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Bollettino U. M. 1.
(8) 9-B (2006), 101-132

Relaxation and Gamma-Convergence of Supremal Functionals.

FRANCESCA PRINARI

Sunto. - Si prova che il I'-limite in L° di una successione di funzionali supremali della
Sforma Fy(u) = p-ess supg, fi.(x, u) e un funzionale supremale. In un controesempio si
mostra che la funzione che rappresenta il I'-limite F(-,B) di una successione di
Sfunzionali supremali della forma Fy(u,B) = u-esssupgfi(x,u) pudé dipendere
dall'insteme B e st stabilisce una condizione necessaria e sufficiente al fine di rap-
presentare F nella forma supremale F(u,B) = u-esssupgf(x,w). Come corollario, si
dimostra che se f rappresenta un funzionale supremale F, allora Uinviluppo level
convex di f rappresenta Uinviluppo semicontinuo inferiormente di F rispetto alla
topologia debole™ di LY.

Summary. — We prove that the I'-limit in LY of a sequence of supremal functionals of the

Sform Fi(u) = p-ess supg fi(x, ) is itself a supremal functional. We show by a coun-
terexample that, in general, the function which represents the I'-lim F(-,B) of a se-
quence of functionals Fy(u,B) = u-esssuppfi(x,u) can depend on the set B and we
give a necessary and sufficient condition to represent F in the supremal form
F(u,B) = p-esssuppf(x,uw). As a corvollary, if f represents a supremal functional,
then the level convex envelope of f represents its weak® lower semicontinuous en-
velope.

1. — Introduction.

Until a few years ago, the main problems of Calculus of Variations were
formulated through the minimization of an integral functional. This had even
brought to a definition of «variational functionals» based on the characteristic
properties of this class (see [14]). Among the large number of papers in which
they were studied, we underline the contribution of Buttazzo and Dal Maso (see
[7], [8], [9]) on the characterization of functionals which admit an integral re-
presentation and their results about the representation of the relaxed func-
tionals. The same authors and others (as Marcellini in [18]) also studied the
behavior, with respect to the I"-convergence, of sequences of integral functionals.

In the last years, a new class of functionals appeared in the study of mini-
mization problems. In fact, in many physical contexts, one would often like to
minimize a quantity which cannot be expressed as an integral: for example, a
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quantity which does not express a mean property of a body or whose value can be
relevant on sets of arbitrarily small measure. In these cases, the natural setting
in which the problem is formulated is the space L7 and the natural form of re-
presenting the functional is the so called «supremal form»:

(1.1) F(u,B) = p-esssup {f(x,u(x)) : « € B}.

Given a complete measure space (2, F, u), in a previous paper [1] we completely
characterized the class of all lower semicontinuous functionals F : L (Q)
x F — R which can be represented in the supremal form (1.1). The key tool in
the proof is a result of Barron, Cardaliaguet and Jensen (see [3]) analogous to the
Radon-Nikodym theorem for measures. Moreover we showed that in the nona-
tomic case a supremal functional of the form (1.1) is weak* lower semicontinuous
on LOC(Q) if and only if the function f(x,-) is level convex for a.e. x, that is for
every t € R the level set {z € RY:f(x,2) < t} is convex. As a corollary of this
results, one can deduce a characterization of all weak® lower semicontinuous
functionals F' : L7? — R which can be represented in the form

(1.2) F(u) = presssup { f(x, u(x)) : @ € Q}

for a suitable level convex function f(see [19]).
The main difference between an integral functional G(u, B) = f [, u(x))du(x)
B

and a supremal functional of the form (1.1) consists in their behavior with respect
to the union of sets. While the first is additive on disjoint sets, the second one
satisfies a countable supremality property, i.e.

(13) F(“y Loj An) = (O/F(uvAn)
n=1 n=1

In the study of relaxation and I'-convergence problems of supremal functionals
of the form (1.1), this is the most difficult point to clarify and to face. In fact, this
property is necessary in order to obtain the supremal representation (1.1) and
cannot be weakened by assuming a property of finite supremality even if we add
a lower semicontinuity assumption (see Example 3.1). Moreover Example 3.3
shows that in general the /™-limit of a sequence of supremal functionals on L7° of
the form (1.1) and the I"-limit of a sequence of supremal functionals on Wh> of
the form
(1.4) F(u,A) = esssup f(x, Du(x))
reA

do not satisfy property (1.3). In particular this means that the class of supremal
funectionals on Lff of the form (1.1) (and the class of supremal functionals on W1
of the form (1.4)) is not closed with respect to I"-convergence.

Instead, in order to represent a functional F': L® — R in the supremal form
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(1.2), the required property is a quasi locality behavior with respect to a «pie-
cewise» function:

Fuly +vlgg) < F(u) vV F(v).

This property turns out to be stable under I'-convergence. Under an equi-
coercivity assumption (see hypothesis (Hey)), we show a compactness result with
respect to /'-convergence for sequences of supremal functionals Fj : L;® — R of
the form (1.2) and we prove that the I'-limit of every converging subsequence can
be represented in the same form.

If we consider a sequence of supremal functionals Fj : L3° x F — R, in
order to obtain a compactness theorem and a supremal representation of the
I'-limit in the form (1.1), we have to add a further hypothesis on the behavior of
the sequence of the minimum values of the functionals F, (see assumption (Hy)
and its weakened formulation (Hs)). Under this condition we show that, up to a
subsequence, there exists a functional ' of the form (1.1) such that Fj(-,A) I'-
converges to F'(-, A) for every open set A. Moreover, from (Hy) we can deduce a
necessary condition: if we drop it, we can exhibit sequences of supremal
functionals as in Example 3.1 whose /'-limit cannot be written in the supremal
form (1.1)

As a corollary of the I'-convergence Theorem 2.4, we give an explicit re-
presentation formula for the relaxed functional of a supremal functional. By
using a level convex conjugation introduced by Volle in [22], we will prove that
the weak™ lower semicontinuous envelope of a supremal functional of the form
(1.1) (and of the form (1.2)) is itself a supremal functional represented by the level
convex envelope of f. Moreover, by using a Jensen’s inequality for level convex
functions, we give a relaxation theorem for supremal functionals through Young
measures. This result is analogous to that one stated in [17] in the integral case.

We observe that if Q C R, we can apply our relaxation theorem to represent
the relaxed functional (with respect to the weak* topology of W) of the su-
premal functional

F(u) = esssup f(x, u' (x)).
reQ
Barron and Jensen studied this problem in [4] and obtained an analogous result.
Their technique is different: it is based on an LP approximation of the functional
and requires the continuity of f with respect to the first variable. Instead, our
proof does not need this assumption and we can work just with measurable
functions, which seems to be a more natural framework. Finally, the same re-
presentation results (relaxation and I'-convergence) for the functional

F(u) = esssupf(x, Du(x)),
reQ

with Q ¢ RY and N > 1, are still open.
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The paper is organized in the following way. In Section 2 we will state our
representation results for I'-limit of supremal functionals (see Theorems 2.3 and
2.4) and, as application, we will give the relaxation Theorem 2.5. Moreover we
recall some properties of the level convex functions and, following Volle, we in-
troduce the level convex envelope of a given function. In Section 3 we give the
proofs of Theorems 2.3 and 2.4 and we produce an example in which we drop
assumption (Hy) and the I'-limit does not satisfy the property (1.3). The last two
sections are devoted to the relaxation problem. In Section 4 we prove Theorem
2.5 while in Section 5 we deduce a representation for the relaxed functional (see
Theorems 5.3) by using Young measures.

2. — Preliminaries and main results.

The necessary and sufficient conditions for the lower semicontinuity of in-
tegral functionals involve notions of convexity in some form. The study of weak™
lower semicontinuity for supremal functionals on L> has led to the concept of
level convex functions. In order to state the main results of this paper, we give
some definitions, we recall some properties of this class of functions and we in-
troduce the largest lower semicontinuous and level convex function less than or
equal to a given function.

Let (2, F, 1) be a complete measure space with 1 non-negative, o-finite, non
atomic and complete measure. We denote for brevity by L° (respectively Lb(.Q))
the space L>(Q; R") (respectively the space L!(Q; R%)), by By the Borel o-field of
R% and by 1 -sup the u-essential supremum.

DEFINITION 2.1. — A function f : Q@ x R® — R U {+00} is said to be
a) a supremand if f is F @ Bg-measurable;
b) a normal supremand if f is F @ Bg-measurable and f(x,-) is lower
semicontinuous (l.s.c. for short) on R? for y-a. e. x € Q;
¢) alevel convex normal supremand if f is a normal supremand such that,
for p-a. e. x € Q, f(x,-) is level convex, i.e. for every t € R the level set
{z € R : f(x,2) < t} is conve.

We prove the following version of Jensen’s inequality for level convex functions.
THEOREM 2.1. — Let [ : R? — R be a lower semicontinuous and level convex

. o7 d . 1
f@m}cltzon and let j be a probability measure on R". Then for every functionu € L,
we have

f(fudu>§ﬂ-sup(fou).
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PrOOF. — Let us define y:=pu-sup(fou) and E,:={z ¢ RY . f®) <y}
Thenw(z) € K, for p-a.e.z € R?. Since f is lower semicontinuous and level convex,
E, is a closed convex set. As u is a probability measure, ( [u(z)du) € E,, which
proves the assertion. O

If f is not level convex, we use a level convex conjugation introduced by Volle
in [22] in order to obtain the largest lower semicontinuous level convex
minorant f.

DEFINITION 2.2. - (i) Given f : RY R, we set f°(n,r) = sup{z-n: f(z) <r}
for any (n,7) € R x R;
(ii) given ¢:R? x R — R, we set ¢'(z) := sup, sup{r: ¢(n,r) <n-z} for
any z € R

In the following, we refer to f¢ as the conjugate function of f and to ¢ as the
conjugate function of @; f is said the biconjugate function (or the level convex
envelope) of f. Let us observe that they are slightly different from that ones
introduced by Barron and Liu in [5]. The next theorem describes the class of
functions which coincide with their biconjugate; for a proof, see Theorem 3.4 in
[22].

THEOREM 2.2. — Let f : R’ - R. Then f = f if and only if f is lower sema-
continuous and level convex. In particular, it follows that

7 =sup{h :R* - R: h =h, h <f}
=sup{h:R* - R : h Ls.c.andlevel convex, h < f}

1.e. f is the largest lower semicontinuous and level convex function less than or
equal to f.

Now we can state the main results of this paper. Assume that Lé(Q) is a se-
parable space.

THEOREM 2.3. — Let F, : LY — R be a sequence of supremal functionals de-
fined by

Fi(u) = p-sup {fi(e,u@) : ©e€ Q},

wheref, : @ x RY — R U {+00} are normal supremands satisfying the following
assumption:
(Hey) there exists a Borel function ¢ : R® — R U {+oo} such that

(2.5) lim ¢(z) = +o0

[2] =00
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and
(2.6) few,2) > ¢(2)

for every k € N, for u-a.e. & € Q and for every z € R®.

Then theve exists a subsequence (Fy,);, of ()i, such that F,, I'-converges to a
Sunctional F' : LY — R with respect to the weak* topology of L. Moreover there
exists a level convex normal supremand f such that the representation formula

F(u) = p-sup { f(x, u(x) : ©eQ}

holds for every w € LY.

THEOREM 2.4. — Let Q be a topological space satisfying the second axiom of
countability and let u be the completion of a nonnegative, o-finite, non atomaic
Borel measure on Q. Let Fy, : LY x F — R be a sequence of supremal functionals
defined by

2.7) Fi(u,B) = p-sup { fi(x,u(x)) : « € B}
where fi, : Q x R - RuU {+ o0} are normal supremands satisfying the as-
sumption (Hey) and the following

(H,) the sequence gi.(x) = inf{f,(x,2) : z € R"} converges strongly in Lytoa
Sfunction g : Q — R U {+oc}.

Then, there exists a subsequence (Fy ), of (Fy), such that Fy, (-,A) I'-con-
verges to F(-,A) with respect to the weak* topology of L for every open set
A C Q. Moreover, there exists a level convex normal supremand f such that the
representation formula

(2.8) F(u,A) = p-sup {f(x,u®) :x €A}

holds for every open set A C Q.

As a consequence of Theorem 2.4, if F : LY x F — R is a supremal functional
of the form
(2.9) F(u,B) = u-sup { f(z,u(x)) : © € B}
then its weak™ lower semicontinuous envelope, defined by
F(u,B) := sup {G(v) :G:LYB) — R, G wls.c., G(-)<F(-,B) on L;O(B)}
is a supremal functional represented by the level convex envelope of f. In fact the

following result holds for relaxed supremal functional:

THEOREM 2.5. — Let f: @ x RY — R U {+oc} is a normal supremand sa-
tisfying the following assumption:



RELAXATION AND GAMMA-CONVERGENCE OF SUPREMAL FUNCTIONALS 107

(Hcy) there exists a Borel function ¢ : R® — R U {+o0c} satisfying (2.5) and
such that

(2.10) fla,2) > ¢(z)

for p-a.e. x € Q and for every z € R®. Let F - LY xF — R be defined by (2.8).
Then

(2.11) F(u,B) = p-sup { f(w,u(@)) : © € B}

Jor every B € F and for every u € LY .

With the aim to show the representation formula (2.11), we devote the second
part of this section to prove the F ® B;-measurability of /< when f is a normal
supremand. We begin with the following proposition (see Proposition 3.3 in [22])
which makes precise some useful properties of the operator f +— f°.

PROPOSITION 2.1. — Let f : R* — R be a function such that f # — co. Then the
conjugate function f¢ satisfies the following properties:

a) for every r € R, f°(-,») is lower semicontinuous, convex, proper or
identically —oo;
b) foreveryy € R [y, ) is lower semicontinuous, increasing. Moreover,

C
(i.nf ﬁ) =sup ff
iel iel
for every family (f;)icr of functions defined on R’

In the sequel we exclude the not interesting case f = —oco. By using
Proposition 2.1, we can establish the following property of measurability for f*.

PROPOSITION 2.2. — Let f : @ x R® — R be a normal supremand. Let f¢ be the
conjugate of f with respect to z, i.e.

[ n,r) =sup{z-n: flx,2) <r}
for every (z,n,1) € QxR*xR. Then f°(-,n,7) is F-measurable for every
(n,7) € R" x R.
PRroOF. — Fix (5,7) € R? x R. Since

[, n,r) = sup sup sup{z-n:z € R’ |2| <n, f(x,2) < p},
peQ neN
p<r
it is sufficient to prove that

qbﬂ(oc) =sup{z-n:z€ Rd7 |z| <m, f(x,2) < p}
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is F-measurable for every p € Q. For every ¢ € R the set {x € Q: ¢,(x) > ¢} is
the projection on Q2 of the set

{(x,2) € Q x R’ . z-n>t, |z <m, flx,2) <p}
which belongs to 7 ® B;. Therefore the F-measurability of ¢, follows from the
Projection Theorem (see, e.g., [11], Theorem XIII.3). O

Finally, we can obtain the following measurability property for the biconju-
gate f of f.

THEOREM 2.6. — Let f : @ x R* — R be a normal supremand. Then < is a
normal supremand.

ProoF. — Suppose first that
(2.12) lim f(x,2) =+ o0

|2 =00

for every x € Q. We shall remove later this assumption by an approximation
argument. In order to obtain the F ® B;- measurability of /7, it is sufficient to
prove that

Ap = {(,2) e QxR : f9x,2) >t}

is measurable for every t € R. By the definition of f*” (see also Proposition 3.4 of
[22]), we have

A =Q xR\ ( ﬂ ﬂ{(x7z)€Q><Rd: f”(x,n,?”)>77-z}>

nGRd >t

= U U{(ac,z)eQde: [, n,r)<n-z}

nERd r>t
By Proposition 2.1, f(x, 7, -) is increasing. Thus we have

A= U (@oe@xR: fann<nz

neR? r>t, req

- U U{(m,z)eQde:fc(oc,n,'r)<;7-z}.

r>t, reQ qeRd
Let us fix 7 € @ and, for every 7 € R%, let us define
E(, 7 = {(x,2) € Q x R : fe,n,7) <n-2}.

By Proposition 2.2 for every 7 € R? f°(-,n,7)is F-measurable and hence E(y, 7) is
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F ® Bg-measurable. If we prove that

neR? neqQ’

then A; is a countable union of F ® Bs-measurable sets and so A; is F ® By-
measurable.

Let (x,2) € UneRd E(n,7). Then there exists 7 such that (x,z) € E(7,7), that
means

(2.13) fele, P <np-z
Now we have to consider two cases:
() f°(x,n,7) = — co. This implies that

{(@,&) e QxR : f(x,&) <7} =0.

Then, we have f°(x,n,7) = —oco for every 7 € Qd, ie. (x,2) € E(y,7) for every
d
neq”.
(i) f°(x,n,7) € R. By using (2.12), there exists a compact set K = K(x,7) in
R? such that ¢ € Kif f(x,&) < 7. So, if U  R% is a neighborhood of 7, then there
exists M > 0 such that

fc(xvnv?): sup {57/]} SM
{¢eK, f(a,O)<r}

for every n € U. Since f“(x,-,7) is convex and bounded in U, f“(x,-,7#) is con-
tinuous in 7 and so, by (2.13), there exists & € Q7 such that f(x,¢,7) < & - 2, i.e.
(x,2) € E, 7).

Now we remove assumption (2.12). For every n € N let us define

flx,z) if 2| <n
+oo if 2| > n.

falw,2) == {

Since f,, satisfies (2.12) for every n € N, by the first part of this proof, (£,) is
F ® Bg- measurable and level convex for every x € 2. We observe that

(2.14) (£ (@,2) = +o0

for every n € N, for every t € R? with |z| > n and for every x € Q. In fact, let us
define

()@, iffe] <n
%m@’{ oo i o >

Then ¢,,(x, -) is level convex and ¢, (x,2) < f,(x,2) for every x € 2 and for every
z € R This implies ¢, (x,2) < (f,)(x,2) for every x € Qand for every z € R%.1In
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particular, (2.14) follows and setting
g(x,2) == inf ()7 (x,2),
neN
we have that g is 7 ® Bz-measurable, g(x, -) is level convex for every x € 2 and

[, 2) < glx,2) = . Ii\’naf>\t| ()7 (x,2) < flx,2)

for every z € R? and for every x € Q. Finally, let us define
I'g(x,z):=sup {h(z) : h :R* S R, h ls.c., h(z) < g(x,2) for every z eRd},

i.e. the Ls.c. envelope of g with respect to the second variable. By Proposition
2.6.3.in [10], I'g is F ® Bg-measurable. Since the level set

{zeR": Igw,2) <} = ({eR": g2 <p}

p>A

is convex for every 4 € R and for every « € Q, I'g is a level convex normal su-
premand. Moreover, I'g(x,z) < f(x,z) for every z € R? and x € Q and so

(2.15) Tg(x,2) < f@,2) < g(x,2)

for every z € R? and x € Q. Since f(x,-) is a lower semicontinuous function,
from (2.15) and from the definition of I'g, we deduce that

f,2) = I'g(x,2)

for every z € R? and for every x € Q. Therefore ¢ is a normal supremand. O

3. — Gamma-convergence Theorem.

In this section we show the Gamma-convergence Theorems 2.3 and 2.4.
Before coming to their proofs, we recall the following results: the first is a se-
quential characterization of I'-limits with respect to the weak* topology, while
the second is a general abstract compactness result that assures the existence of
I'-converging subsequences. The proofs of Propositions 3.1 and 3.2 are analogous
to those ones of Theorem 8.10 and Corollary 8.12 in [13]. In the sequel X = Lé
and thus X’ will be the space L3°.

PROPOSITION 3.1. - Let X be a separable Banach space and let X' be its dual
space. Let @ : X' — R be a function such that

lim @) = +o0,

[l || =00

where || - || ts the norm of X’ and let (F},) be a sequence of functionals from X' into
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R. Suppose that Fy, > @ for every n € N. Then the functional
F()=T- lli<m+inf F.(z) [respectivelythe functional F*(x) = I'-limsup F,(z')]

k—+o00
denoted as the I'-lower limit or more shortly as the I'-liminf [respectively,
denoted as the I'-upper limit or more shortly as the I'-limsup/ is characterized by
the following properties:
a) forevery ¥’ € X' and for every sequence (x;,) converging to x’ in X' it is
F~() < llicm inf Fi(x;,) [respectively F*(x') < limsup Fy(x})];
—+00 k—+o00
b) for every x' € X' there exists a sequence (x),) converging to x’ in &' such
that
F ()= lligm inf Fi(x),) [respectively F*(x') = limsup Fy(x},)].
—+too k—-+o0
In particular (Fy;) I'-converges to F' in the weak™ topology of X' if and only if
() for every &' € X" and for every sequence (x;,) converging weakly™ to ',
it is
F(x") < liminf F(x},);
k—o0

(i) for every x' € X' there exists a sequence (x;,) converging weakly* to
x € X' such that

F@')= khrgc F(ax),).

PRrOPOSITION 3.2. — Under the hypothesis of Proposition 3.1, there exists a
subsequence of (F},),, which I'-converges in the weak™ topology of X'.

In order to prove Theorems 2.3 and 2.4, the fundamental tools we will use in
the followings are the representation results shown in [1] (see Theorem 3.2,
Theorem 4.1 and Remark 4.3): they give a characterization of all lower semi-
continuous functionals F : LY x F — R which can be written in a supremal form

(3.16) F(u,B) = pu-sup f(x, u(x)).

xeB

THEOREM 3.1. — Let F : LY x By — R be a mapping which satisfies the as-
sumptions:
(P1) (locality): F(u,A) = F(v,B) whenever u = v u-a.e. on B and (A A\ B)
=0 u,ve Ly andA,Be F;

(P2) (contable supremality): F (u, U An) = \/ F(u,A,) wheneveru € L
and By, € F for every n € N; n=1

n=1
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(P3) (strong lower semicontinuity): F(-, B) is strongly lower semicontin-
uous for every B € F.

Then there exists a normal supremand f such that the representation for-
mula (3.16) holds. Moreover, this supremand f is unique up to u-equivalence.

THEOREM 3.2. — Let F : LY x F — R be a mapping which satisfies as-
sumptions (P1), (P2) and the following
(Py) (weak™ lower semicontinuity) for every B € F the mapping F(-,B) is
weakly™ lower semicontinuous in L (B).

Then there exists a level convex normal supremand f such that the re-
presentation formula (3.16) holds. Moreover, this supremand f is unique up to
u-equivalence.

REMARK 3.1. — It is easy to see that the supremality condition (P3) is
equivalent to the following one:

1) (monotonicity) F(u,A) < F(u,B) for all w € Ly and A, B € F with A C B;
(Ps) < 1) (countable supremality on pairwise disjoint sets) F (w U E'n>§ \/F(u7 E,)

n=1

whenever u € LY and E, € F with E,, N E,, = 0§ when n # m.

n=1

Indeed, the implication (P3) = (Ps) is straightforward.
For the opposite implication, let us observe that, given u € L°, A; € F for
every ¢ € N and defined

i-1
E;=A\ 4,
i1
thanks to (P5) ii), we obtain

P ()= F(nUB:) < VP B
=1

i=1 i=1

and so, by (Ps) 1),

=1

F(M,QAZ')< (O/F(M,Al) < F(%, QAZ>

As a corollary of Theorem 3.2, it follows tEe following characterization of all
lower semicontinuous functionals F' : L3® — R which can be represented in the
supremal form

(3.17) Fu) = u—sugf(x,u(ac))
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for a suitable supremand f. By using this result, the proof of Theorem 2.3 follows
very easily.

COROLLARY 8.1. —Let F : LT — R be a weakly* lower semicontinuous map-
ping which satisfies the following assumption
(Ps) (finite quast locality) F(ula +vlg4) < F(u) Vv F(v) for every A € F
and for every u,v € LY.

Then there is some level convex normal supremand f such that the re-

presentation formula (3.17) holds.

We give only the sketch of its proof. For the details, see the proof of Theorem
3.4.2 in [19].

Proor oF COROLLARY 3.1. As in the proof of Theorem 3.1 in [1], without loss of
generality we can suppose that F' is L-Lipschitz continuous with respect to the
L3 norm. Let Gy, : LY x F — R be defined by

inf{F(uly +vlg ) :ve L™} if u € L>™

+ o0 otherwise

Gn(u,A) = {

where L™ = {u € LY : ||lul Lx < m}. One can show that G,, satisfies all the
hypotheses of Theorem 3.2. Thus there exists a level convex normal supremand
fm (L-Lipschitz continuous with respect to z) such that

(318) Gm(uaA) = Mu- Supfm(%‘, M(.’)C))
A

for every u € L and for every A € F. In particular,

F(u) = p-sup fou o, u(x))
A
for every u € L>"™. Since

G, A) = Gm+1<u,A>v< inf F(v))
veLoom

for every m € N, for every u € L>"™ and for every A € F, by Proposition 2.3 in
[1] there exists a u-negligible set N C Q2 such that

S, 2) = fn(a, z)v( izlf F(v))
veLeem

for every m € N, for every x € Q \ N and for every z € R?, |z| < m. In particular
for every m > |2| and for every & € 2\ N the sequence (fm(x,z))m N is non-
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increasing and for every (x,z) € (2 \ N) x Rd, we can define

fx,z) = ir>1|f‘fm(x,z) = lim f,(x,2).

Since for every m > |z| the function f,(x, 2) is L-Lipschitz continuous and level
convex in z, we have that f is a normal level convex supremand and from (3.18) it
follows that

F(u) = u- Sgpf (2, u(x))
for every u € L*>(Q). O

PrOOF OF THEOREM 2.3. By Proposition 3.2 (applied to X = L}(€2), so that
X' = LY (Q)), there exists a subsequence of (F}), which I'-converges in the
weak* topology of L3 to a functional . Since it is 1.s.c. with respect to the weak™
topology of L%, it is sufficient to prove that F satisfies property (Pg) and then to
apply Corollary 3.1. Let u,v € L7 and let A be a measurable set with u(4) > 0
(otherwise it is trivial). Let (wpren, Widren € LT, wp — u weakly* in L3°,
v, — v weakly™ in L3® such that F(u) = limy,_.o Fi.(u;) and F(v) = lim,_ . F.(vy,).
Since Fip(urla +vplga) < Fi(ug) V Fi(vg), we have

Flula +v1g\4) <lim inf Fruila + veloa)
<lim inf (Fi(wi) V Fi(vp))
= girgc FrGu) vV ]CILIEC Fi.(v)
=F(u) Vv F@).
0

In the proof of Theorem 2.4, the crucial point will be to check that the I"-limit
satisfies property (Pz). Let us observe that, in general, under the only as-
sumption (Hey), the I'-limit of a sequence of supremal functionals (2.7) satisfies
only the following property

k k
(P7) (finite supremality) F (u, UA") \/F(u,An) whenever u € LY
n=1 n=1

and A, € F for every n € {1,2,--- k}.

This condition does not imply the countable supremality (P2), even if the
functional is lower semicontinuous, as the next example shows:

ExampLE 3.1. — Consider 2 = (a,b) C R, F the a—Aﬁeld of Lebesgue measur-
able sets and u the Lebesgue measure. Denote by A the set of the Lebesgue
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points of density of A. Fix ¢ € (a,b). The functional F': L* x F — R defined by

0 otherwise
satisfies (P1), (Py) and (P7), but not (P2) and it does not admit a supremal form.
The following proposition establishes when a functional that satisfies (Py),
(Py) and (Py) satisfies also the countable supremality (Ps).

LEMMA 3.1. — Assume that F satisfies (P1), (Py) and (P7). Then the su-
premality condition (Pz) is equivalent to the following:
(Pg) for every w e Ly and for every sequence (Ay,) C F, there exists
m € L such that

1) F(u,A,) > F(m,A,) for every n € N

i) F (m U An> = \/F(m,A,).
n=1 n=1

PROOF. — If F satisfies (P2), then (Pg) holds with m = u.

For the opposite implication, we observe that, for every u € L3, thanks to
(P7), F(u, ) is increasing with respect to the inclusion of sets and so, by Remark
3.1, we need only to prove the supremality on sequences of pairwise disjoint sets.
Let w e Ly, let B, € F be a sequence of pairwise disjoint sets and let
A, =Up_1Erand A :=J,"; E,. Let m be as in (Pg). For every B € F set

(@) = 1 ifxeB
B=30  otherwise.

Since uly, +mlga, — u weakly™ in € LF(A), by passing to a suitable sub-
sequence and by using properties (Py), (P7), (P1) and (Pg) we have that

F(u,A) < lim F(uly, +mlgga, ,A)

— lim F(u,Ay,) Vv lim F(m,A\ Ay,)
NnN—0o0

nN—0o0

< lim F(u,Ay) V F(m,A)

— lim F(u,A,)V lim F(m,A,)

n—00

< lim F(u,A,).

NnN—00

By (P7), the last inequality implies

n oo
lim F(u,A,) = lim \/F(u,Ey) = \/F(u,E,).
N—00 Nn—00 k:1

n=1



116 FRANCESCA PRINARI

Now we can proceed to prove the main results of this paper.

ProoF OF THEOREM 2.4. Under the hypothesis (Hey), let us observe that for
every k € N there exists m;, € L3 such that f(x, m;(x)) = min{fi.(x,2) : z € R%
for - a.e. x € Q. In fact, by coercivity assumptions (2.5) and (2.6), for every k € N
there exists M} > 0 such that

inf{fi(x,2) : 2z € R’} =min{fi(x,2) : z € R’ |2| < M}

for u- a.e. x € Q. By Theorem 1.2 of [15] (applied to every normal supremand f),
for every k € N there exists a measurable map my, : Q — Rd, |y ()| < My, for -
a.e. x € Q such that

S, my () < fi(x,2)

for u- a.e. ©x € Q and for every z € R?. In particular, gi(x) = f(x, my(x)) is a
measurable function. More generally, instead of (Hy), we can suppose the weaker
assumption:

(Hy) for every B € F, Fi.(my, B) converges to u-sup {g(m) e B} where
g: Q2 — RU{+0c0} is a measurable function.

Let A be a countable basis for Q which is stable for finite union. For every
B € A, by Proposition 3.2 (applied to X = L}i(Q), so that X’ = L °(Q)), there
exists a subsequence of (F(-,B)); which I'-converges in the weak™® topology of
L. By using a diagonal procedure, it is possible to select a subsequence (which
we still denote by (F);.) such that, for every B € A, (F(-, B));, I'-converges in the
weak* topology of L3°. Let F(-, B) be its I-limit. According to Proposition 3.1, for
every A € F set

F*(u,A) = I-limsup Fj,(u, A) = min { lim sup F(uy,, A) : w — u weakly* in L}
k—o0 k—oo

and

F~(u,A)=T- limkinf Fi.(u,A) =min {limkinf Fi(ug, A) : wy — u weakly* in L3}

Since F; are local functionals, observe explicitly that in the definition of 7'+ (u, A)
(and of F~(u,A)) we can consider sequences which converge to 4 weakly* in
LF(A).

Up to a subsequence, we shall prove that F'* can be represented in a supremal
form and that

(3.19) Fr(u,A)=F (u,A) = \OC/F(u,An)

n=1

for every open set A C Q such that A = |J;_ | A,, with 4, € A. First of all, we
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observe that F'* and F'~ satisfy the following properties:

a) for every w € Ly, F*(u,-) and F~(u,-) are increasing with respect to
inclusion;

b) for every A,B € F and for every u € Ly

Fr(u,AUB) =F*(u,A) VvV F"(u,B);
c¢) for every A, B € F and for every u € Ly
F(u,AUB) <F (u,A)V F"(u,B).
In fact, if A,B € 7, A C B and if w;, — u weakly™ in L® such that
F*(u,B) = limsup F.(uy, B),

k—oo

then
Ft(u,A) <limsup Fy(uy, A) < limsup Fj(u;, B) = F* (u, B).

k—o0 k—o0
Analogous arguments hold for /'~ and give (a).
To show (b), if u;, — u weakly™ in L® such that
Ft(u,A) = limsup Fy(uy, A)

k—oo
and v, — u weakly* in L® such that

Ft(u,B) = limsup Fi(v, B),

k—oo

then
F+(M,A UB) <limsup Fj(u;lg + Uklg\A,A UB)

k—oo

< lim sup Fi(uy, A) V lim sup Fi.(vy, B)

k—o0 k—o0

—F*(u,A)V F*(u, B).

The opposite inequality follows by property (a) and proves (b). Analogous ar-
guments hold for /'~ and proves (c).

Now let us prove that F'* satisfies the hypothesis of Theorem 3.2.

In order to prove property (Py), letu,v € Ly and A, B € F such that u = v u-
a.e. x € B and u(AAB) = 0. Then there exists a sequence (u), C LS°, uy con-
verging to u weakly* in L3° such that F'"(u,A) = limsupy . Fj(ui,A). Let
vy, := Ugly + v1g\4. Then v, — v weakly™* in LY. From the locality of F, and by
definition of F'T,

F(u,A) = limsup Fr,(uy, A) = lim sup Fy(vy, B) > F™ (v, B).

k—o0 k—o0

The proof of the inequality F'*(u,A) < F'*(v,B) is similar.
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Property (P,) is a consequence of the definition of F'*. In order to apply
Theorem 3.2, it remains to prove only property (Pz). We distinguish two cases.
Suppose, first, that

(3.20) Ju € LY s. t. F"(u, Q) < +oc.

Thus, if (u;), € Ly is such that limsupy,_ . Fi(uy, Q) = F*(u, Q), by (2.6), we
have
(3.21) lim sup - sup ¢(my(x)) <limsup u-sup fi.(e, my(x))

k—o0 reQ k—o0 reR

<lim sup F(ug, Q) < +o0.

k—o0

By (2.5) and by (3.21), we obtain that the sequence (1), is bounded in L.
Without loss of generality, extracting a further subsequence, we can suppose
that there exists m € L3 such that m;, — m weakly* in L3°. From now on F'* and
F~ refer to this new subsequence. By property (b) and thanks to Lemma 3.1, in
order to obtain the countable supremality of F'* it is sufficient to prove that m
satisfies 1) and ii) of property (Pg). First of all we observe that if u € L, then

(3.22) Ft(m,B) < F"(u,B)
for every B € F. In fact, if u;, — « weakly™ in L® such that

F*(u, B) = lim sup Fj,(uz, B),

k—o0
then, by definition of my,

(3.23) F*(u,B) = limsup F},(uy, B) > limsup F,(my,, B) > F*(m, B).

k—o0 k—o0
Moreover, by (3.23) with m in the place of « and by assumption (Hz), we obtain

(3.24) F*(m,B) = limsup F,(my, B) = p-sup g(x)

k—o0 xeB

for every B € F. In particular m satisfies property (Pg) for every u € L3® and
(A))ien C F. Since F'* satisfies all the hypothesis of Theorem 3.2, there exists a
level convex normal supremand f* such that

(3.25) Ft(u,B) = p-supf(x,u(x))
xeB
for every B € F and for every u € L. In particular, since for every open set

A C Q, there exists (4,),ex C A such that A = J,~; A, and since F'* satisfies
property (P2), we have

(326)  Frand)= \/Fraud) = \[F-(0,A) < F-(1,4) < F*(, A).

n=1 n=1
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Therefore, for every open set A C Q and for every u € L7° we can define (without
ambiguity)

F('M/7A) = K.C/F(/MHA?%)

n=1

and (3.26) implies that (Fy(-,A)) I -converges to F'(-,A) for every open set
A C Q. In particular, by (3.25),

F(u,A) = u-sup f(x,ulx))
xeA

for every open set A C Q for every u € L3’.

Now we consider the other case. Assume that F*(u,Q2) = + oo for every
u € Ly.

Set

(827)  A":={A € A : there exists u € L} such that F"(u,A) < +oc}

and € :=J - A. Observe that, if A C Qis a open set such that (4 \ Q) > 0,
then there exists B € A\ A" with B C A. This implies

(3.28) Ft(u,A) > F*(u,B) = + o0

for every w e Ly. If we prove that F* satisfies property (Pp) for every
u € L) and (A,)eny C F, A, C 2, then, by applying Theorem 3.2, there
exists a level convex normal supremand f : Q' x R? — R such that (3.25) holds
for every u € L*(2') and for every F-measurable set B C €. Then, setting

flx,z) ifexe
+o0o  otherwise ’

fr@,2) = {

it results a level convex normal supremand and by (3.28), we can easily conclude
that F(u,A) = p-sup,cqf (@, u(x)) for every open set A C Q and for every
u € Ly.

Ifinf{F*(u,Q) : w e Ly} < +oo, then it is sufficient to repeat the the first
part of this proof with Q' instead of 2 . Otherwise, assume that F"(u, Q") = +o0
for every u € L (2'). By definition of A", for every B, € A" we have that (3.20)
holds with B,, instead of Q. Therefore for every B, € A" there exists a sub-
sequence of 7y, which converges in L3°(B,,). By using a diagonal procedure, it is
possible to select a subsequence (which we still denote (1)) such that, for every
B,, € A", my, converges to some m" in the weak* topology of Ly (By). From now
on F'™ and F~ refer to this new subsequence. If x € ', then there exists B, € A*
such that « € B,, ¢ Q. Thus, without ambiguity, we can define 7 : Q' — R in the
following way:

(3.29) m(x) :=m"(x) if x € B,.
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Observe that, for every C C €', C € F we have that
(3.30) u-supg(x) < +oo = my, — m weakly* in L°(C)

xeC
In fact, by using hypothesis (Hy) and (2.6), we

lim sup - sup ¢(my(x)) < lim sup x - sup fi.(x, ny(x) < lim sup u-sup g(x) < o0
k—o0 xeC k—o0 xeC k—o0 xeC

which implies by (2.5), that (m;), is bounded in L3°(C). Thus there exists a
subsequence (m,, ), which converges weakly* to m¢ in L3(C). In particular
me =m" on CNB, and thus mc =7 on C. For the arbitrariness of the sub-
sequence, (3.30) follows. Now let € L3® and C,, € F such that C,, C Cy11 C Q
and define C:=J,,Cy. If u; — u in the weak* topology of L3° such that
Ft(u,Cy) = limsupy_,., Fi(u, Cy), then

(3.31) Ftu,C,) > klirn F.(my, C,) = p-sup g(x).

xeC,
In particular if x-sup,c g(®) = +oo, we can deduce that

F*@,C) = lim F*(u,C,) = +oc.

Instead, if - sup,.c g(®) < 400, by using (3.30) and by proceeding as in the proof
of (3.23) and (3.24) with m instead m, we obtain that for every n € N
F+(ua Cyp) > F+(7’_’L, Cy) = khm Fi(my;, Cy,) = u-sup g(x)

xeC,
and

F*(m,C) = u-supg(x).
xeC
In particular, m satisfies property (i) and (ii) of (Pg) and, by applying Lemma 3.1,
we can state that F* satisfies property (Ps) on €. This concludes the proof of
Theorem 2.4. ad

REMARK 3.2. — In the proof of Theorem 2.4 we have shown that

F—ligcnsuka(-,B) = u-sup {f(oc,u(x)) 1x € B}
for every B € F without using any topological assumption on Q2. In particular,
in a general measure space, under the hypothesis (Hey) and (Hy), if there
exists the I'-limit of (Fy(-,B)), for every B € F, then it coincides with the
I'limsupy,_ ., Fix(-,B) and thus the supremal representation of /'-limit holds
every B € F.
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In the following example, we produce a wide class of functionals F';, which
satisfy the assumption (Hz).

ExampLE 3.2. - Let ( fi)reny be a sequence of non negative normal supre-
mands such that infg. fi(z,-) =0 for a.e. x € Q and for every k€ N. Then
( fr)wen satisfies the assumption (Hy). In fact, in this case, gi(z) = 0.

The representation result of Theorem 2.4 may fail if we drop the assumption
(Hy). In fact we can exhibit the following example.

ExampLE 3.3. — Let Q2 :=(0,1), d = 1, F the o-field of Lebesgue measurable
sets and u the Lebesgue measure. Let ¢: R — RU{+co} be such that
lim, . $(2) = 400 and ¢(2) > ¢(0) = 0. Let us define

film, 2) == 2¥ + ¢(2).
Then we have that f; satisfies the condition (Hey) and
ge(@) = 1inf{fi(z,2): z € R} =zF

converges weakly™ in L> to g(x) = 0, but does not converge strongly in L.
Moreover, setting Fj(u, B) := esssup,.p fr(z,u(x)) for every B € F and for
every u € L, we obtain that the sequence

Fy(0,(a,b)) = ess sup 2* =b"

ze(a,b)
converges to
0 ifo<1
F(O, (a,b)) = {1 cho

and thus it does not satisfy hypothesis (Hz). Moreover, if we define

Gi(u, (a,b)) := ess sup fi(z,u'(x))
z€(a,b)
with 0<a<b<1l, uweWh™e0,1), it is easy to prove that the
I-limy,_, Gi(0, (a, b)) (with respect to the weak* topology of W) is equal to

0 ifb<1

G(o,<a,b>)={1 o

This means that the class of supremal functionals on W™ is not closed with
respect to the I'-convergence.

In the next section (see Remark 4.3), we prove that for every (a, b) C Q, there
exists

F(,(a,0)) == F-klim Fi(-,(a,b)
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with respect to the weak™ topology of L> and

ess sup ¢7(u(x)) ifb<1

xe(a,b)

ess sup ¢7(u)v1 if b=1.

xe(a,b)

(3.32) F(u,(a,b)) =

which is not a supremal functional.

We conclude this section with the following proposition: it states that the
assumption (Hy), restricted on the open set, is a necessary condition in order to
obtain a representation result for the I"-limit.

PROPOSITION 8.3. — Let Fy: LY x F — R be a sequence of supremal func-
tionals defined by

Fi(u, B) = p-sup { fie,u(x)) : € B},

where fi, : Q x R* — R U {+00} are normal supremands satisfying assumption
(Hey). Let my, € LY such that f(x,my(x)) = min{ fi(x,2) : z € Rd} for u- a.e.
x € Q. If Fy(-,A) I'-converges to F(-,A) for every open set A and if F satisfies
the supremal representation F(u,A)= p-sup{f(x,u(®):xcA} for every
u € LY, then there exists a measurable function g : @ — R U {400} such that
F(my,, A) converges to u-sup {g(x) : © € A} for every open set A .

PROOF. — If there exists u € L3® such that F(u, ) < 400, then, following
the proof of Theorem 2.4, we have that m; — m weakly* in L3 and
limy,_, o, F(my,A) = F(m, A) for every open set A. Thus it is sufficient to choose
g(x) == f (e, m(x)).

Instead, if F(u, Q) = +oc for every u € LY, we consider A" and m given,
respectively, by definition (3.27) and (3.28). For fixed an open set A C €', we can
consider two cases:

D mianﬂA) F(-,A) < +oc. Then, reasoning as in the proof of Theorem 2.4,
we have that m;, — m weakly * in L3°(A) and

w-supf e, mx) = klim Fi.(my,, A).
A —00

(ID) minLEC(A)F(-7A): +oo. This implies that p-supyf(x, m(x)) = +o0
(otherwise, if A =, By, with B, € A", by the definition of 7 we have
F(m", By) < u-supy f(e,m(x)) € R for every n € N and thus, by the coercivity
of F (see Proposition 6.7 in [13]), we obtain that 7 € L3*(A) and that
mianl@(A) F(,A) < F(m,A) = u-supy f(x,m(x)) < +oo, in contradiction with
respect to the assumption). Therefore, by applying Theorem 7.8 in [13],
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we have
lim Fj.(my,A) = lim inf F}(u,A)
k—o0 k—o0 MGLZ“
= min F(u,A)
ueL;c

=+ 00 = u-supf(x,mx)).
xcA

In every case, by setting

_ [ fam@) ifre
g@) = { + 00 otherwise,

we have

klim Fi0my,, A) = u-sup g(x).

xeA

4. — Relaxation theorem.

In this section we give the proof of the representation formula for the weak*
lower semicontinuous envelope of a supremal functional.

Proor oF THEOREM 2.5. Under the hypothesis (Hey) and proceeding as in the
first part of the proof of Theorem 2.4, we can state that there exists m € L} such
that f(x, m(x)) = min{f(x,2) : z € Rd} for u- a.e. & € Q. In particular

F(m,B) = p-sup { f(x,m(x)) : « € B} = rrginF(u,B)

for every B € F. Thus the constant sequence G,, = F' satisfies hypotheses (Hey)
and (Hp) of Theorem 24. By applying Remark 3.2, we obtain that

F =r-lim, . G, = I'liminf,_,, G, is a supremal functional and there exists a
level convex normal supremand g such that the representation formula

F(u,B) = p-sup {g(x, u(x)) : © € B}

holds for every u € Ly and for every B € F. To obtain (2.11), it is sufficient to
prove that there exists N € F such that u(N) = 0 and g(x, 2) = f(x, z) for every
(x,2) € (2 \ N) x R%. By Proposition 2.3 of [1], applied to F and F, there exists
N; € F such that ©(N;) = 0 and

g(r,z) < f(x,2)
for every (x,z) € (2 \ Ny) x R%. So
(4.33) g(x,2) < f7(x,2)
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for every (x,z) € (2\ Ny) x R Moreover, by Theorem 2.2,_f ©’ is a level convex
normal supremand and thus the functional G : L3® x 7 — R given by

G(u,B) := p-sup { f7(x,uw(x)) : « € B}
is weakly™ lower semicontinuous in L3° (see Remark 4.4 of [1]). This implies that
G(u,B) < F(u,B)

for every u € L™ and for every B € F and so, by applying again Proposition 2.3
of [1], there exists Ny € F such that ((Ny) =0

(4.34) [, 2) < gx,2)
for every (x,z) € (2 \ Nz) x R Inequalities (4.33) and (4.34) now imply
[, 2) = g(x, 2)
for every (x,2) € (2 \ (N2 N Ny)) X RY. O

COROLLARY 4.1. -Let f:Q x R —1- 00, +o0] be a normal supremand
satisfying assumption (Heo) and let F : LY — R be defined by

F(u) = u-sup {f(x, wz)) iz € .Q}.
Then the weak™ lower semicontinuous envelope of F is given by
F(u) = u-sup {f"y(x, wx)) :x € Q}

for every u € LY.

REMARK 4.1. — In Theorem 2.5, the coercivity assumption on f ensures the
property (P) for the functional F when F is supremal functional. Now, if a
general functional F : L3 x By — R satisfies properties (P;) and (P7), then,
proceeding as in the first part of the proof of Theorem 2.4, we can obtain that also
F satisfies properties (Py), (Py) and (P7). So, by Lemma 3.1, F is a supremal
functional if and only if it satisfies property (Pg). In the example 4.1 we represent
F without any coercivity condition on F.

REMARK 4.2. — Under the notation of Example 3.3, we prove that for every
(a,b) C Q, there exists F(-, (a, b)) := I'-lim Fi(-, (@, b)) with respect to the weak*
topology of L and it is given by (3.32). By using the relaxation Theorem 2.5, for
every (a,b) C Q there exists uj, — u weakly* in L™ ((a, b)) such that

ess sup ¢7(u(x)) = klim <ess sup ¢(uk(m))>.

xe(a,b) xe(a,b)
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Then, if b < 1, we have

(4.835)  F'(u,(a,b) < lim sup{ess sup ¢(ux(x)) + bk} =ess sup ¢7(u(x))

k—o0 xe(a,b) xe(a,b)

while, if b = 1, since uy, - 1112y — u weakly™* in L>°((a, 1)) and since ¢(0) = 0,
we have

F*(u,(@,1) <limsup{ Fi. (s, (@, 1~ kD) v Fi (0,1 — k2, 1)) }
k—o0

=lim sup {ess sup  (@lug(x)) + 2*) V ess sup  (¢0) + x’“)}
k—o0 xve(a,1-k-1/2) re(1—k-1/21)

< lim sup {ess sup ¢(ug(x)) + (1 — k‘l/z)k} v

k—oo xe(a,l)
and thus
(4.36) F*(u,(a,1)) <ess sup ¢7(u(x) V1.

xe(a,l)
On the other hand, if u; — » weakly™ in L°°(0,1) is such that
lilgn inf Fj(ug,, (a, b)) = F~(u, (a, b)),

we have

(4.37)  F~(u,(a,b) > lilgn inf (ess sup @(uy(x)) + ak) > ess sup ¢7(u(x)).

xe(a,b) xe(a,b)

Therefore if b <1, (4.36) and (4.37) give F(u,(a,b)) = esssup,.,) &7 (u(x)),
while, since
F(u,(a,1) > 1,

by using (4.35) and (4.36), we can conclude that
F(u,(a,1)) = ess sup ¢ (u(x) Vv 1.

xe(a,l)

In particular F(0,(a,1)) =1 and F(0, (a, b)) = 0 for every b < 1.

EXAMPLE 4.1. — Let f: Q2 x R? — ] — 00, +00] be a normal supremand. As-
sume that there exists m € L° such that

(4.38) [@,m@)) < f(z,2)
for every = € R? and for y- a.e. € R®. Then
F(u, B) = u-sup {fcy(x,u(a:)) ix € B}

for every B € F and for every u € LY.
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In fact for every B € F u-sup {f(x,m(x)) : © € B} = F(m,B) and so F sa-
tisfies (P7). As in the last part of the proof of Theorem 4.2, it follows that the
supremand function which represents F is .

REMARK 4.3. - If F : LY x By — R is a supremal functional
F(u,B) = u-sup { f(x,u(x)) : © € B}

where f is only a supremand, then, the strong lower semicontinuous envelope
I'F(u,B):= sup{G(v) G LY — R, Gstronglyls.c.in LY, G(-)<F(-,B) oanf},
is a supremal functional and it is represented by

I'f(x,z) =sup {9(z) : g :R* >R, g ls.c., g(z) < f(x,z) for every z € Rd},
i.e. the L.s.c. envelope of f respect to the second variable. In fact, if we set

Fy(u,B) :=inf {F(,B)V Alu — 0|~ : v€LXQ)},

for every 4 > 0, F'; turns out to be /-Lipschitz continuous whenever F' is finite in
at least one point. Thus

F;(u,B) < I'F(u,B)
for every / > 0. Moreover, from Proposition 2.4 of [1] applied to I'F",
I'F(u,B) = sup {(I'F);(u,B): 2 >0} <sup{F;(u,B):%>0}
for every B € F and for every u € L7°. Therefore
I'F(u,B) = sup {F,(u,B) : > 0}

for every B € F and for every u € L. From this representation, it is easy to
prove that I'F satisfies property (Ps). Moreover, I'F' satisfies (P;) and (Ps3) of
Theorem 3.1. So it can be represented in a supremal form by a unique normal
supremand g. Applying Proposition 2.2 of [1], there exists N € F, u(N) = 0, such
that

9@, 2) < I'f(x,2)
for every « € Q\ N and for every z € R?. On the other hand,
H(u,B) := p-sup {I'f(x,u(x) : ® € B}

is a strongly l.s.c. functional such that H(u,B) < F(u, B) for every u € L}® and
for every B € F. Therefore, applying again Proposition 2.2 of [1], there exists
M e F, (M) = 0, such that

I'f(x,2) < gx,z)
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for every x € Q\ M and for every s € R?. So
T'F(u,B) = p-sup {I'f(x,u(x)): « € B}

for every u € L3 and for every B € F.

REMARK 4.4, — Iff : Q x R? ] — 00, +00]is a supremand which satisfies the
hypothesis (Hey) or (4.38), then F = I'F and it is represented by (I'f)”. In fact, it
is sufficient to observe that I'f satisfies, respectively, (Hey) or (4.38) and to apply
Theorem 2.5 or Example 4.1.

5. — Relaxation through Young measures.

In analogy to the relaxation theorem for integral functionals of [17], at the
end of this paper we state a relaxation theorem for supremal functionals by
using the Young measures. First of all, we give their definition and their main
properties, following [20] and [21] (see also [6] for the characterization of narrow
convergence). In this section, (22, F, ) is a measure space where y is a non-
negative Radon measure. We suppose that it is a complete, nonatomic and finite
measure and that @ is a locally compact, metrizable and separable space, l.c.s.
for short.

DEFINITION 5.1. - (a) A Young measure on Q2 x Rlisa nonnegative measure
tonQ x R suchthat t(B x RY) = W(B) for any Borel set B C Q, 1.e. juis the image
of T by the projection map (x,z) — .

b) For any F-measurable function u: Q — R% the Young measure v
associated to u is the image of u by the map x — (x,w(x)), that is v(A x B)
= u(A Nu~Y(B)) for any Bovel sets A C Q and B C RY.

¢) Let (ty)qco be afamily of probability measures on R such that x —7T,(B)
1s F-measurable on Q for every B € By. A Radon measure t is defined by the
formula

«(C) = f 20(C) dpu(a)

Q

where C, =: {2 : (x,2) € C}. We write in this case 1 = Q@ 1.

ExamMpLE 5.1. — (1) When v is a Young measure associated to the function u ,
then v = 1 ® dy).

(2) When 1 is a Young measure on 2 x Rd, there exists a family (t;),co of

probability measures on R’ such that t = 1t ® 7. This decomposition is known as
disintegration of 7.
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We denote by J(L, 1, RY) the set of all Young measures on Q x R% and on it
we consider the following topology.

DEFINITION 5.2. — The narrow topology on (2, i1, R?) is the weakest topology

for which the maps t— [ ¢dz(x) are continuous, where ¢ € Co(Q x RY).
OxR?

When (z;,);, is a sequence of F-measurable functions z;, : Q — R? such that the
sequence of the associated Young measures (vy); narrowly converges to 7, where
7 is some Young measure, we say that the sequence (z;); generates the Young
measure 7.

The following proposition (see [21]) contains a lower semicontinuity result.

PRrOPOSITION 5.1. — Let (zp); : 2 — R? be a sequence of F-measurable
functions and suppose that it generates the Young wmeasure v. Let
f:Qx R —1]— 00, +00] be a normal supremand. Assume that the negative
part [~ (z, z;(x)) is weakly relatively compact in Ll(.Q,Rd). Then

Q

lilgriioglfff(x,zk(x))d:r 2] ff(a:,z)du,,(z)daz.
Q R?

By using Proposition 5.1, we can prove the following theorem which generalizes
the result of Lemma 3.2 in [4].

THEOREM 5.1. — Let (2;);, be a bounded sequence in L(Q,R%) and suppose
that (zi). generates the Young measure v. Let f : Q x RY 1— 00, +00] be a
normal supremand. Then

lim inf </¢ ® Oy~ SUP [ (2, z)) > U vy- sup flx,z)
k=0 QxR? QxR?

where J,,) ts the Dirac measure concentrated in zj(x).

ProoF. — If this is not true, there exists ¢ > 0, there exists a subsequence of
(z1.)r (Which we still denote by (z;,);.) and for every k € N there exists £}, C Q2 x R?
such that i ® J,,,)(Q x R\ Ey) = 0 and

(5.39) sup f(x,2) < u Q@ v,- sup f(x,2) —é.
K OxR?

Let M > 0 such that ||z~ < M for every k € N and let

A= v,- sup fx,z) — e
QxR

If we set F:= {(x,2) € @ xR : |2| <M, f(x,2) < A}, then F is F @ By-
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measurable. Moreover, by (5.39),
—@xRI\F)C@xRN\E)U@x{zeR: 2| >M})
for every k € N. This implies that
1D Oy < U@ (@ X RT\ Ep) + 1t ® 0,0 Q x {z € R - |2 > M}) =

Setting
1 if (x,y) € F°

0 otherwise

9@, 2) = 1p(x,2) = {

we have that g is a F ® By- measurable function and 1.s.c. with respect to y. So, by
Proposition 5.1,

hgnnf ( f 1re(e, z)dazm(z)) dp(a) = lim inf f (@, 2:()) dp)

Rd
Zf(jg(x,z)dux(z)>dx

Q RY
= (U ® v)(F)

ie.

0= lilgn inf 1t ® 0, (F°) > (U @ v,)(F©).
Therefore

M = supf(oc 2) S U vy- Supf(oc 2)< 4
OxR

which is a contradiction. m]

The next theorem will be useful in the followings. For a proof, see [21]:

THEOREM 5.2. — (1) (Prohorov compactness with parameter) Let (z;); be a
bounded sequence of LYQ,R%) and let (1), be the associated Young measures.
Then there exist a subsequence (tx,), and a Young measure v such that (ty,),
narrowly converges to v.

2) If (z1.)), converges to z weakly in LY (2, RY), then, p-a.e. the disintegration
7, has a barycenter bar(z,) = fzdrx(z) = z(x).
Rd

Finally, we give a representation theorem of F by using Young measures.
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THEOREM 5.3. — Let (2, F, 1) be a measure space where p is a nonnegative,
finite, Radon measure and Q is a locally compact, metrizable and separable
space. Assume that the hypotheses of Theorem 2.}, are satisfied. Then, for every
u € Ly and for every B € F it holds:

(5.40) F(u,B) = min {,u -sup{o,-supf(x,2)}: 0 € B(u)}

veB zeR?

where

(5.41) Bu) = {a : 0 Young measure, u(x) = f 2doy(2) for p-a.e.x € Q}
Rd

ProoOF. - Let uw € LY, B € F and ¢ € B(u). By applying Theorem 2.1 to the
level convex function £, we have that

p-sup f(x, u(x)) =u-sup f <x ] zdax(z))
B xeB

Rd

<u- Sup{ax- sup f(x, 2)}

veB 2eR?
<p- Sup{ax- sup f(«, Z)},
veB zeR?
which implies, thanks to Theorem 4.2,
(5.42) F(u,B) < inf{,u—sup{ax— sup f(x,2)} 10 € B(u)}.

weB 2R’
Then, let (uy)ren C L3 such that

i, — w weakly™ in L3°(Q),
and

F(u,B) = h]zg;l)lolfF(uk,B).
Let

ak,x = (Suk(x) .

Thanks to Theorem 5.3, there exists a subsequence (that, without loss of gen-

erality, we denote again by (u;).cy) and a Young measure o € B(u) such that
(up)reny generates o. If we define

F(o,B) := p-sup{o,-sup f(x,2)},

reB zeR?
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by applying Theorem 5.2, we obtain
F(u,B) = li;n inf F'(uy, B)

= hin inf p- sup{ak,x— sup f(x, z)}

oo weB 2eR?

zlilgninf]:(ak,B)

Zﬂ‘sup{ax' sup f(x7 Z)}

veB zeR?

Together with (5.42), this implies (5.40). O
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