expression from the
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left with K, for p = Im z with respect to the variable x,, in the exponent, i.e., to
pass to

(@1 Kk 2 ) = (p,) e a2, )08, 0 =

= (p &) [ enha@ 2, (p, )N, 0.

Let us fix for the moment f = Rez. Then using a standard property of symbols
with the transmlsswn property, cf.,, for instance, [6], we obtain that
(p, > al@’, B +ip, &, (p,&)¢E,) belongs to the space

ﬂ*z(RW ! X Rn )®7le1(]Rg,,)tr

with S%(R¢, )y being the corresponding space of classical symbols with the
transmission property in &, (at x, = 0) with constant coefficients. This gives us
for (21) an element g, p, &'; x,,) of the space

sfj“(R" P R DNESR. ).
In other words, it follows that

k@, B+ ip, e = (p, € Vog,p, &5 (p, € Yo
This proves that k(x/, f +ip,&) is a potential symbol in the calculus with the
transmission property, and we obtain continuity in the sense

(R’ﬂfl) _ Hé (/l+2)(R’I’L)

loe(x')

Op, (k)z) : H;

comp
for all s € R.

The operator-valued symbols k(x’, f + ip; ') run over a bounded set in the
space

SRR X R™ ;O S(R )

P

when f varies in a compact interval. Together with the relation (20) which shows
the holomorphic dependence on z it follows that

k@', 2,&) € STHRY T x C x RYE; C,S(R,)),

cf. Definition 1.3 and Pgemark 1.6, where F = C is endowed with the trivial

group action and S(R,) = lim( >7ka(R+), with x;, acting as wu(x,) —
keN

— /lzu(/wcn) A > 0. In other words, we proved our assertion when the original

symbol a is independent of x,. For the general case we obtain a function in

C* (R, SRR x RY 5 C, S(RL))
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and it can easily be verified, cf. [6, Section 1.2.4], that this can be replaced by a
function without «,-dependence, modulo a smoothing potential operator of in-
finite flatness at x, = 0.

To complete the proof, it remains to consider an arbitrary [ € Mp>*(2X),
R € As (2X), and to interpret the application of the z-depending smoothing op-
erator family on 2X to a function on 9X, combined with the restriction to X, as a
map

(22) Mp>2X) — Mp*(X,0X)
for a resulting asymptotic type R’ € As(X,0X). O

REMARK 2.6. — Composing Mellin potential symbols of the class M}, (X, 0X)
from the left by the operator of restriction to the boundary gives us elements of
v+2

My, *(0X), Mellin symbols with asymptotics R" (in the sense of the cone algebra
with base manifold 0X, cf. [12]).

COROLLARY 2.7. - Let f € M{,(2X)y, be a Mellm symbol with asymptotics of
type R, and let ncRN T 1, = (Z] Then wopM (f)co, first interpreted as a map
EERX)™ - DEexX)™ restricts to continuous operators

wopy (Hd : KFHH(@X)") — KX
and
woplt ()@ : K H(@X)") — K (X7

forevery s € R and P € As(0X, (y + % , @) with some resulting @ € As(X, (y, )).

The relation (16) can be generalised to pseudo-differential operators on a
manifold M with conical exit to infinity. Let Lf‘g{;(M ) denote the set of (classical)
pseudo-differential operators of order u € R on M, with exit condition and
weight o at infinity. If M is written as the double 2X of a C* manifold X with
boundary and conical exit to infinity we have also Boutet de Monvel’s calculus
B*%°(X) on X (of classical operators of order u € 7, type d € N and weight 6 € R
at infinity, cf. [6]).

Let B*%9(X) denote the space of upper left corners A of the 2 x 2 block matrix
space B*%9(X) also containing trace and potential entries. The operators
A € B4%9(X) are continuous

(23) A B (X) — HP2(X)

for every s,feR, s>d— % (The Sobolev spaces in (23) are defined as
H$F(X) = HS$(M)|;,x, with the usual Sobolev smoothness s € R and a power
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weight € R at infinity, cf. [6].) The space of potential operators K of order y + 3
in this calculus will be denoted by Br50(X ,0X); those operators are continuous
in the sense

(24) H P (0X) — H¥#-9(X)
for all s € R.

THEOREM 2.8. — Let A € Lé‘f‘s(ZX )i be an operator of order u € 7, and weight
0 € R at infinity (subscript ‘tr’ means operators with the transmission property
at 0X, and ‘cl’ indicates classical operators both in variables and covariables).
Then K : v — AW Q 0ox)|iyex defines a map

L @X)y — B (X, 0X).

PROOF. — It is obviously sufficient to assume 6 = 0. The space L~*(2X),,
coincides with the space of all operators with C*°-kernels which are Schwartz
functions in direction to the conical exit of 2X to infinity. It is then clear that our
potential operator in this case belongs to B~*(X, 9X). For the non-smoothing
part we may consider the local situation, where 2X is replaced by R" (for
n = dimX) and X by Rﬁ, then 0X = RZTI. If a(x,x,, &, &,)is a classical symbol of
order x in R" with exit order 0 (and also classical of order 0 in the (', x,)-vari-
ables) we first have

A, ) = f f G i e & E Y@ F,)dF i, dEdE, .

Then, similarly as in the proof of Theorem 2.5 we obtain

_1 A !
KRG, &) = (&) [ a8, 0 =

= (@)} enha@, & (€16,

Let us first assume that a is independent of x,,. In the present case we have
1 il .
(&Va, & (E)E,) € SyPRET x REGSH(Re s

where the subscript ‘cl’ means classical in & as well as in 2’ (of order 0). Now the
remaining part of the proof is similar as before in the proof of Theorem 2.5. It
remains to note that the consideration of the x,-dependent case does not affect
the character of the final potential operator in the sense of its exit symbolic
structure. O
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REMARK 2.9. — Note that when we compose a potential operator in
Br39(X, 9X) from the left with the restriction operator to dX we obtain an ele-
ment in ijﬁ”(aX ) (which is also classical in variables and covariables).

2.2 — Example.

REMARK 2.10. — Theorem 2.5 can easily be generalised to the case of trans-
mission configurations, i.e., when we interpret the boundary 0X as an interface
m 2X = X_ U X, where we distinguish between the minus- and the plus- side of
the boundary. In that sense 2X\0X can be completed to a manifold 2X with
wmterior boundary 0X_ U 0X.. The analogue of the map (16)

L @2X)y — B (2K, 0X)

means that the pseudo-differential operators on 2X with the transmission
property at 0X, wrestricted to densities on 0X, generate an element in
Br3(2X, 0X). Instead of (17) we then have a corresponding map

(25) ML@X)y — MAEX, 0X).

If we replace 2X by a circle S' and 60X by any p € S' we obtain a similar
situation. In this case we first consider S*\{p} and then add two different end
points such that the new configuration can be identified with an interval
S! = {¢:0 < ¢ < 2x} where the point p is replaced by 0 and 2z. Analogously to
(25) we then have a corresponding map

(26) Miy(S e — My ', {p)).

S may be regarded as the base of a cone K obtained from the slit plane
RE\R, = {(x1,%2) € R? : 21 > 0} by distinguishing two copies of R,, which
correspond to the limits for x; — 0 from xs > 0 or x» < 0. Polar coordinates
(r,¢) € Ry x [0,2x] then give us an identification

(27) K~ [R, x SYH/({0} x ).

The corresponding set of discrete asymptotic types associated with weight
data g = (y, ©) is then denoted by As (‘Sl, g).

Note that K can be regarded as a branch of a Riemannian surface, obtained
by gluing together two copies of (27), with an identification of the +-half-axis of
the first copy with the F-half-axis of the second copy.

Let us consider a fundamental solution of the Laplacian 4 = o 2 —|— 2 re-
presented in polar coordinates. First, 4 has the form

A=r{(—ror? + &} =1 20p),2(h)
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for h(z) := 2% + 82 which is a holomorphic family of Fredholm operators
(28) h(z) : H¥(SY) — H*"%(SY).
(28) is bijective for all z € C\D for D = {0, +3,+1,£3,...}.
The Laplace operator induces a continuous map
H, = r20pl () : K*(R, x 1) — K 27(R, x S

for all s,y € R. The operator H"' := op};f (b1 for 0 < y < Lis a parametrix of
Ain R? in the standard sense, i.e., we have for every ¢ € (n‘l)*Cgo(Rz)

H},H}Tlgo:go and H;TIHW:(%

Here 7: R*\{0} — R, x S' is the map connected with the polar coordinates

(w1, 22) — (1, ). )
Let us now choose cut-off functions «(r), @(r), @(r) such that @ = 1 on supp w
and w = 1 on supp @. Then

(29) B := w()opj (W20 + (L — 0())0Py, 1, ((E1. &I, Sl DL — )

is a parametrix of 4in R*\{0} for every y € R\D. The operator B belongs to the
cone algebra on R, x S! (in the terminology of [13]). Thus it defines a continuous
operator

B: K727 2(R, x 8N — K7(R, x SY)

for all s € R, and B restricts to continuous operators between subspaces with
asymptotics

B:Kp® 2Ry x 81 — Kgl(Ry x Y
for every Py € As(St, (y — 2, ) with some resulting @ € As(S', (7, ©)) for every
0 = (0,0], —0o < 0 < 0. Note that the second summand in (29) maps to flat

functions. For the first summand we apply a version of Theorem 2.4 in connec-
tion with (26). This gives us a continuous map

B: K32 H(Ry) — KRR, x 81

for every P € As(y — 2, @) with some resulting @ € As(S*, (y + % , 0)).

2.3 — Potentials of operators in the cone algebra.

We now study potentials of surface distributions with respect to operators in
the cone algebra on the (infinite stretched) cone (2X Y,
Let us fix weight data g = (y,y — 1, ©) for @ = (— (k+ 1),0], k € N. Recall
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that the operators in the cone algebra on (2X)" with discrete asymptotics, as-
sociated with g, are defined as the set of all operators

(80) A =7 op),? i) + (1 — o)A — d)+

k
+r #o(r) Z v op}a;%(]?)&)(r) +G.
j=0
Here we assume & € M‘(‘?(2X), fi GMI%OO(ZX), 7 € R are weights such that
y; <y <j+y; for all j, moreover, G is a Green operator with discrete asymp-
totics, and A, is an element in L‘C‘fo((ZX)A); the latter notation means the
space of all operators A|(2x)/\ for arbitrary A e Lé‘fo((ﬁh x (2X))~) where
(R x (2X))~ > (r,x) is the manifold with conical exits for » — & co modelled on
the infinite cylinder R x (2X).
Finally, a Green operator, associated with weight data g is an operator such
that both

G : C7(2X)") — S};’”((ZX)A)
and
G*: K5 TERX)") — Sg)"’"((ZX)A)

are continuous for all s € R, with (G-dependent) asymptotic types P and @, cf.
the formula (9). The formal adjoint G* refers to the K%0-scalar product. Details
about the cone algebra with closed base of the cone may be found in [12] and
[13]. The cone algebra of boundary value problems with the transmission
property is developed in [10], [11], see also [6] in a new variant with classical
symbols.

THEOREM 2.11. — Let A be an operator in the cone algebra on (2X)" of order
1 € 7 associated with the weight data g = (y,y — u, 0), and assume that A has the
transmission property at (0X)". Then A, first interpreted as a map
E@2X)") — D(2X)"), restricts to a continuous operator

A/ . ICPr%wa%((aX)/\) N ,Csfﬂ.yju(X/\)
and

A/ . IC;+%7}+%((8X)/\) N Kz;/t,yf,u(X/\)
forevery s € R and P € As(0X, (y + % , @) with some resulting @ € As(X, (y, )).

Proor. — If A consists of a Green operator G the assertion is obvious.
Concerning the second summand on the right of (30) we can apply Theorem 2.8 to
A,. Moreover, for the Mellin operators contained in (30) we can apply
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Theorem 2.5. Thus the operator A|goxy, extends to a potential operator in the
cone algebra with discrete asymptotics on the infinite cone X* with boundary
(0X)", cf. [11]. This gives us the asserted continuity. O

REMARK 2.12. — If A satisfies the assumptions of Theorem 2.11, the map

K :v— AW @ dox))intxr
defines a operator
Lffl;(s((zX)A)tr — B/‘+%§5(XA, O@X)").

REMARK 2.13. — It can be proved that each potential operator of the cone al-
gebra of boundary value problems (say, in the classical variant [6]) can be ob-
tained as i Theorem 2.11 for a suitable cone operator A.

REMARK 2.14. — Theorem 2.11 can be generalised to families of operators A(y)
m the cone algebra smoothly depending on a parameter y € U for some open
U C RP. The smoothness can be defined by assuming C* dependence on y of the
mwvolved symbols and C™ dependence of the Green operators (every Green op-
erator with fixed asymptotic types belongs to a corresponding Fréchet space). It
follows then that also A'(y) is smooth in y, where the smoothness of A’ in a
parameter can be defined in a similar manner as before since A’ is an element (a
potential operator) of the cone algebra of boundary value problems.

2.4 — Elements of the edge calculus.

In the application below we need a parameter-dependent analogue of
Definition 2.1.

DEFINITION 2.15. — (i) Let X be smooth, compact, closed; then M,(X; R?) for
1 € R is defined as the set of all h(z,n) € A(C,L4(X; R?) such that
h(B +ip,n) € Ly(X; R, x RY)

holds for every f € R, uniformly in c < f < ¢, for arbitrary ¢ < c.
(i) If X is smooth, compact with boundary 0X; then M(X, 0X; RY) forv e R
is defined as the set of all h(z) € A(C,B"(X,0X;RY)) such that

1B+ ip.n) € B'(X,0X; R, x RY)
holds for every f € R, uniformly in ¢ < f < ¢, for arbitrary ¢ < ¢

In addition applying Definition 2.15 (i) to 2X we have the subspace
M5@2X; Ry
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of M{;(2X;R?) of operator families with the transmission property at 0X. As a
corollary of the arguments in the proof of Theorem 2.5 we obtain the following
result:

THEOREM 2.16. — Let X be a compact C* manifold with boundary 0X. Then
the correspondence (16), pointwise applied for every (z,n) € C x RY, induces a
continuous operator

MAE@X; RY)y — MSTHX, 0X; RY)
for every u € Z.

Proor. — It suffices to modify the constructions in the proof by formally re-
placing &' by (&',n). O

Let w(r), w(r) be two cut-off functions, and let # — [#] be any strictly positive
function in C*(R?) that is equal to 5 for || > ¢ for some ¢ > 0. Let

(31) h(r,y,2,7) € C*(Ry. x 2, M5@2X; R)q)

for any open set Q C RY, h(r,y,z,7n) == fa(r,y,z,rn) and form the operator fa-
milies

ao(y, n) = rotrin)opy,* Ry, paXriy)).
Moreover, consider an element

Poclr,y, 9,7 € C¥(R x @, LE@X; Ry
for any open Q C RY, and set po.(r, ¥, p, 1) = Doo(¥, Y, 7p, 7). We use the fact that
there exists an operator family of the form (31) such that

opy;” )y, 1) = 0p,(Psc) (¥, m) mod C(Q, L=(2X)"; RY)

for every y € R, cf. [13], see also [4].~Let us assume that @ is equal to 1 on supp o
and choose another cut-off function @ such that w is equal to 1 on supp @. Setting

ar(y,n) = (1 — o(rinD)op, (s )y, M — &)
we now form
(32) aly,n = ar){aoly, n) + a(y,n}e)
with arbitrary fixed cut-off functions ¢ and . Applying the mapping (16) to
hr,y,z,n) and Doo(P, Y, Py 1)
for fixed (r,y,z,n) and (r,y, p,n), respectively, we obtain corresponding families

W(r.y,z,n) and pl (r,y,p,n)
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belonging to B#*2(X, 9X). Note that there is an
1y, 2,0 € C(R. x ,Mly*X,0X; RD)

such that

Wy, 2, = 1y, z,m).
Applying opzy‘ﬁ to 1/ and op, to p/, from a(y,n) we obtain a family
(33) a/'(y,n = o){apy, n) + ay, M)
for

oy, ) = ¥ ariyDopl, *()y, parin),
and

ay(y,m = 1 — w@n))op,Po)y, M — o {n).
Summing up, the mapping (16) generates a correspondence
(34) aly,n) — a'(y,n)

for every operator function of the form (32) with a resulting expression (33).

THEOREM 2.17. — (i) The operator family a(y,n) represents symbols
aly, ) € SM(Q x R KC7(2X)"), K*#771((2X)")

as well as
aly,n) € SM(Q x RY; /C'};"((ZX)A), /CZ{” THEXOM)

for all se€R, and for every P e As@X,(y,0) with some resulting Q €
(i) The operator family o (y,n) represents symbols

d(y,n) € SMHQ x RY; KET2IH((9X)), KF 11X ™M)
as well as

0y, 1) € SHQ x RY Ky (@), Koy M)

for all s € R, and for every P € As(0X, (y+%,@)) with some resulting @ €
€ As(X, (y — 1, 9)).

ProOF. - Part (i) of Theorem 2.17 is proved in [6, Theorem 4.4.20]. For Part
(ii) we have to consider the ingredients of a(y, 77) separately. Let us first assume
that the function % which is involved in ao(y,#) is independent of . Then it is
suffices to observe the homogeneity

(35) ap(y, i) = i/H%K(An)a/O(y’ n)(K(infl))—l
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for all A > 1, |5| > c for some ¢ > 0 which entails

(86)  oup(y.na € C(Q x RY, LOCE H(@X)), Kigl (X" ));

here subscripts ‘(P)’ and ‘(Q)’ at the spaces mean that the considerations are valid
both for spaces without asymptotics as well as with asymptotics of the corre-
sponding types. The homogeneity of (35) is a consequence of a corresponding
relation for Mellin operators with {KE@} ser, on both sides. The smoothness (36)
follows from Remark 2.14. If & depends on the variable r we can apply a simple
tensor product argument to obtain the assertion in general.

For the operator function oa;(y, 7)¢ we have to recall some arguments which
yield the properties of Theorem 2.17 (i). For simplicity, assume that the symbol
Pso contained in a; is independent of 7; the general case then follows again by a
tensor product argument.

The operators

oax(y, N5 : K (2X)") — K " (2X)")

smoothly depend on (y,7) € 2 x RY; then also
oy (y, )G - K 5(0X)") — K5 HX™)

are smooth in (y,7) € Q x RY, cf. Remark 2.14. Another step of the proof for the
symbol property on (2X)" is that for any excision function () the operator family

by, n) = 21 — w@ln])op, (ps)y, M — rln))
is a classical symbol of order u because we have again icgf'”)— homogeneity in # for
large |7|. The operator function b(y,#) is non-trivial only for # # 0; therefore
77 op,(p)y,n) for every fixed y and 7 # 0 (combined with the excisions
(1 — w(r[xy))) and (A — w(r[n))) is an operator on X” in the class L’C‘I;O(X M), ef. [6,
Section 3.1.2]. Thus, we can apply Theorem 2.8 and obtain that

by, m) = 1 Gpr~*(1L — o(rln))op, (Pl )y, (A — rln))
is a C* family of continuous operators

/CS+%"V+%(((9X)A)—>/Cgﬂ'y7'u(XA).

Similarly as (35) we have homogeneity of b'(y, ) of order u +1 for large ||, and
hence 0'(y, ) is an operator-valued symbol between the spaces in question. Since
the operators of multiplication by ¢ and & behave as (non-classical) operator-valued
symbols of order zero we obtain the symbol property also for ob'(y, 7)6. Because of

(37) oay(y, G = ab'(y, na + ab”(y, N
for b"(y,n = A — xmr—*A — wlr[y]))op,P. )y, NI — c:u(r[n])) where also the
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second summand ¢b” (y, )& is a C* function of continuous operators between our
spaces and with compact support in #, for (37) we obtain that oa;(y, #)¢ has the
desired properties. [

Let us fix a weight interval ©® = (— (k + 1),0], k € N, and consider functions
lin(y,2) € C¥(Q,Mp2@X)),  [,(y,2) € C*(Q Mp*(X,0X))

7(1

for 0 <j <k, with (for simplicity) y-independent discrete asymptotic types
Rj, € As(2X) and le'a € As(X, 0X), respectively. Moreover, assume that

H‘L‘Rja N F%7 y = = nC R/ n Fn+1 g = =0

]
with certain weights y;,7; € R, satisfying
Y <y<j+y, V<y<i+y

for some fixed weight y € R, 0 <j < k.

Let us form
(38) my,n) =r ﬂw(r[nbzoj ;mp” o )@ aen)
= s
and
(39) m'(y,m =r ”w(r[n])zt;lz‘:%p” Z(l’a)(y)n“cb(r[n]).
=

Applying the map (22) to the Mellin symbols /;, in (38) we obtain corresponding
Mellin symbols /;,. This gives us a map

(40) my,n) — m'(y,n)

from operator families (38) to associated operator families (39).

PROPOSITION 2.18. — Let (E, E) denote one of the following pairs of spaces

(41)  ®E@XN,KTHE@X)N), or (KF(@X)), 52X,
or
(42)  (KTH(0X)"), K7 H(XM),  or </c*+z*ﬂ((aX)Axs)’*"(XA)).

Then m(y,n) belongs to S4 (2 x RY; E, E) for the paws (E,E) from (41), s € R (in
the second case for every P with some resulting Q, depending on m), and m/(y, n)
belongs to S” +2(Q x R%: E, E) for the pairs (E, E) from (42), s € R (in the second
case for every P with some resulting Q, depending on m’).
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ProOF. — The assertion concerning (41) is known, see, for instance, [6]. Let us
write the operator function (38) in the form Z;'C:o mj(y,n) where m;(y, n) is the gt
summand in (38). Then we have

my, ) = 2y, mo)
for all 2 > 1, || > ¢ for some ¢ > 0. This gives us for the j® summand mj’-(y, 7) on
the right of (39) the homogeneity

mi(y, ) = Ao iy, )

foralll > 1, |n| > c. On the other hand, similarly as for Mellin symbols of the kind
mj(y,n) the operator families mj’.(y,n) between the spaces in (42) are C* in
(y,n) € 2 x RY. Homogeneity together with the latter property yields the as-
sertion on m_;-(y, n) and then also for m/(y,n). O

2.5 — Edge symbols of Green type.

As in the beginning of Section 1.2 for convenience we assume that X is a
closed compact C*>° manifold. We now define a specific class of operator-valued
symbols of the edge caleulus, called Green symbols, here with discrete asymp-
totic types P € As(X, (0, 0)) and @ € As(X, (— y, ®)) for some choice of weights
7,0 € R and an arbitrary weight interval @ = (0, 0]. At the same time we define
what is called trace and potential symbols with respect to the edge. These objects
are entries of a 2 x 2 block matrix operator function

9y, m € C¥(@ x RY, LI XM & O, LX) @ V)

for some dimension§1 Jj+ € N. These are classical symbols in the sense that
9o(y, n) = diag(1, () * )g(y, ndiag(1, (n) *) are symbols

(43) 9oy, 1) € S5(Q x R KX @ V-, Sp(X™) @ (V)
such that
(44) By, m € SH@ x RE K (X & O 57X @ ).

Here s € R is arbitrary and fixed, and the formal adjoint g* is taken (y, n)-wise
with respect to the scalar products of KX @ =,

Recall that Definition 1.3 has a version for Fréchet spaces, here with S%(X )
and Séy(X M), respectively, and that these spaces can be represented as projective
limits of Hilbert spaces with group action, cf. Remark 1.9.

In our application the weight interval will be ® = ( — oo, 0]. In this case there
is a useful explicit representation of Green symbols.

If F is a Fréchet space with its countable system of semi-norms (7;);en, by
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SHQ x RY, F) we denote the space of all f(y,n) € C°(Q x R?, F) such that
(DD (y, ) < ey

for all multi-indices a,f € N, all (y,n) € K x RY, KcQ, and all j € N, with
constants c(a, 5, K;j) > 0. We also have the subspace S%(2 x RY, F) of classical
symbols with values in F, defined by means of sequences of homogeneous
components f,_iy(y, ), k € N, analogously to the standard context.

We will apply this to the projective tensor product

(45) F =Sy XM a C”)@én(sg’(XA) @ )

for discrete asymptotic types P, Q (with @ being the complex conjugate of Q).

Elements of S’C‘I(Q x RY,F) for the space (45) are block matrices
(fii,m)ij-12, With a corresponding dependence on (r,x), (+',2') € X" in the
entries. For f(y, ) we also write

. w .
) ;7"79077‘/,3'/ = fn(y’rl’ 7’,90,7'790) flz(y777a /"796)).
S : ( farly, 7, @) fo2(y,m)

THEOREM 2.19. — For every Green symbol g(y,n) = (g;(y,n)ij-12 of order
i € R with asymptotic types P, Q there is an element

Foym) =y, m)ijaz with fyy,n € S/ (@ x RY, Fy)

for my = pAn+ L gy = "5 poy = " py = and Fiy = Sp(XM)&;
SGX", Fro = SpXN @ (77, Fyy = O @ S, Py = O @ (7, such that

(46) guy, pulr, x) = f f Sfuly, n; Inlr, e, [nlr' 2 u )@ )" dr’ doe’,
0

moreover, writing

fa = (fordiet,.j Sz = (frzmdm=1,..j > feo = (Foom)i=1,...j, m=1,..j >

I=1,...j+

g1y, pu(r,x) = ( f f fay,n; [77]7”’,x’)u(r’,x’)(r’)ndr’dx’)
0

and

e

i i
g2(y, me = mzzjlfl&m(?/v [, @)em,  goo(y,me = (;:lfzz,mwm)l:l

for every w € K¥'(X") and ¢ € CV-.

A proof of Theorem 2.19 may be found in [15], based on tensor product re-
presentations of Green operators of the cone algebra from [17], see also [16].
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Let us now return to the original context and apply the notation and con-
structions of this section to 2X for a compact C*° manifold X with boundary. Then
the representation of Green symbols g(y, #) in terms of kernels (45) allows us to
restrict

gy, ) € SHQ x REL(2X)") @ V-, Sp(@X)") @ ()

(y,n)-wise to argument functions of ICSJ“%’"’*%((@X Y @ (Y- combined with the
restriction in the image to X. Let ¢'(y, ) denote the resulting family of operators

g, : K 0X)) e O — SO,(XN) @ (U

(here P’ is an asymptotic type referring to X, uniquely determined by P in an
obvious way). Then for the correspondence between upper left corners of g(y, n)

(47) gy, m — g1, n
we obtain
(48) 9uly,n € SQ%(Q x RY; KH743((0X)"), S (X))

for all s € R. For the other entries we have a similar correspondence, namely
9ii,m — g3;(y, ) where
Gy, m) € Sty 7 (@ x RY; V-, S, (X)),
Py, m) € S478@ x RE s Hh0x)), 07)

cl

while g2 remains untouched, i.e., is equal to ga,.

3. — Potentials with asymptotics
3.1 — Edge potential operators

We now consider edge pseudo-differential operators, based on (operator-va-
lued) edge amplitude functions. We first recall a few elements of the general ‘edge
algebra’; the requirements and constructions for the definition can be interpreted
as results about the ‘Mellin-edge’ behaviour of parametrices of elliptic operators.

Let R4(Q x RY,g:(_,j.)) for Q C R? open, and weight datag = (y,y — u, 0),
be the space of all edge amplitude functions a(y, #).

Here y € R has the meaning of a weight, x € R of an order, and
O = (—(k+1),0] is a weight interval of length k +1 € N U {+oc0}.

Let us first consider the case j_ =j, = 0. Then, by definition, we have

(49)  aly, n) = o)y opl, L)y, e+

+ (1 = o@)r*op, o)y, N — o) }e() + my,n) + 9y, n)
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where p is a finite linear combination of expressions of the form

G H.op @,y p. 1)

for achart y : U — X on M, X C R” open, and a classical symbol a(r,x, ¥y, p, &, )
on R, x 2 x Q of the form

a(r,x,y,p, &, n) = alr,e,y,vp,&,rn),

for some a(r, x,y, p, &, ) € SHR, x X x Q x RM"*9). Moreover, / has the form

hr,y, 2, 1) = h(r,y,2,71)

for an element ﬁ(r,%z, n e Cgo(ﬁ+ x Q, Mo (M; Rg)), cf. Section 2.4, which has
the property

op};* (ho)(y, 1) = 0b,(Po)(y, 1)
mod C>®(Q, L=>*(M"; R?)), when we set
ho(r,y, 2, 1) = h(0,y,2,7),
and define po(r, ¥y, p, n) similarly as p(r, y, p, ) but in terms of the symbols
ao(r,a, y,p, &) = a0,x,y,7p, &, ).

The cut-off functions a(r), (), w(r), &(r), @(r) in (49) are arbitrary, except for
the condition that & = 1 on supp w and @ = 1 on supp &. The smoothing Mellin
symbols m(y,n) and the Green symbols g(y,#) in the expression (49) (for arbi-
trary j_,7.) are described in Sections 2.4 and 2.5.

Now the most specific contribution of our program is to analyse potentials
consisting of pseudo-differential operators Op(a) with amplitude functions of the
kind (49), where Op = Op, denotes the standard pseudo-differential operator
convention, i.e., Op,(@)u(y) = e =" a(y, puly)dy' dn.

In this case the dimensions j. are zero; we then denote by R“(Q x RY, g) the
space of all operator functions of the kind (49).

Every a(y,n) € RM(Q x R?,g) represents a family of operators

aly,n) € CX(Q, Liy(M"; RY).
From now on we assume M = 2X and denote by R“(2 x RY, g);,. the subspace of
all elements of R*(2 x R? g) which have the transmission property at the in-
terface 0X.
Then the mappings (34), (40) and (47) induce a correspondence a(y,#) —
a'(y,m),

(50) RA(Q x RY,g)y — C(Q, BHX", (0X)"; RY)
where B/”%(D,aD;Rq) for a C* manifold D (not necessarily compact) with
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boundary denotes the space of potential operators in Boutet de Monvel’s calculus
of order 1 + } with parameters 7 € R?. Recall that the parameter-dependence is
defined by local potential amplitude functions which contain # as an additional
covariable, and the smoothing operators are given by

B~°(D,0D;RY) = S(RY, B~>°(D, dD)).
For every a(y,n) € R x R?,g), we have A := Opy(a) € Lffl((ZX)A x ), and

(51) Op,(a) € B“HX",0X x Q).
As a pseudo-differential operator A induces a map
(62) £(2X)" x Q) — D'(2X)" x Q).

Setting A’ = Op,(a’) with a’ being related to a we obtain a correspondence
A — A'. From (51) we have the continuity property

(53) A’ HEE (X)) x Q) — HI X" x Q).

loc

What we obtain in the present situation are continuity results between spaces
with edge asymptotics on the wedges (0X)" x Q and X" x Q, respectively.

THEOREM 3.1. — Let a = a(y) € RA(RY x RY,g) be independent of y € R
Then the associated potential operator A" = Op,(a') extends to continuous op-
erators

A/ ;;)r)zJJrz((aX) X Rq) — W& ,u/ N(X/\ R‘I)

forall s € R, for every discrete asymptotic type P € As(0X, (y + %, 0)) with some
resulting Q € As(X, (y — u, ©)) (depending on P and a not on s).

Proor. — We apply Proposition 1.8 for the case 2 = RY and the pairs of spaces
(B,B) = (K" (@0X)"), Kig/ (X))
for any fixed s, using Theorem 2.17 (ii), Proposition 1.8 and the relation (48). O

REMARK 3.2. — Using the framework of the edge algebra of boundary value
problems on a (say, compact and stretched) manifold W with boundary and edge
Y in the sense of [6] it can be proved that every element A in the edge algebra on
the double 2V (which is a closed (stretched) manifold with edge Y) induces by
restriction to ‘surface densities’ on the boundary of W a potential operator in the
edge algebra. Conversely, every such operator can be obtained in this way. In this
generality we need the concept of continuous asymptotics, but under suitable
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assumptions on the behaviour of coefficients of the involved amplitude functions
along Y we have such a result in the framework of discrete asymptotics (or
asymptotics in the sense of the following Section 3.2).

3.2 — A generalisation of edge asymptotics.

Theorem 3.1 refers to symbols with constant coefficients in y € Q. For po-
tentials of surface densities in general this is, of course, too special, because the
geometry may contribute non-constant coefficients. Therefore we now extend
the concept of asymptotic types by admitting more general Laurent coefficients
of corresponding meromorphic functions.

Let as(n,g) for g = (y, ©), n = dimX, denote the set of all sequences

{(pj, mj)}j:o,A..,N

with (p;,m;) as in (7) (in other words, as(n,g) is obtained from As(X,g) by
omitting the spaces L;). Let first @ be finite, and let £p(X") be the linear span of
all funetions c(x)r? logk re(r) for some fixed cut-off function w(r), for arbitrary
(p,k) € P and ¢ € C®(X). Then £p(X") is isomorphic to a finite direct sum of
copies of C*°(X), and Ep(X") is a closed subspace of K>7(X"") which is direct to
the space Kj/(X") of the flat functions. We can again form the space (8) in the
Fréchet topology of the direct sum. This kind of asymptotics can be subsumed
under the concept of continuous asymptotics, ef. [12] or [13], although we do not
use this explicitly here. The present generalisation is much simpler and more
specific; it admits, for instance, smoothly varying coefficient spaces L; with re-
spect to edge variable y.

Also the notation on edge Sobolev spaces with asymptotics P € as(n, g) makes
sense, i.e., we have the spaces Wy’ (X" x R?) by a similar construction as (11),
including the analogue of the information on the nature of singular functions of
edge asymptotics, cf. Remark 1.10. In the present case the singular functions
have the form

NP) my .
Fangr ) = S S B I T, irn) ™ logt ()
7=0 k=0
for arbitrary vy, € C*X, H*(RY), vy(x, i) = Fy_,vi(x, y).
Moreover, we have a generalisation of meromorphic operator-valued Mellin
symbols described by asymptotic types
R = {(pj;m)}jez

where p;, m; are as in (12), but we do not require any specific control of spaces L;
of Laurent coefficients. Let as denote this kind of Mellin asymptotic types.
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Let M3>(2X) denote the space of all elements of A(C\nc-R,L™>°(2X)) that
are meromorphic with poles at p; of multiplicities m; + 1. In a similar manner we
define M;>°(X) where L~>°(2X) is to be replaced by the space of operators with
kernels in C*(X x X) (recall that we fix Riemannian metrics on the manifolds
under consideration). Analogously, we have Mp>(X,0X), the space of all
f®) € A(C\ncR,C*(X x 0X)), meromorphic with poles at p; of multiplicities
mj + 1, where C*(X x 9X) is identified with the corresponding space of opera-
tors with kernels in C*°(X x 9X). All these spaces are Fréchet in a natural way,
and we can form spaces of the kind (14) for arbitrary R € as.

Finally, the definition of Green symbols g(y,7) has a straightforward gen-
eralisation to arbitrary asymptotic types P € as(n, (3, @) and @ € as(n, ( — y, ©)),
cf. the relations (43), (44). Thus we have all ingredients to form edge amplitude
functions a(y,n) of the form (49) with m(y,#) defined in terms of smoothing
Mellin symbols ;,(y,2) € COC(Q7MI}Z°(2X)), Rj, € as and Green symbols g(y,7)
as mentioned before.

We now have again a correspondence a(y,#n) — a'(y,#), cf. the relation (50),
such that the associated operators A’ := Op(a’) have the meaning of the re-
striction of A = Op(a) to surface densities on (9X)" x RY, combined with the
restriction to (int X)" x RY.

THEOREM 3.3. — Let A = Op(a) be an edge pseudo-differential operator on
@2X)" x RY with amplitude function a(y, 1) (now with asymptotic data of general
types). Then the potential operator (53) given by A’ = Op,(a) extends to con-
tinuous operators

1,41 1t
AT W B (0X) % Q) — Wi doh (X" x Q)

and

. S+_l7y+l e
A" Wi p(0X)" X Q) — Wi (7 (X" % Q)

for all seR, for arbitrary Pe€asn—1,(p+3,0) with some resulting
Q € as(n, (y — 1, ©)) (depending on P and a not on s).

Proor. — The arguments are analogous to those for Theorem 3.1. In order to
apply Proposition 1.8 we need to verify that our amplitude functions a’(y, ) are
symbols in a similar sense as before with the only exception that for the con-
sideration with asymptotic types we refer to the set-up of the present section. An
inspection of the definitions and results shows that the necessary elements have
immediate generalisations, in particular, we have analogues of Theorem 2.17,
Proposition 1.8 and of the construction of Section 2.5. This gives us the desired
continuity results. O
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3.3 — Examples.

In this section we consider some examples which show a technique to calcu-
late asymptotics of potentials with respect to a parametrix of an elliptic differ-
ential operator.

Let us first recall a general result on a relation between standard Sobolev
spaces in R"™ and weighted Sobolev spaces:

PRroOPOSITION 3.4. — Let t > % be a real number, and set
HYR™M) = {u € H(R™™) : Diu(0) = 0 for all a € N1 |a| <t — HTH}
Then for t — L ¢ N we have a canonical isomorphism
HER™Y) = CHR™ T\ {0)),

¢f. Dauge [5], Kondratyev [8, §4], or the author’s joint monograph [6, Section
2.1.2]. Moreover, for —"52 <t <™ we have

Ht(Rn+1) — Kt,t(Rf’H—l\{O}).

Let us now consider the Laplace operator 4 in R, given as a map
A: HY(R®) — HA(R?),

s € R. Let @ € L™2(R?) be a (properly) supported parametrix of 4 (any other
(pseudo-differential) parametrix of 4 is equal to @ modulo an operator with
smooth kernel). Therefore, for the computation of asymptotics of potentials, the
specific choice of @ is unessential.

For technical reasons we also consider the operator

A—1:H(R?) — H (R

which induces isomorphisms for all s € R. We then have (44— D! =
=:Pec Lcjz(RS). Moreover, the relation AP = 1 + P allows us to reconstruct & as
an asymptotic sum

o0

®~y (—1PH

J=0

(with ~ denoting equivalence modulo smoothing operators). We want to show the
behaviour of potentials with respect to P. The same method applies for P/*! for
arbitrary j € N; then, since ord P/*! — —oo for every finite part of asymptotic
expansions it suffices to look at a finite number of j. In other words, it is enough
to discuss 4 — 1 with its inverse P.

Let us write points in R? as (x,y) for x = (xy,22) € Rz, y € R. Set

aln) == 4o — |n* — 1
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for Ay := % + % Then a(y) is an operator-valued symbol
1 2
a(y) : H*(R?) — H4(R?)
which is invertible for every # € R, and we have
4-1=0p,(@) and P =Op,(p)

for p(y) = (4s — || — 1", Let us now fix an 0 < ¢ <1 and set s =2 —¢ The
space H2#(R?) can be written as a direct sum

(54) H?>#(R%) = HZ*(R?) + V(1)

for every #ne€R, where Hﬁ‘e(RZ) = {u e H**(R?) : u(0) =0} and
V() = {cnlo(ylx) : c € C} where o is any fixed element of Cgo(Rz) with
(0) # 0. The map
k() : ¢ — clylo((nlr)
represents a potential symbol of the class SQI(R; C, S(R2))7 cf. Definition 1.3 (iii),
and we have H2“(R®) = W?™%(R, H2 *(R?)) + imK, where K is the potential
operator
K = Op,(k) : H*%(R) — W*™“(R, H**(R?).
Let us form the families of isomorphisms
HZ(R?) ,
(aln)  almk@) : o — HRY,
C

HE*(R?)
1 k) : o —HTRY.
C

Then we have a(n) = (a(y) a(mk(n))(1 k(n))’l. Let us set £:=(1 K), ie,
K = Op,(1 k(). Then we obtain isomorphisms

W24(R, HZ4(R?))

(55) K'=0p, ((1 k(n))‘l) WEE(R, HE4(R?) — o ’
HZ—S(R)
WZﬁH(R’H%fe(RZ)) N
(4—1DK = Op,(aln) alpk(p) : @ =L H(RP).
HZ—S(R)

Writing 4 — 1 = (4 — 1)KK ! it follows that P = (K 1P).
We now concentrate on the operator (55) and express its inverse K1P. First
note that it is an elliptic element in the edge calculus with edge R and model cone

R2\{0}.
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Let us rewrite (55) in terms of edge Sobolev spaces, using the identifications
Hg—S(RZ) _ ]szs,zfs(RZ\{O})’ Hfs(JRZ) _ IC*E,*S(RZ\{O})’
cf. Proposition 3.4. Then (55) takes the form

WZ*S,Z*S((RZ\{O}) % R) ,
: & — WEH((RA\{0)) x R).
H2—€(R)

The amplitude function of A is a row matrix as in (565) with

a\*, 0
a(ﬂ)=7'2<<7'8r> —i—a¢2—72|’7|2—1'2>

as the first component.
It belongs to the edge algebra and has constant coefficients with respect to
the edge variables y. It is invertible as an operator function

ICZ—&,Z—&(RZ\{O})
(atp) (k) : @ — KR\ {0)),
C
for all n € R, and its homogeneous principal part (which is the principal edge
symbol g,(A)(#)) is invertible between those spaces for all # # 0. Under these
circumstances, as is known from abstract pseudo-differential operators with
operator-valued symbols, the inverse has the form

A7 = op((@tn) alpki) )

which is equal to £ 'P and has the form of a column matrix A = (?) The

operator A~! belongs to the edge algebra (with constant discrete asymptotics)
because the inverse of an elliptic and invertible edge symbol is again an edge
symbol (of opposite order). The behaviour of asymptotics under the map
-1 —6—8(1>2 Wg?ogz (RA0D) x R)
ATV WRETH(RA{0D) x R) — ®
H*(R)

for every constant discrete asymptotic type Py € As(S,( — ¢, @)) with a corre-
sponding resulting Qo € As(S?, (2 — ¢, 0)) (for any @ = (— (k +1),0]) follows
completely from the non-bijectivity points of the principal conormal symbol

ouon(A)R) = 2% + 9% - H¥(S") — H*(S")

with respect to z € C. This was calculated in Section 2.2. Now we apply
Theorem 3.1 to the situation as in Section 2.2, i.e., X = S!, (0X)" = R,, and
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q =1, s =y = —e& Then, if we denote by B’ the operator which is induced by the
first component B of A" on the space

(56) W5 (R, x R)

we obtain by restriction to the corresponding subspace with edge asymptotics a
continuous operator

B/ . Wl—z£+%e—£+%(R+ % R) _ Wéfs,zfe((RZ\{O}) « R)

for every R € As(— ¢+ 1, 6) with a corresponding Q € As(S', 2 — ¢, 9)).
Let us now return to P = KA ' = B+ KT for K = (1 K) which defines a
continuous operator

P W (RE\{0}) x R) — W2 275((RE\{0}) x R) + K(H?>*(R)).

Similarly as before we form P’, the operator on the space (56) induced by P.
Then, summing up, we obtain the following result:

THEOREM 3.5. — The potential with respect to P of edge distributions on the
half-plane R, x R 3 (r,y) in R® with asymptotics of type R € As( — ¢ + %, o) for
r — 0 defines a continuous operator

P oW R, ¢ R) — WESEH(RA{0)) x R) + K(HE(R))

for aresulting asymptotic type @ € AS(SI, (2 — ¢, 0)). Here K(H?>*(IR)) consists of
all w € HZ(R®) of the form

{F,2, bnla(k) : vy) € H**(R)}

(cf: the general shape of edge asymptotics of Remark 1.10).

The method of this section to calculate asymptotics of potentials can be
generalised to arbitrary elliptic equations (and systems) in R™, using a result of
[7] on the edge algebra structure of elliptic operators with respect to a (smooth)
hypersurface of any codimension in R™. In the case of non-constant coefficients
we can either apply the concept of continuous asymptoties, or if the non-bi-
jectivity points of conormal symbols remain fixed along the edge, the notion of
asymptotics as discussed in Section 3.2.
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