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Commutative Cancellative Semigroups
and Rational Vector Spaces.

ANTONIO M. CEGARRA - MARIO PETRICH (¥)

Sunto. — Rappresentando un semigruppo commutativo cancellativo subarchimedeo S
come N;(G, I), consideriamo Hom (S, Q) e Hom (G, Q), dove Q ¢ il gruppo additivo dei
numert razionali. Questi insiemi possono essere muniti di una struttura di spazio
vettoriale razionale. St trovano convenienti copie isomorfe di questi spazi vettoriali
con uso di funzioni in relazione a certe applicazioni introdotte da T. Tamura.

Summary. — Representing a commutative cancellative subarchimedean semigroup S as
N;(G, I), we consider Hom (S, Q) and Hom (G, Q), where Q 1is the additive group of
rational numbers. These sets can be given the structure of rational vector spaces.
Suitable isomorphic copies of these vector spaces are found by means of certain
Sfunctions related to some mappings introduced by T. Tamura.

1. — Introduction and summary.

Commutative cancellative semigroups are embeddable into abelian groups by
the usual method of forming the group of quotients. We can perform tighter
embeddings by imposing additional restrictions on semigroups. In particular, if
the semigroups are also power cancellative, they can be embedded into the ad-
ditive group of rational vector spaces. The conditions of being commutative
cancellative and power cancellative are obviously also necessary for such an
embedding.

In the study of the structure of commutative cancellative semigroups we
encounter rational vector spaces when considering homomorphisms of such
semigroups into the additive group of rational numbers. A particular case of
seminal importance is when the semigroups are also subarchimedean, that is,
when there exists z € S with the property that for every a € S there are a po-
sitive integer n and « € S such that 2" = ax. They admit a Tamura-like re-

(*) The authors were partially supported by DGI of Spain and FEDER, Project:
BFM2001-2886. 2000 Math. Subject Classification: 20M10, 20M14.
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presentation which can be used for studying their homomorphisms into the
additive group of rational numbers. The set of such homomorphisms admits the
structure of a rational vector space which facilitates their study.

This work is motivated by the desire to elucidate the structure of the algebra
of homomorphisms of a commutative cancellative semigroup S into the additive
group of rational numbers Q. This algebra is a rational vector space and the
obvious question is posed of its dimension relative to S. Here the rank of S comes
into the picture. In order to delve deeper into the relationship of S and
Hom (S, Q), one quickly realizes that further suitable conditions on S must be
imposed in order to make such a program feasable. This is achived by the concept
of subarchimedeaness which is a generalization of the familiar notion of archi-
medeaness of commutative semigroups. This way we come close to the work of T.
Tamura with the essential difference that we consider homomorphisms of S into
the additive group of rationals rather than reals. As in Tamura’s case, we re-
present a commutative cancellative subarchimedean semigroup S by means of an
abelian group G and a function 7 : G x G — N, the nonnegative integers. The
group G plays an essential role in our considerations since we compare
Hom (S, Q) and Hom (G, Q). While the conceptual similarity with Tamura’s work
is obvious, the endresults are sufficiently different. In addition, Tamura’s ana-
lysis is generally restricted to the idempotent-free case whereas our con-
siderations are general.

Section 2 contains some preliminary material. In Section 3 we consider
homomorphisms of a general commutative cancellative semigroup S into the
additive group of rationals. Sections 4 and 5 are devoted to the study of homo-
morphisms of S, which is subarchimedean and is given a Tamura-like re-
presentation. We conclude in Section 6 by considering a special case. In all cases,
we obtain formulas relating ranks of semigroups and groups and dimensions of
rational vector spaces.

2. — Preliminaries.

We generally follow the notation and terminology of the book [4] where a
discussion of our class of semigroups can be found. Throughout the paper, S
denotes a commutative cancellative semigroups. All our semigroups and groups
are commutative. Let N ={0,1,2,..} and P = {1,2,...}.

We let SQ = (S x S)/ ~, where ~ is defined by

(a,b) ~ (¢,d) <= ad = bc
with multiplication of ~-classes [a, bllc,d] = [ac, bd]. Then SQ is the group of
quotients of S and the canonical injection

d:a—[da?a]l (ael)
embeds S into SQ.
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The semigroup S is power cancellative if for any a,b € S and n € P, a* = b"
implies that @ = b. A congruence p on S is power cancellative if the quotient
semigroup S/p is. As usual, congruences on S are ordered by inclusion as binary
relations. We start with a simple but important auxiliary result.

LEMMA 2.1. - On S define a relation t by
xty if 2" =y" for some n € P.

Then t is the least power cancellative congruence on S.

ProoOF. — Straightforward. O

In the sequel we shall use the notation t as above, denote the quotient
semigroup by ST = S/z and by * : S — ST the natural epimorphism.

All our vector spaces are over the field Q of rational numbers. The set of all
homomorphisms of a semigroup S into a semigroup U is denoted by Hom (S, U).
The set Hom (S, Q) is given the structure of a rational vector space by defining
the sum ¢ + w and the scalar product r¢ by

(p+wa=gpa+ya, (repa=r(pa) (@ eS8, reQ).

3. — The general case.

This section pertains to homomorphisms of general commutative cancellative
semigroups into the additive group of rational numbers.

LEMMA 3.1. — Let V be a rational vector space and ¢ : V — Q be a homo-
morphism into additive rationals. Then ¢ is linear (and thus ¢ € V*).

The second lemma establishes an isomorphism of vector spaces Hom (ST, Q)
and Hom (S, Q).

LEMMA 3.2. — The mapping y defined by
1o ot (p € Hom (ST, 0))

is an isomorphism of Hom (ST, Q) onto Hom (S, Q).

A subset {ai,---,a;} of S is independent if

my

m n
al ko — k

"1
...ak _al ...ak

for some m;, n; € P implies that m; = n; for1 =1, - - -, k. An infinite subset of S is
mdependent if all its finite subsets are independent. We observe that a subset of
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S is independent if and only if it is (linearly) independent in the group of fractions
of S (viewed as a Z-module). The rank of S, denoted by rank S, is the cardinality
of any maximal independent subset of S. It is proved in ([2], Theorem 3.3) that
this concept is well defined.

We are now ready for the only result of this section,

THEOREM 3.3. — We have that rank S is finite if and only if dim Hom (S, Q) is
finite. In such a case

rank S = dim Hom (S, Q).

PROOF. — By ([2], Lemma 3.2), we have that rank S= rank ST, and by Lemma
3.2 that Hom (S, Q) = Hom (ST, Q). Hence we may assume that S is power can-
cellative so that ([2], Theorem 3.3) implies that S can be embedded into (the ad-
ditive group of) a rational vector space V generated by the image of S in V. We
may identify S with its image. Since then S generates V, it contains a minimal
generating set of V, that is a basis of V. It follows that every homomorphism from
S into Q extends uniquely to a homomorphism of the additive group of V into Q.
Now Lemma 3.1 implies that

Hom (S, Q) 2 Hom (V,Q) = V*.

By ([2], Theorem 3.3), we have rank S = dim V. Also dim V is finite if and only if
dim V* is finite. It follows that rank S is finite if and only if dim Hom (S, Q) is
finite, in which case

rank S = dim V = dim V* = dim Hom (S, Q) .

4. — The subarchimedean case.

Recall from [1] that a commutative semigroup 7 is subarchimedean if there
exists z € T such that for any a € T, 2" = ax for some n € P and x € T. We
consider here homomorphisms of subarchimedean (as usual commutative can-
cellative semigroup) S into the additive group of rational numbers. To this end,
we first introduce the necessary notation for the Tamura-like representation of
these semigroups and some related symbolism.

For a group G, we consider a function 7 : G x G — N satisfying the following
conditions:

(4) I(a,b) + I(ab,c) = I(a,bc) + I(b, c) (a,b,c € G),
©)  Ia,b) =1(b,a) (a,b € @),
Ny I(e,e) =1

where e is the identity of G and 7 = 0 or 7 = 1. On the set N x G define a mul-
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tiplication by
(M) (m,a)(n,b) = (m+n—+Ia,b),ad).

We denote the resulting groupoid by N;(G, I).
The importance of the above construction stems from the following state-
ments, see ([5], Section 3) for part (i¢) and ([1], Section 4) for both parts.

Facr 4.1.

() Groupoid No(G,I) s a commutative cancellative subarchimedean
nongroup monoid. Conversely, every semigroup with these properties is
isomorphic to some No(G, I).

(1) Groupoid N1(G,I) is a commutative cancellative subarchimedean
idempotent-free semigroup. Conversely, every semigroup with these
properties is isomorphic to some N1(G, I).

The purpose of the next two sections is to clarify the relationship of
Hom (S, Q) and Hom (G, Q) when S = N;(G, 1) for ¢ = 0,1. We shall need some
more notation.

For G a group and a function ¢ : G — Q, we write

9(a,0) = p(@) + p(b) — p(ad)  (a,b€G).
Nowlet I : G x G — N satisfy conditions (A), (C) and (N;) fori =0or¢ =1, and
e be the identity of G. We introduce the notation
deflI ={¢p: G — Q|¢la,b) =1(a,b)+1—1 for all a,b € G},
Defl ={p:G— Qlp(a,b) = {(a,b) +1—1i)ge) for all a,b € G}.

We provide Def I with the structure of a rational vector space by defining a sum
and a scalar product by
(0 +w)a = pa +wya, (re)a = r(pa) (p,w € Defl, re€ Q, a € G).

A close analogue of these functions was used by Tamura, see [6], as an al-
ternative for the function /. He also studied objects similar to elements of def I
using the notation Dfn; (G, R,): functions ¢ : G — R (positive real numbers)
satisfying ¢(a,b) = I(a, b) for all a,b € G. He used these functions to construct
groupoids akin to N;(G, ) serving essentially the same purpose; see also [5].

We shall require three lemmas for the proof of the sole result of this section in
which we use the notation introduced above.

LEMMA 4.2. - For any a € G, we have I(a,e) = I(e, e).

PRrOOF. — Substituting b = ¢ = ¢ in condition (A), we obtain
I(a,e) + I(a,e) = I(a,e) + I(e,e)

which proves the assertion. O
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LEMMA 4.3. - For i = 0,1, we have

1—ie" M1 —ia)=ma) ifm>00ri=1,
1,a) = 1,e)0,a) if m=0=1.

PROOF. — If m — 1+ 1 =0, then
A -1i,0°0 —i,0) =1 —1i,a) = (m,a).
Consider k¥ = m — 1 4+ 1 > 0; the argument is by induction. If k¥ = 1, then
A-17,0)d—-1%0)=2—-2t+1(e,a),a) =2 —1,a)

where 1 =k =m — 1 + 7 implies m = 2 — 7 and the formula holds. Suppose the
formula valid for k = m — 1 + 4. Then

A—ie)" "1 —ia) = A—i,e)d—1ied—ia)
= (1 —14,e)m,a)
= A—-1+m+I,a),a)=m+1,a),

as required. The second case is obvious. O
The next lemma clarifies somewhat the relationship of def I and Def /.

LEMMA 4.4. — () # def I C Def L.

PROOF. — Set S = N;(G,I) and recall that 6 : S — SQ is the canonical injection
of S into its group of quotients. Since (1 —i,e)" = (n — i, e) for ¢ = 0,1, we con-
clude that the element (1 — 7, ¢) is of infinite order. Hence the mapping

(6 —4,e)'—n  (ne?)

is a homomorphism of the subgroup of SQ generated by (1 — 1, e) into Q. Since Q
is a divisible group, it has the homomorphism extension property, see ([3],
Theorem 21.1), ¢ extends to a homomorphism f:SQ — Q. Let y=56:S — Q
and observe that y(1 —i,e) = 1.

We now define ¢, by

(1) (00 : CL'_’V(l - i7 a) (a S G)7
so that ¢y : G — Q (with ? = 0 or ¢ = 1 fixed). For a,b € G, we obtain
Po0 + pob = y(1 — i, a) + y(1 — 7, b) = (1 — i, )1 — 1,b))
— 9@ — 2+ I(a,b),ab) £ y((A — i,/ V171 — i, ab))

=U(a,b)+1—-)yA —i,e) +yA —i,ab) = I(a,b) + 1 — i + gy(ad)
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whence
o0 + Pob — polad) = I(a,b) +1 —1

so that ¢, € def I. Therefore def I # 0.
Let ¢ € def I. Then using (N;) we get

pe=gple,e)=1I(,e)+1—i=i+1-i=1

and thus ¢ € Def I. With the above ¢, letting w = 2¢,, we get immediately

that w € DefI (since Defl is a rational vector space) but w¢def I (since

we=2#1). d
We are now ready for the result of this section.

THEOREM 4.5. — Let S = N;(G, I) where 1 = 0 or i = 1.

(2) Def I has Hom (G, Q) as a vector subspace of codimension 1.

(1) For any w € def I, we have def I = Hom (G, Q) + w. Hence def I is an
affine subspace of Def I of codimension 1.

(112) For every ¢ € Def I, define ¢ by

p(m,a) = (m —1+)(pe) +pa  ((m,a) €S),
and for every y € Hom (S, Q), define 7 by
qa=y1-1a) (@ € @).
Then the mappings
I’ : DefI — Hom (S, Q), p— 0,
A:Hom (S, Q) — Def I, 17

are mutually inverse isomorphisms of rational vector spaces.
(w) I |Hom 8.0 1s an 1somorphism of Hom (G, Q) onto the subspace

2 ={y € Hom(S, Q)| y(m,a) = y(n,a) for all m,n € N,a € G}.

Proor. — Set H = Hom (G, Q) and observe that
H={peDefl|p(a,b)=0 foral a,b e G}.

(1) Straightforward verification will show that H is a subspace of Def /. In
order to prove that it is of codimension 1, we let ¢, be the function (1) in the proof
of Lemma 4.4. First note that ¢, ¢ H since pye = 1 # 0. Let ¢ € Def I be such that
pe = 0. The definition of Def I implies that ¢ € H. Hence for every ¢ € Def I such

that p ¢ H, we have ge # 0. Defining 6 = %(p — @y, We get

1
e ¢e(¢e) ®oe
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so that 8 € H. It follows that ¢ = (pe)8 + (pe)p, which proves that codimension of
H in Def I equals 1.

(i) Let w,0 € def I and set ¢ = 0 — w. For any a,b € G, we immediately get
that ¢p(a,b) = 0 and thus ¢ € H. Therefore

O0=p+wyeH+y

and thus def/ C H +y. Conversely, let 6 =¢+w where ¢ € H. For any
a,b € G, we have

0a,b) = p(a,b) + w(a,b) = y(a,b) = I(a,b) + 1 —1

so that 6 € def I. Consequently H + y C def I and equality prevails.
(1127) For ¢ € Def I and a € G, we get

pa=01—1,a0) =0 —1i—1+1i)pe) + pa = pa

and thus 7 = ¢, that is A7 is the identity mapping on Def I.
Let y € Hom (S, Q) and (m,a) € S. First

2m,a) = (m—1+i)Fe) +7a
= (m—-1+0A—1,e)+ 1 —1,0a).

If m > 0 or ¢ = 1, then by Lemma 4.3, we get
2m,a) = 1(A —i,0)" A —i,)) = z(m,a),
otherwise m =1 = 0 so that
70,0) + 1(1,) = 1(1,a).
This together with
20, a) + x(1,e) = x((0,a)1,e)) = x(1,a)

yields that f(O, a) = (0, a). Therefore );((m, a) = y(m,a) in all cases and I"4 is the
identity mapping on Hom (S, Q).
For y, ¥ € Hom (S, Q), » € Q and a € G, we have

Ax+))e = G+)A-1i0) =0 —-ia)+,/1-10)
za+y'a = (A + 47 )a,

(Urp)a = @A —i,0) = (1 —i,0) = r(a) = (r(dy)a
which implies that A is an isomorphism and hence I" = 47! is too.
(tv) This is an immediate consequence of parts (i) and (iii). |
Note that

2 = {y € Hom (S, Q)| x factors through the homomorphism (m,a)— a},
so no wonder that }_ = Hom (G, Q).
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5. — An alternative approach.

We will now devise an isomorphic copy of Defl which ought to clarify
somewhat the relationship of the objects we studied in the preceding section. We
start with the needed notation.

Fix an element ¢, € def! (by Lemma 4.4 it exists), and define a sum and
scalar product on Def I by

POy =0+y—0y, r-o=ro+1—-10p, (p,y€Defl, reQ)

and denote the resulting structure by (Def I, ®).
Restricting the operations of (Defl,®) to def, we denote the resulting
structure by (def I, @).

THEOREM 5.1. — With the above notation, the following statements hold.

(i) (DefI,®) is a rational vector space having (def I, ®) as a subspace of
codimension 1.

(i) The mapping

D p—p+ g, (p € DefI)
18 a vector space isomorphism of Def I onto (Def I, &).
(iii) (p|H0m @.0) is a vector space isomorphism of Hom (G, Q) onto (def I, &).
ProOF. — It is clear that @ is a bijective map. Furthermore, for any
p,w € Def I and » € Q, we get
Dp+y)=0+y+py=(+0)+W+0) — 9y =Pp) & Py)
D(rp) =1+ 9y = 19 + po) + (1 — gy =7 - D(p)

which proves that @ is an isomorphism and thus (Def I, ®) is a rational vector
space.
We prove now that @(Hom (G, Q)) = def I. Indeed, if € Hom (G, ), then

(D) (a,b) = (0+py)a,b) = a,b) + ¢py(a,b) =0+ I(a,b) + 1 —i=I(a,b) + 1 — 1
and thus @0 € def I. Conversely, if ¢ € def I, then
(@ —po)a,b) =Ia,b)+1—-1—1(a,b)—1+1=0,

and therefore 0 = ¢ — ¢, € Hom (G, Q) and ¢ = @0 € ¢(Hom (G, Q)).
Since Hom (G, Q) is a subspace of codimension 1 in Defl, according to
Theorem 4.5(i), the corresponding statement follows for (def I, ®) relative to

(Def I, ). g

We now draw some consequences of the results obtained so far.
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COROLLARY 5.2. —Let S = NG, I) where i = 0 or i = 1. Then rank S, rank G,
dim (Def I, ®), dim (def I, &), dim Hom (S, Q) and dim Hom (G, Q) are all finite
or are all infinite. If they are finite, then

rank S = dim (Def I, ) = dim Hom (S, Q) = rank G + 1

= dim Hom (G, Q) + 1 = dim (def I, ®) + 1.

ProoF. - All the assertions follow from Theorems 3.3, 4.5 and 5.1. O

We now illustrate the mappings in Theorems 4.5 and 5.1 by the following
diagram.

Hom(S,Q) «——  Defl —2 . (Defl,m)

1

X Hom (G, Q) (def I, ®).

FlHom(G.(.)) (I)‘ Hom(G,0)

Corollary 5.2 is related to ([6], Corollary 4.8) which represents a weaker
statement but in the context of functions from the group G into positive real
numbers. Much of our discussion is based on the existence of nontrivial homo-
morphisms from a commutative cancellative semigroup into Q. As ([5], Example
4.10) shows, a commutative cancellative idempotent-free subarchimedean semi-
group need not have homomorphisms into R, the semigroup of all positive real
numbers, and thus a fortiori into Q.. According to ([5], Theorem 4.1), for a
commutative cancellative idempotent-free semigroup of finite rank S, we have
Hom (S, Qﬂ) # {0} where Qﬂ is the additive semigroup of nonnegative ratio-
nales. This subject was also studied in [7]. Hence the exact situation here is still
to be explored.

6. — A special case.

We illustrate some of the results obtained by considering the (very) special
case of semigroups of rank 1. For any set X, we denote by |X]| its cardinality.

THEOREM 6.1. — Let G and I be given, with I satisfying conditions (A), (C) and
(No) or (Ny), and let S =2 N;(G, I). Then the following conditions are equivalent.
@G) rank S = 1.
(ii) G s periodic.
(iii) |Hom (G, Q)| = 1.
(iv) |def I] = 1.
(v) dimDef I = 1.
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In such a case, the following holds.
(@) In part (1i1), the unique homomorphism s the zero homomorphism.
(b) In part (i), the unique ¢ € def I is given by

1<& .
—_— — j _.
oa n;l(a,a)Jrl 1 (@e@

where n s the order of a in G.
() In part (v), p generates Def I.

PrOOF. — (1) and (i) are equivalent. By Corollary 5.2(iii) we know that
rank S = 1if and only if rank G = 0. But the abelian group G is of rank zero if and
only if it has no elements of infinite order, that is, if and only if it is a periodic
group.

(#1) and (121) are equivalent. This is a consequence of Theorem 3.3.

(#12) implies (). By Theorem 5.1(iii), we have Hom (G, Q) = (def I, ).

() implies (v). The hypothesis implies that dim(defl,&) =0 which by
Theorem 5.1(i) yields that dim (Def I, ) = 1. This by Theorem 5.1(ii) implies
that dim Def I = 1.

() implies (). By Corollary 5.23() and Theorem 5.1(ii), we have
rank S = dim (Def I, ®) = dim Def I = 1.

We now prove the additional assertions of the theorem.

(@) This is trivial.

(b) Let ¢ € def I and a € G. Then

pa+ga —pa® =Ia,a)+1—1

and hence
(2) pa® =290 — I(a,a) — 1 +1,
next

pa + pa® — pa® = I(a,a®) +1—1
so that

(pa‘o’:(paJr(pasz(a,az)flJri
=gpa+2pa —I(a,a) —1+1—I(a,a®) —1+1

=3pa — I(a,a) — I(a, a?) —2(1 —1).

k .
For k <m,let I, = 5" I(a,a’). Continuing this procedure, for n > 0 we get
j=1

(3) pa" =npa — I, 10— (n— 1)1 —1).
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On the other hand, by (2) we get
pe = pe? =2pe —I(e,e) —1 — 1

and thus ge = 1. Let n be the order of a. Then (3) implies that
1=npa —I, 10— (n—1)1A—1)

whence
1 . o1 .
pa=—Uypa+0)+1—-i==1la+1—1,
n n

since 1 = I(e,e) = I(a, a™).
(¢) In particular, pe = 1I(e,e)+1 —i=1. Hence 0 # ¢ € def I C Def I and
thus ¢ generates Def I since dim Def I = 1. O
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