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Mean Values of Convexly Arranged Numbers and
Monotone Rearrangements in Reverse Integral Inequalities.

WERNER CLEMENS

Sunto. - St studiano medie di funzioni con valori sulla frontiera di un insieme convesso
bidimensionale. Come applicazione si prova che disuguaglianze integrali inverse
mmplicano esattamente le stesse disuguaglianze per il riordinamento monotono. Si
ottengono quindi versioni ottimali del classico lemma di Gehring, del teorema di
Gurov-Reshetnyak e del teorema di Muckenhoupt.

Summary. - We analyse mean values of functions with values in the boundary of a
convex two-dimensional set. As an application, reverse integral inequalities imply
exactly the same inequalities for the monotone rearrangement. Sharp versions of the
classical Gehring lemma, the Gurov-Resetnyak theovem and the Muckenhoupt the-
orem are obtained.

Introduction

We are interested in reverse (integral) inequalities. For f : [0,1] — [0, oo[
these are inequalities like reverse Hdlder inequalities, oscillation inequalities
and Muckenhoupt inequalities:

q
RH(c,q,7) : ffqgc ][f forall I € 7,
I 1

q
0S(c,q,T) : J[|f—f,|qgc ]ff forall I € T,

q—1

MU, q,7) - ]ff ff*ﬁ <c¢ forallIeT.
I I

Here, 1 < g < o0, for oscillation inequalities also ¢ = 1 is reasonable, 7 is the
system of compact intervals in [0, 1], and f; = fl f denotes the mean value. For a
function £ : [0,11Y — [0, oo[ we investigate such inequalities on N-dimensional
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intervals (i.e. boxes parallel to the axes), on cubes parallel to the axes, and on
other systems of subsets of [0, 11V. The system of all intervals and of all cubes in
[0,1]Y we denote by Q respectively W.

Many generalizations of above inequalities appear in the literature: More
general convex functions are used than f+ % additional terms and other
measures appear, the domain of integration may increase from the left-hand side
to the right-hand side, and other variants. Reverse inequalities are important in
different fields like PDE, variational problems, quasiregular mappings and
mapping properties of operators. For the general background we refer to the
books [Gia83, BoIw83, Gia93, GaRu&5, IwMa01].

The Gehring lemma, Gurov-Reshetnyak theorem, Muckenhoupt theorem and
generalizations are vital for the applications of reverse inequalities. The famous
Gehring lemma states that an L?-integrable function satisfying reverse Holder
inequalities RH(c, q, ) also satisfies reverse Hélder inequalities RH(c, q, 7) with
an enlarged exponent and constant. In particular, this implies a better integr-
ability than assumed a priori. The Gurov-Reshetnyak and Muckenhoupt theo-
rems are similar results for the other reverse inequalities.

In addition to early qualitative versions of these useful theorems it has
been a goal to prove quantitative versions and to get as much information as
possible from reverse inequalities. Thus [Iwa82, Boj85] explicitely ask for the
sharp bound for the improvement of the exponent in the Gehring lemma and
some first asymptotic answers are given in [Boj85, Wik90]. For monotone
functions the sharp bound is calculated in [ApSb90] for reverse Holder in-
equalities (and in [Kor92a, Kor92b] for the other reverse inequalities). The
result for monotone functions is important since the arbitrary situation re-
duces to the monotone situation [FrMo85, Sbo86]. The arguments in [FrMo85,
Sbo86] use maximal funections which unfortunately lead to a loss of informa-
tion; in particular, no sharp bound can be obtained. But in [Kor92a] it is proved
that monotone functions are in fact extremal in the set of all functions on [0, 1]

in the sence that
fro

: qzsup : q’
f I
g g

(1) sup

(4

where f* denotes the decreasing rearrangement of f and the suprema are
taken over reasonable I € Z. This extremal property gives a good reduction of
reverse Holder inequalities RH(c,q,Z) to the monotone situation and proves
sharp bounds. Similar extremal properties and good reductions to the mono-
tone situation were found for RH(c,q, Q), OS(c,q,Z), MU(c,q,Z) in [Kin9%4,
Kor92a, Kor92b], but could not be found in the same way for RH(c,q, W),
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0S8(c, q, Q), OS(c,q, W), MU(c,q,Q), MU(c,q, W) (because of fundamental in-
herent reasons at least for reverse inequalities on cubes W, as we think).

We develop a unified, geometrical approach to the Gehring lemma, the Gurov-
Resetnyak theorem and Muckenhoupt theorem with improved and sharp
statements. In Corollary 5.3 we are able to prove the most simple form of ex-
tremal property: reverse inequalities for f on Z, Q, and on some systems similar
to W imply exactly the same reverse inequalities for the decreasing re-
arrangement f* on Z. This (global) extremal property implies the above extremal
property (1) which only makes a statement about the suprema. In the same way
all other known «good» reductions to the monotone situation are improved and
all known sharp bounds are recovered. For the first time an extremal property
and a good reduction to the monotone situation is proved for a cube-like system
and for OS(c, q, Q), MU(c, q, Q). Unfortunately, for cubes the extremal property
does not hold in the same simple form. Some counterexamples in Section 3 de-
monstrate that the cubes are not the natural system for this question. Natural
are systems with a kind of one-dimensional order. With the help of a space-filling
curve such a system P can be defined in [0, 1]* which is similar to the system of
cubes in the sence that the ratio of the smallest cube containing P and the largest
cube in P is bounded for sets P in P.

The extremal property stated above does not depend on the special form of
the reverse inequalities and can be easily generalized in different directions. It is
a new kind of extremal property in the theory of real valued functions where
extremal properties of monotone functions have a long history, see [Kol89].

Our method is different from previous approaches to reverse inequalities and
approaches in the theory of real valued functions. In particular, we do not use any
covering lemma. The lack of sharp higher-dimensional covering lemmata is an
obstacle to get good reductions to the monotone situation. We do not use the
usual maximal functions either. Instead two-dimensional geometrical results
turn out to be stronger tools which are also more natural. Since covering lem-
mata and maximal functions are important in many other problems, our new
point of view may be of independent interest and may have further applications,
different from the ones treated here.

The main idea is to analyse two-dimensional mean value sets like

Mf = {(ff,ffq>; IEI}.

Sets of this kind have some striking properties. We show that the upper
boundary of Mf is the graph of a Lipschitz function, while the upper boundary of
a set in the plane is not a graph in general. Furthermore, the corresponding
mean value set Mf* of the decreasing rearrangement has the most remarkable
extremal property: the upper boundary of Mf is bounded from below by the
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upper boundary of Mf*. For the definition of upper boundary and for the exact
statements see Theorem 5.1.

Figure 1 depicts the situation for an example f, its decreasing rearrangement
f* and ¢ = 3. While mean value sets for monotone functions always look similar to
the plotted Mf* (two concave boundary parts), mean value sets of nonmonotone
functions need not be as «well-behaved» as the Mf here; an example with a hole
is in Section 1.

a)ﬂ [

Fig. 1. — a) f and its decreasing rearrangement f*; b) computer plot of Mf (grey area) and
Mf* (black lattice area).

The mean value set Mf is associated to reverse Hoélder inequalities in a
natural way and allows an obvious geometric reformulation: f satisfies
RH(c,q,T)if and only if the upper boundary of Mf is bounded from above by the
graph of cx? (and ordinary Holder inequality implies that Mf is bounded from
below by the graph of x?). Thus from the above extremal property we can directly
conclude that f* satisfies the same reverse Holder inequalities RH(c,q,Z) as f.
In the figure it can be seen that f and hence f* satisfy RH(6,3,7).

What we stated for Mf is just a special case of the more general result below.
Functions with values in the boundary of a convex two-dimensional set A are the
natural setting. In Section 1 we develop the concepts and arguments to examine
the mean values of such a function 2 when it is defined on [0,1]. The main
Theorems 1.2 and 1.3 show that the mean value set of & on Z can fail to be convex
only in a very special way which is extremal in case of the monotone re-
arrangement: each cave of the mean value set is visible from the boundary and it
is included in the cave associated with the monotone rearrangement. Here, a
cave of a subset M of A is a connected component of A\ M adjacent to the
boundary 0A, and a cave is visible from the boundary, if each cave point can be
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seen from each point of the entry (precise statements in Section 1). The key to
the theorems is a kind of winding argument in the proof of Theorem 1.2. This
indicates that a two-dimensional setting is natural. We stress that two-dimen-
sional arguments are also essential in the special case of Mf above, although the
statement refers to graphs of functions then.

For a function % on [0, 11V and mean values on Q the same method works
(Section 2), but surprisingly for mean values on W an analogous statement does
not hold (Section 3). This is unsatisfactory since in applications reverse in-
equalities are often proved with test-functions supported by balls or cubes, and
then the possible line/plane degeneration in Q is unnatural. As a way out, we
prove results on systems which are similar to W in the sense that they only allow
point degenerations like W and which are constructed with space-filling curves
(Section 4). In Section 5 we apply the results with z := (f, f9) to reverse Holder
inequalities, with & :=(f,|f —»|?) to oscillation inequalities, and with
h:= (f, f~1/@D) to Muckenhoupt inequalities. We will conclude Section 5 with a
detailed comparison of our results to results in the literature and we will discuss
the relation to some results concerning maximal functions.

1. — Mean values on intervals

Let A be a nonempty, open, convex, bounded set in C. Denote by 0A the
boundary and for x # y in A by 0Alx, y], 0Alx, yl, 0Alx,y]l, 0Alx, y[ boundary
segments from « to y traced counterclockwise including the endpoints or not as
indicated by the notation. We assume a decomposition JA = BUC with
boundary points x # y satisfying B = dA[x,y] and C = dA]y, x[. We define an
order on B by by < by :& 0A[by, be] C B. Subsets of B are called sets of convexly
arranged numbers. We consider (Lebesgue) measurable functions f : Iy — B on
a compact interval I of positive length. For a measurable T C Io with measure

|T| > 0 we define the mean value of f on T by fr : ff = |T| ff(t)dt For a

system 7 of sets with positive measure we define the mean value set of fonT by
fr:={fr: T € T}. We are mainly interested in the system Z of all subintervals
of Iy of positive measure. The set f; we call the interval mean value set of f. The
set of the mean values on all measurable subsets of I, of positive measure is
simply the convex hull of the range of f. It is interesting to study in what way f7
differs from this convex hull.

We first consider step functions f:Iy — B with a decomposition
Iy =1, U..UI, in intervals of positive length numbered in increasing order of
the real line and f constant on each interior. We abbreviate I; ;,; :=I; U.. Ul
and Z; ;,; for the system of all subintervals of /; ;,; with positive length. The
interval mean value set of step functions can be computed with the recursion
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formula

(2) fIl..n :le.,n—l UfIZ..n U an

Here Q1. is a convex quadrangle (possibly degenerated to a line or point) with
vertices fy, , ,» /1, ,1» J1..,» f1,,- In order to prove this, we remark that the set
{FU) = (f,f7 ) : Isn-1 CICIh,} is a parallelogram in C x ]0,00[ with
vertices F(l2.,-1), F(1.,-1), FU2,), Fli,). The central projection
p: C x10,00[ — C, p(z,7) := z/r maps weakly monotonically parameterized line
segments onto weakly monotonically parameterized line segments, and convex
sets onto convex sets. The mean value set on all intervals I with I» ,_1 C I C I ,
is Q1. and has the stated properties, since it is the parallelogram projection. All
other intervals of 77 ,, are in Z; ,_1 or Zs_,,.

R ANER o
PQ%* - (2

e) ——

Fig. 2. — a)-f) Symbolized f and its interval mean value set f.

d)

Using the recursion formula, the interval mean value set of step functions can
be reduced to interval mean value sets of step functions with two values (here the
interval mean value set is just the line segment between the two values) and to
special quadrangles. In Figure 2 we computed the interval mean value sets of
some step functions with four values in the dark grey unit circle arc B. The
functions only differ in the arrangement of their values. On each left side we
show a symbolized version of the function by identifying B with the dark grey
interval, and on the right we plot the interval mean value set. Although there are
only four values, some of the interval mean value sets are quite complicated due
to quadrangle intersection. For instance, f7 need not be simply connected, as
demonstrated in figure 2e. However, all interval mean value sets share certain
properties (cf. below).

Since B is ordered, we can define that f is decreasing on I C I if f(t1) > f(t2)
for all t; <ty in I. We define «increasing» analogously. A monotone function
decreases on [ or increases on I. Measurable functions f,g : Iy — B are equi-
measurable and ¢ is a rearrangement of f if the measure of the inverse images of
boundary segments in B coincide, i.e. | f~1(OA[by, b2])| = |g 1 (OA[b1, be])| for all
by < by in B. As in the case of real valued functions (cf. [BeSh88, Kap. 2]) every
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measurable function f : Iy = [a,f] — B has a decreasing, right-continuous re-
arrangement f* : Iy — B defined by

Fi@ =inf{lbeB: a+|{sely: fs)> b} <t

Any other decreasing rearrangement can only differ at the countably many
points of discontinuity of f*. So the decreasing rearrangement is unique in a
measure theoretical sense. Sometimes we use the shifted f*:[0,5 —a] — B,
ff@):=inf{beB: |{sely: f(s)>b}| <t} as the decreasing rearrangement.
Note that the decreasing rearrangement depends on the decomposition
0A = BUCwith B D f(Iy). If Bis «from 10 o’ clock to 7 o’ clock» instead of «from
2 0’ clock to 10 o’ clock», the function in figure 4.2¢ is monotone and the function
in 2a is not.

We call a function f : Ip — B a Riemann function if left and right limits exist
at all points of /; (in the endpoints of 7 only the meaningful one). It is well known
that monotone functions, step functions, continuous functions and uniform limits
of Riemann functions are Riemann functions. Every Riemann function can be
realized as a uniform limit of step functions.

To describe the shape of interval mean value sets, we need the following two
concepts. For a set M in the closure A we define the C-cave of M in A by

H@A,C,M):={a€A: JceC Ipath from a to cin (AU {c})\ M}.

We call aset H C A visible from C,if forallh € H and all¢ € C the segment [/, c[
is a subset of H. Whenever A and C are fixed, we abbreviate HM := H(A,C, M)
and just speak of the cave of M and of visibility. In the above examples the cave
H f7 is the area which can be reached from the light grey arc C without crossing
the interval mean value set. Note that all caves are visible and the cave for the
monotone rearrangement in 1a is the largest (cf. below).

We need a notion of convergence of sequences of sets. Two nonempty sets
M,N c C have Hausdorff distance less than ¢, if M is in the neighborhood
UN):={ze€C:|z—y| <eforsomey e N} and N in U,(M). It is well known
that this can be quantified by a distance d(M, N), which is a pseudo-metric on the
nonempty subsets of C and a complete metric on the compact nonempty subsets
of C. For a sequence of sets in C convergence is defined with this Hausdorff
distance. We also use this concept for convergence of interval sequences.

We collect some properties of «caves» and «visibility», which do not depend
on an interval mean value set situation.

LEMMA 1.1. = Let M,N,M,,,N,,, M, be subsets of A and H, subsets of A for
all n € N and 1 in an index set A.
1) The inclusion M C N implies the reverse cave inclusion HM D HN.
2) Visibility of all H; implies visibility of the intersection N;c 1H;.
3) If (HM)\ N is visible, then HM UN) = (HM) \ N.
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4) If all caves HM, are visible and C\ (Ujeq M;) # 0, then H(U;cq M)
= N;eqs HM ) and this set is again visible.

5) If M C conv B and if H M is visible, then a segment between two points
outside the cave does not destroy the visibility; i.e. for x,y € (convB) \ HM the
possibly smaller cave H(M U [x, y]) is again visible.

6) If M,, are closed sets converging to M and all caves H M,, are visible,
then H M is visible.

7 IfM,, N, are closed sets convergingto M, N and HM, C HN, foralln,
then HM C HN.

Note that the convergence of M,, to M does not imply the convergence of the
caves HM,, to HM, e.g. take M,, :=[ — 1,—-1/n] U[1/n,1] in the unit disk.

PrOOF. — 1) For k € HN C A we find an element ¢ € C and a path from /4 to ¢
nAU{ch\Nc@@U{ch\M,sohc HM.

2) Visibility implies [k, c[ ¢ H, forh € NH,,¢c € Candall .. So [k, c[ c NH,
and the intersection is visible.

3) «C»followsfromHMUN)CHMNHN CHMNA\N)=HM\N.
«D» follows, since visibility implies for # € (HM) \ N existence of an element ¢ € C
with [, c[ C(HM)\N CA\(M UN).Soh € H(M UN).

4) «C» follows from statement 1. For «D» we observe that statement
2. implies the visibility of the cave intersection. So with 2 € NHM, and
ce C\(UM;) we get [h,cl CcNHM,; CN(A\M;)=A\ (UM;). In particular,
[k,c] is the range of a path from % to c€ C in (AU {c})\(UM;) and so
he H(UM,).

5) Without restriction let the C-shadows of x and ¥, defined by
Sy:={a€A: Jce C with x € [a, c]} and analogously S,, be subsets of M.
(Otherwise take M := M uS;US, and HM = HM follows from visibility of
HM.) Forhe HMU[x,y)) CHM, c € C and a path w from & to an element
reCin(AU{r}H\ (M Ulx,y]) the segment [%, c[ is asubset f HM C A\ M and
of A\ [x,y] (otherwise w runs through S, US, C M). Hence [, c[ is a subset of
A\ (M U[x,y]) and so of H(M U [x, y]).

6) Assuming that HM is not visible, we find h e HM, m € M and ¢ € C
with m € ]h, c[. By definition there is a path from an element ¢ € C to % in
(Au{ch \ M. Let W be the range of this path and » be the minimal distance
between W and M. Both sets are compact, so + > 0. Let s be the distance between
m and the cone U, 2(h) + ¢ := {a € A : Iy € U, o(h) with a € [y, c[}. Since m is an
inner point of U, 2(h) * ¢, the distance s is positive as well. Due to the M,-con-
vergence, for sufficiently large » there is no point of M), in U, (W) (in particular,
h and also U, 2(h) are in H M) and there is a point of M, in Us(m). This con-
tradicts the assumed visibility of H M,,.

7) For h € HM we find a path from an element ¢ € Cto2in (A U {c}) \ M.
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Let W be the range of this path and » > 0 the minimal distance between W and M.
Then U.(W) C A\ M. The M,-convergence implies U, (W) C A\ M,, for suf-
ficiently large n. So we conclude U, (W) C HM,, C HN,, C A\ N,.. The N,-
convergence then yields U, 4(W) C A \ N and hence h ¢ W C HN. O

THEOREM 1.2 (Cave visibility). — If f : Iy — B is a Riemann function with
convexly arranged range, then the cave H fr of the interval mean value closure is
vistble. If f : Iy — B is a continuous or a step function, then H f7 = H f7 is visible.

PROOF. — By fi1 0 := Nysoclos{f; : 0 < |I| < r}, we define the accumulation
set of mean values for vanishing length. Obviously f7 = f7 U f|7—o. We will prove:

If f : Iy — B is measurable and H|;_ is visible, then Hf; is visible.

Then the theorem is reduced to an observation about the accumulation set.
For Riemann functions the accumulation set consists of boundary points
(= accumulation set, when the intervals shrink to points with coinciding left and
right limit) and of boundary-point-connecting line segments (= accumulation set,
when the intervals shrink to points with different left and right limits). So by
Lemma 1.1(5) the cave Hfj;_, and hence H f; is visible for a Riemann function f.
In particular, for continuous functions we have ANfr =AnNfr and so
Hf; = Hf;. For a step function and an interval I € 7 with length not exceeding
the length [ of the shortest interval of constancy, another interval J € 7 exists
with length at least I. Thus f; = f7 holds for step functions.

Let Hf|7—o be visible. We assume that H f; is not visible and will construct a
contradiction. We choose a closed sector Y C A, determind by boundary points
¢1 # ¢z € C and a cave point & € H fz, such that the interior of Y is in the cave and
an interval mean value is in J, ¢;[ U ]k, co[ C Y. Such a sector exists: Since H fr
is not visible, there are k € Hf7, a path u from a boundary point d € C to k in
{d} UHf; and a boundary point e € C, from which k is not visible. Since Hf; is
open, we can take a sector completely in Hf; determind by boundary points
dy,dg € C and a cave point u(t). By increasing ¢ and shifting d; or dy towards e the
sector changes and there is a time when f; is just tangent to the sector (by
continuity). A tangent point can only be in f7, since a tangent point in fi; o (cave
visibility assumed) would imply existence of an element in the empty set
JSin—o Nrange(u). This proves the claimed existence of Y, %, ¢, cz.

Let I =[ty,t1] € Z be an interval with f; € 1k, c¢1[ U ]k, co[ and with minimal
distance between k and all such f7. Since f; = f; U fir—o is closed and no point of
Jin—o 18 in ]k, e1[ U Jh, col, the interval I exists. The functions

w: b, til — fz, w® :=fuy) and v:lo, bl —fz, 2@ :=fin

are continuous and the values are in f7. The function w starts in f; and v ends



746 WERNER CLEMENS

there. Both are not constant, for otherwise f; would be an element of f;_
(cf. above). Since f7 = fi1, 1,1 is a linear combination of f, 5 and fi; 4,7, the functions
are «running f7-opposite», i.e. for all ¢ € Jy, ;[ the mean value f; is in the seg-
ment [w(t), v(t)] and if w(t) = f7, then also v(f) = f; and vice versa.

The lines through cy, & and through cs, & divide A in four sectors. The closure
of one is Y, we call the closure of the opposite one Z, the closure of the remaining
sector adjacent to Jci, 2[ we call X; and the closure of the other one X;. We as-
sume without restriction that f; € ]cy, h[. The properties of w,v imply the ex-
istence of sy € Ity, t1[ with w(sg) € X1 \ [f7, k]. The only possibilities for the op-
posite point v(sy) are the interior of Y (contradiction to the fact that the interior
of Yisin Hf_z), the segment ]f7, k] (contradiction to the choice of 1), or X,. In the
last case v|j; ;11 a path from Xs to f; € X;. Since it can not cross the interior of Y
or h, there must be a time s; when v(sy) is in the interior of Z. Then the opposite
point w(sy) is in the interior of Y, which is the final contradiction. O

THEOREM 1.3 (Extremal property of monotone rearrangements). — For every
Riemann functionf : Iy — Bwith convexly arranged range H fr C Hf} holds. If
[ 1s in addition continuous or a step function, then also Hfr C Hf;.

ProoF. - We will prove the following statement by induction using cave vis-
ibility in an essential way:

A(n) = For a step functionf : Iy — B, f = b1 1, +..+b, 11, with b1 < .. <b,,
in B and a decomposition /o = I;U..UI,, in intervals of positive length, the cave
inclusion Hfr C Hf; is true.

Then the statement for a Riemann function f follows by choosing step func-
tions f, converging uniformly to f. The f; also uniformly converge to f*. The
convergence of the interval mean value sets (f,,)z to fr and of (f;")7 to f; follows,
sinece

(r =il < f1fu 1 < sup |0 ~f®] =0 forall [T
tely

implies for &> 0 and sufficiently large =, that (f,); C U.(fr) C Ug(f_z) and
fr C U, 2(f7) C U(f1)7)- So Lemma 1.1(7) implies the theorem for all Riemann
functions if it can be proved for step functions.

The induction starts with A(1) and A(2). For n = 1 we have f* = f, hence
Hf; = Hf; is trivial. For n = 2 the interval mean value set is the line segment
connecting the two values, so fr = [b1,b2] = f; and Hf; = Hf}. For the induc-
tion step A —1)= An) with n >3 we consider a step function
f:ly=1a,p1— B, f=0b1;,+..4b,1;, with 0;<..<b, and a decomposition
Iy = [1U..UI,,. We get step functions with n — 1 values by forgetting the smallest
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or the largest value: Let Jy := [a + |[1], ], Ko := [a,f — |I,|]] and

I + |11|7 if I; <y

:Jo — B,g :=bal,+..4b, 1, with J; := ,
g:Jo g 21 n L, i {Ii; i1 > 1

I; if I, <1,

h: K B,k :=0bilg, + ..+ by_1lg, , with K; := .
0 LK K {Ii—|l,7,, it I; > I,

We denote by Z,.7,K the systems of all subintervals of Iy,Jy, Ky of positive
length. The assumption A(n — 1) for g and & implies

(3) Hgs cHg’, and Hhx C Hhy.
We will prove

4) Hff cHg;NnHANHS

(5) Hff =Hg;nHhNHS.

Here S :={a € A:3c € 0A[b,,b1] with f;, € [a,c]} is the shadow of f;, with
0A[D,, b1] as a light source. Combining 4, 3, 5 we get Hf7 C Hf; as desired.

To prove formula 4 we first show H f; € Hg s (and analogously Hf; < H k).
For each interval mean value m of g we find an interval mean value m of f, which
is in the segment [m, b1] (definition of g). The visibility of H f7 implies that m
cannot belong to Hf7 as 7 cannot. So g7 NHfr = 0 and Hfy € Hg . To com-
plete the proof of 4 we show H f; C HS. The total mean value f, is not in the cave
Hf;. Visibility implies that no point of the shadow S is in Hf; either. So
ScA\Hf and Hf; Cc HS.

We get formula 5 if we prove that for decreasing functions the reverse in-
clusion «D» in formula 4 is true. Supposing that the step function f is decreasing,
then the intervals Iy, ..., are numbered from left to right. We use the recursion
formula 2 with the present notations here and get

fr=rfr, =11, U1, URLw =97 Ul UQ1 .

The lines extending the quadrangle edges [f, /1,1 and [f7, , ./, , ] meet the
smallest, respectively largest value by, b,,, hence @, C S and

frCgsURcUS.

Lemma 1.1(1) implies the reverse cave inclusion and Lemma 1.1(4) with the
visibility of Hg 7, H ki, H S implies that the cave of the right-hand side is equal to
the intersection of the caves

Hf; DH(g; UhcUS)=Hg;NHhe NHS.

So we have proved formula 5. 0
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The monotone functions play a special role for interval mean value sets. Here
these sets can be easily described.

THEOREM 1.4 (Mean value sets of monotone functions). — For a monotone
function f : Iy = [a, f1 — B with convexly arranged range the mean value set is
borderd by the curves t — f,q and t— fi; g and the «generalized values» of f:

(6) Ofr = {fian 1t € I} U {fim : t € L} U | F@),£@0]

tely

Here, we define f(a7) := fio.q :=f(a") and fBH) = fipp :=f(B) to make the
terms on the right-hand side meaningful fort = a and t = p.

ProOF. - For monotone step functions the statement can be proved by in-
duction and recursion formula (2). We just remark that the segments [f7, , ,,/7, ]
and [f, ,, f1, ] are edges of the quadrangle, which are not in f7, | and f7, , and
whose linear extensions meet the smallest, respectively largest value of f.

For an arbitrary monotone function f : Iy — B we choose a sequence of
monotone step functions f,, converging uniformly to f. Then the right-hand side
of (6) for f,, converges to the corresponding set for f. Also the sets (f;,); converge
to fr. For a sequence of sets M,, converging to M the boundary of M may be
smaller than the limit of OM,,. But here the visibility of H (f,,); and Hf7 can be
used to prove that no such effect is possible and that 9(f,,); converges to dfs.

a

REMARK 1.5 (measurable functions). — The cave visibility holds for a larger
class of functions f : Iy = [a, f/] — B than Riemann functions. For the argument
in Theorem 1.2 we only need the existence of all left and right interval mean value
limits instead of all left and right limits of f, i.e. we need for all ¢ in the interior of
I elements by, bs € B with

](f b1

By an approximation argument (which we omit here) more than one accumulation
value can be allowed at the endpoints a, 5. We do not know how to prove (or
disprove) cave visibility if there is an inner point where f has more than one left or
right accumulation value. However, we conjecture that Theorem 1.2 is true for all
measurable functions. This would be a remarkable geometric statement for the
behavior near non-Lebesgue points. The conjecture would also imply the ex-
tremal property of monotone rearrangements (Theorem 1.3) for all measurable
functions. For the applications we have in mind we only need the continuous
versions of Theorem 1.2 and 1.3, since then regularization will always be possible.

=0 and lim sup ][f be

lim sup
™0 1c[ty tg+r]

™0 Tctg—r.to]
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REMARK 1.6 (weighted Lebesgue measures). — Instead of the Lebesgue
measure we can take a weighted Lebesgue measure x on Iy with a nonnegative
weight function w : Iy — [0, oo[ such that w(A) = [, w(t)dt for every Lebesgue
measurable set A. The system Z(u) of all subintervals I C Iy with x(I) > 0 may
be smaller than the system 7 of all I C I of positive length |I| > 0. For I € Z(u)
and a p-integrable function f: Iy = [a,f] — B we define the u-mean value

1
Jru= ]( fdu = D f fdu. Let f(,) be the corresponding interval y-mean value
1 1

set. The decreasing p-rearrangement of f is the function f*# : [0, u({y)] — B,
@) :=inf{be B: u({sely: f(s)>b}) <t}.

An inspection of the proofs shows that Theorem 1.2 and 1.3 holds for weighted
Lebesgue measures, too. We just remark that for weighted Lebesgue measures
the paths w, v in the proof of 1.2 are continuous again. This is not true for more
general measures on [, and indeed 1.2 and 1.3 need not be true for arbitrary
measures. For example: let A be the unit disk, B the lower boundary semicircle,
f:10,1] — B defined by f(t) = 1 for ¢t > 0 and f(0) = —1 and x := £ + Jp the sum
of the Lebesgue measure and the point measure in 0. Then fr(, = fr(,
= [ —1,0] U {1} with nonvisible cave H fz,).

Forgetting the smallest and largest value in the proof of Theorem 1.3 can also
be realized by setting the weight function equal to zero in the matching intervals.
This argument is required for higher-dimensional intervals (cf. below), when a
«glueing the gap» like in the proof of Theorem 1.3 is no longer possible.

2. — Mean values on N-dimensional intervals

Assume the same conditions on A, B, C as in Section 1 and let Qg C RY be an N-
dimensional interval, i.e. there are a4, ..,ay, by, ..,by With Qy =[a1, b1]1x..x[ay, by]
and a; < b; fori = 1,..,n. We consider Lebesgue measurable functions f : Qy — B
and mean values on N-dimensional subintervals. Unlike the one-dimensional case
we cannot prove the main results for the Lebesgue measure without considering
weighted Lebesgue measures at the same time. So we assume a weighted Lebesgue
measure w on @, defined by a Lebesgue measurable weight function
w: Qo — [0,00[ (we do not expect confusion and use the same symbol for the
measure and the weight) with w(A4) = f [, w for all Lebesgue measurable A C Qo
and with 0 < w(Qp) < oo. Let Q(Qo, w) be the system of all N-dimensional sub-
intervals Q C Qo with w(Q) > 0. By

fQ(Qo,w) = {fQ@u = ﬁ@ffw Qe Q(Q(),w)}
Q

we define the N-dimensional interval w-mean value set. The decreasing re-
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arrangement /% : [0, w(Qo)] — B is defined by
@) =inf{beB: w{se€Qy: f(s) >b} <t}

The function f (or analogously the weight w) is called a step function, if
Qo = @1U..UQ,, and f is constant on the interior of the intervals Q; for ¢ = 1..%.

THEOREM 2.1 (Cave visibility). — If f : Qo — B and w : Q¢ — [0, oo are step
Sfunctions, then the cave H foq, ) of the closure of the N-dimensional interval w-
mean value set is visible.

For Lebesgue measure on @, i.e. w = 1, we abbreviate Q := Q(Qy,w). Like
in the one-dimensional case we have Hfy, = Hfo for continuous or step func-
tions. Since uniform convergence f,, — f implies the set convergence (f,)o — fo,
Lemma 1.1 yields:

COROLLARY 2.2. — If f: Qo — B is a uniform limat of step functions, then
H fq is visible. If f is a continuous or a step function, then H fq is visible.

Proor or 2.1 Let fig—o = Nr=o{fow: Q € QQo, w),w(Q) <} the accu-
mulation set of mean values fy,, with w(Q) — 0. Obviously fo@g,w
= fu@—0 YU fo@,w- The proof is based on the following fact:

Iff : Qo — B, w: Qy — [0, cc[ are measurable and H f,,g)o is visible, then
H foqy. is visible, too.

Since the proof of this fact is almost the same as in Theorem 1.2, we omit most
details. It is essential that the construction of opposite paths is possible again.
Therefore choose Y, c1, co, k in the same way as in the proof of Theorem 1.2 and
let @ = [a1,b1]x..x[an, bx] € Q(Qo, w) With fg ., € lc1, h[ U ]cz, A and of minimal
distance to . We abbreviate P := [ag, bo]X..x[ay, by] and assume without re-
striction that w([t, b1] x P) > 0and w([ay,t] x P) > 0for allt € Jaq, b1[; otherwise
just forget the zero side parts. Define then the opposite paths

u [0/17 bl[ _>Zv u(t) ::fl[t,bl]xpv (U ]alvbl] - Z) U(t) ::ﬁal,t]XP~

and argue in the same manner as in Theorem 1.2.
It remains to be proved that for step functions f,w the cave of the accumu-
lation set f,,g)—o is visible. We concentrate on the model case:

If f: [0771]2 — B, w: [O,n]2 — [0, o[ are step functions, constant on the

squares (i,k) +10,1[% for i,k =0, ...,n — 1, then H Ju@—o is visible.

This can easily be generalized to general step functions and to situations
where f,w have different constancy intervals. For dimensions N > 2 an induc-
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tion yields the proof. Since no argument is needed which does not appear in the
proof (= induction step from N =1 to N = 2), we omit this induction.

Since w may vanish on some squares, there are different possibilities for a
sequence of @, € 9(Qo,w) to converge to a set @ with w(Q) = 0. The accumu-
lation set f,,q)—o is always a union of sets we will consider in 1.-7. below and the
cave visibility follows from the cave visibility of the sets in 1.-7. and from Lemma
1.1. We will not distinguish functions which have only different values on the line
segments {i} x [0,%] and [0,n] x {k} with i,k =0,..n. We call a square
W =1i—1,4] x [k — 1, k] with w(W) = 0 a zero square.

1) Let « € ]0,n]. Let M(x~,«,0,%) be the accumulation set of sequences fg,,
with @, € Q([0,x] x [0,n],w) converging to a subset of {x} x [0,n]. For m
sufficiently large, Q,, is in [¢,«] x [0, 2] with the largest integer i < x, and hence
f,w are constant in the first variable. Thus M (x~, x, 0, n) is the closure of the one-
dimensional interval mean value set of f(x~, -) with weight w(x—, -):

M@ ,x,0,n) :f(x7; ')I([O,n],w(ﬁc*,-))-

Theorem 1.2 and Remark 1.6 imply cave visibility for M(x~, x, 0, ). Analogously
we treat M(x,x",0,n), MO,n,y,y), MO,n,y,y").

2) Let x € 10, n[. Let M(x~,x",0,7) be the accumulation set of sequences fg,,
with @, € Q([0,7] x [0,7],w) converging to a subset of {x} x [0,%]. We get

M@ ,27,0,m) = Mz ,2,0,2) UM(x,x",0,7) UN.

Here N denotes the closure of the union of all [f(x~,-);,f(x",-);] with I in
Z(0,n],w(x",-)) and Z([0, %], w(x™, -)). So N consists of line segments starting in
M(x~,2,0,7) and ending in M(x, 2", 0,%). Part 1 and Lemma 1.1 imply the cave
visibility for M(x~,2",0,%). Analogously we argue for M(0,n,y,y™).

3) Let 0 <7 and @ :=[4,5] x [k,l] be a nondegenerated rectangle with
w(Q) = 0 and a nonzero square on its left side. Let M (i, 7, k, ) be the accumu-
lation set of sequences fy, with @, € Q([0,7] x [k,(],w) converging to a non-
degenerated rectangle in Q. For sufficiently large index the nonzero part of @, is
in [t — 1,7] x [k, 1] and f,w are constant in the first variable. We get

M(iiajv ka l) :f(i77 ')I([k,l],w(iw))

and with Theorem 1.2 and Remark 1.6 the cave visibility of M(@i~,j,k, ).
Analogously we deal with M(i,5",k, 1), M(i,7,k~,0), M(3,7,k,IT).

4) Let 0 < 7,7 < m and @ := [1,7] x [k, ] be a nondegenerated rectangle with
w(Q) = 0 and nonzero squares on its left and right side. Let M(i~,5", k, ) be the
accumulation set of sequences fg,, with @, € Q([0,%] x [k, [],w) converging to a
nondegenerated rectangle in Q. We get

MG, 5" k) =M@ ,7,k, 1) UMG@,j* k) UN.
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Here N is the closure of the union of [f(¢™, -);,f(", 7] with I in Z([k, 1], w(i ™, -))
and Z([k,{],w(*, ). So N consists of line segments starting in M(i~,j,k, 1) and
ending in M(i,j*,k,l). Part 3 and Lemma 1.1 imply cave visibility for
MC(@i~,j%, k,1). Analogously we see visibility for M(,5,k,1").

5)Let 0 < 7,0 < k and Q := [7,5] x [k, ] be a nondegenerated rectangle with
w(Q) = 0 and nonzero squares on its left and lower side. Let M(i~,5, k™, 1) be the
accumulation set of sequences fg,, with @, € Q([0,7] x [0, ], w) converging to a
nondegenerated rectangle in Q. We get

M@ g,k 0 =M@, j,k, D UM@,j,k", ) UN.

Here N denotes the closure of the union of [f(i~,-);,f(,k7);] with keI,
I eZ(k,1l,wi@ ), i €d, J €Z(ij],w(,k)); notice that the quadratically
vanishing edge part of @, in [t — 1,7] x [k — 1, k] is not relevant compared to the
linearly vanishing side parts in [1 — 1,%] x [k, ] and [7,5] x [k — 1,k]. So N con-
sists of line segments starting in M(:i~,7, k, 1) and ending in M(¢,5,k~,1). Part 3
and Lemma 1.1 imply cave visibility for M(i~,7,k~,1). Analogously we treat
M@, 5,k 0T, M@, 57, k=0, M(@,5", k,IT).

6) Let 0 < 1,5 <mn,0 < kand @ :=[7,5] x [k, ] be a nondegenerated rectangle
with w(®) = 0 and nonzero squares on its left, right and lower side. Let
M@= ,7%,k~,1) be the accumulation set of sequences f,, Wwith Q.
€ 9Q([0,7n] x [0,1],w) converging to a nondegenerated rectangle in Q. We get

MG, k™0 = MG, 5"k, DUMG, 5" k™ D UMG™,j,k",DUN.

Here N is the closure of the union of some [z,f(-, k™) ;] with z € M(i™,5%, k, D).
Hence N consists of line segments from M(i~,j*,k,[) to M(i~,7,k™,1). Part 4, 5
and Lemma 1.1 imply cave visibility for M(~,j*, k™, ). Analogously we argue for
MG 5k 0), MG, 5,k ,17), M@,57, k=, 1T).

7) Finally, let 0 <14, j<mn, 0<k, [ <n and Q :=[i,j] x [k,l] be a non-
degenerated rectangle with w(Q) = 0 and nonzero squares on all its sides.
Let M(:~,j7,k~,l") be the accumulation set of sequences fg, with @,
€ Q([0,7] x [0,n],w) converging to a nondegenerated rectangle in Q. We get

M@ j" k1) =MG Gk, DUMG 5k, L)
UMG™,j,k™ 1) UMG,j*, k™, I") UN.

Here N is the convex hull of the vertices f(~, s, fGT, dpa FCE g,
SfC, Ui Since all vertices are in one of the four sets, part 6 and Lemma 1.1
imply cave visibility for M(i~,57, k™, ). a

THEOREM 2.3 (Extremal property of monotone rearrangement). — If
f: Qo — Bandw: Qy— [0,c0[ are step functions, if f* : [0,uw(Qy)] — B is the
decreasing w-rearrangement of f, if Qw) is the set of all N-dimensional sub-
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mtervals @ C Qy with w(Q) >0 and if Z(w) is the set of all submﬁm)als
I C [0, w(Q0)] with |I| > 0, then we have the cave inclusion Hfgw) C Hf7,.

If w is the Lebesgue measure on @) and if we abbreviate Q := Q(w),
7 :=Z(w) and f* := f*" uniform convergence then implies readily.

COROLLARY 24. — If f: Qo — B is a uniform limit of step functions, then
H fo C H f;. If f is a continuous or a step function, then H fo C H f;.

ProoF of 2.3. — Without restriction we assume for f and w the same intervals
of constancy. We will prove the claim by induction on the number of w-nonzero
intervals:

Amn) & If Qq,..,Q, be N-dimensional subintervals of Qo with non-
intersecting interior, w = w; 1, +..+wy 1o, has positive values wy, .., w, on
@1, .., @y and vanishes on @ \ (@1U..UQ,,), and f hasvalues by > .. > b, in B
on @1, .., Qn, then Hfow) C Hf7().

For such f and w the decreasing w-rearrangement is /** = by 1;,+..4+b, 1,
with Iy = [0,w1]Q1]] and I; := [ wi|Q1|+..+wi_1|Qi—1], w1|Q1[+..+w;|Q;| ] for
1=2,..,n.

The induction starts with .A(1) and A(2). For n = 1 the sets fou,) and fz*(lfv) are
just {b1}. For n = 2 they are the line segment [b;, b2]. In both cases we have
Hfow = H]% To prove the induction step A(n — 1) = A(n) for n >3 we
consider intervals Q1, .., @, with a nonintersecting interior, w = w; 1o, +..+wy 1¢,
with w; > 0 and f with constant values b;> .. >b,, in B on @), .., Q,. We use the
weight functions v := w; 1o, +..+w,—11g, , and u := welg,+..+w,1g, to forget
the largest and the smallest values of f. A(n — 1) implies Hfgq,) C Hfz*—&) and

Hfou Cc H f76y- With the visibility of Hfgq, (Theorem 2.1), argueing as in
Theorem 1.3, we get H fouy C Hfow), Hfow C Hfow, Hfow C HS, where S is
again the 0A[b,, b1]-shadow of the total mean value fy, ,,. Following the argu-

ments in Theorem 1.3, we finally obtain Hfgu) C Hf7),. O

3. — Mean values on cubes, counterexamples

It would be interesting to know Theorem 2.1 and 2.3 for N-dimensional cube
mean value sets instead of N-dimensional interval mean value sets.
Unfortunately, the cube situation is much more complicated. Even worse, for-
mulated verbatim as above, the theorems are wrong for cubes.

For example, let b; = 0™ by = el h3 = 02" Bbe the unit circle arc from
b1 counterclockwise to bs, f : [0, 3> — Bbethe step function which is suggested in
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figure 3a and W be the set of all nondegenerateted squares I x J C [0, 3]%.
Figure 3b shows the square mean value set f;y. To be more exact, the plotted lines
are a subset f,, with the set W,, of all squares having at least one vertice in
{Bi/m,3j/m), 1,7 = 0,..,m}. It is easy to compute f)y,, with a computer program.
The sets fy,, approximate fyy (the plot is for m = 9). Figure 3¢ presents the mean
value set f; of the decreasing rearrangement f* : [0, 9] — B. Obviously, the cave
H f,y is not visible and the inclusion H f,, C Hf; is wrong. So Theorem 2.1 and 2.3
are not true when fy is replaced by fiy.

0, 3) (3,3)
b1 | by | b3
by | by | by

oy L [ [ 1]

0,0 (3,0

Fig. 3. - a) Where f equals b; on [0, 3]%; b) fiy; ¢ NE

0, 4) 4, 4)

bl by | by by
bo | b | b | by
by | by | by | by
o) Lba | by | by | by

(0, 0) (4,0)

0,4 4,4

])4 b2 {)2 bl
b3 bg bg bg
by | by | by | bs
o) Lbi | ba | b | by

(0, 0) 4,0)

Fig. 4. — a) Where f equals b; on [0,47%. b) fw. ¢) Where g equals b; on [0,4%. d) gw

The following example demonstrates another aspect. Let by = 2™ by = el 447

by = e!%7 b, = e!¥7 B be the unit circle arc from b; counterclockwise to by, f and
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¢ : [0,4F — B be the functions suggested in figure 4a and 4c. The figures 4b and 4d
show the square mean value sets fyy, gy (or to be exact, an approximation of these
sets) for the set W of all nondegenerated squares I x J C [0,4]%. In both cases the
cusp point in the middle is the total mean value f[07 42- Notice that, locally at the cusp
point, fyy is on the left and gy on the right side of the vertical line through the cusp
point. The resolution may hide this effect a bit; anyway, the effect can be proved by
elementary calculations. We can conclude that no rearrangement of f and g exists
with a largest cave. (If we would assume % to be a rearrangement of f, g with
Hfw UHgw C Hhyy, then a small disk around f[o, e would exist in H %,y. Since the
total mean value f;, 42 is in the mean value set of all rearrangements and since the
mean value set is always path connected, there would be a contradiction.)

For a N-dimensional cube W, and every (reasonable) function f : Wy — B we
conjecture a weakened extremal property of monotone rearrangement like.

CONJECTURE 3.1. - Hfyy C H(f}, Uf;) holds for the sets I1, T2 of all non-
degenerated intervals in [0, Wy /2], [|Ws|/2, |Wol].

The validity of this conjecture would be enough for the applications we have in
mind. However, since cubes cannot be divided in two subcubes, the essential
construction of opposite paths used in Theorem 1.2 or 2.1 is no longer possible.
This is the reason why the methods developed in the sections above fail in the
cube situation.

4. — Mean values on curves

We generalize the one-dimensional results of Section 1 to functions on curves.
By using space filling curves this includes higher-dimensional results.

Let Iy be a compact interval, P a set, d a metric on Py and x an (outer) measure
on Py with u(Py) > 0. We call a function p : [y — Py measure preserving if the
inverse image p~!(P) of every u-measurable set P C P is Lebesgue measurable
with |p*1(P)| = u(P). Furthermore, p is defined as almost injective if the set
{tely:p'{p®}) # {t}} has Lebesgue measure zero. Py (with metric d and
measure y) is called a curve interval by p : I; — Py if p is continuous, surjective,
almost injective, measure preserving and if all images of subintervals of 1 are u-
measurable. For curve intervals we define the set p(Z) := {p(I) : I subinterval of I
with |I| > 0} of all curve subintervals.

THEOREM 4.1 (Cave visibility and extremal property on curves). — Let Py with
metric d and measure u be a curve interval by p : Iy — Py. For a continuous
Sfunction f : Py — B with convexly arranged range the cave Hfyq) of the curve
mterval mean values is visible and it is a subset of the cave Hf; of the interval
mean values of the monotone u-rearrangement f* : Iy — B.
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PROOF. - fop: Iy — B is a continuous function with convexly arranged
range. Theorem 1.2 and 1.3 show visibility of H (f o p)7 and its inclusion into the
cave H (f op);. Since p is measure preserving and almost injective, we have
w(p()) = |p‘1(p(l))| = |I| for every nondegenerated subintervals I C I, and
wWaeepl): flo)>by= pHaeepd: fe)>by={tcl: fopt)>0b} for
beB. So the distribution functions b p{x € pd): f(x) >b} and
b— |{tel: fop()>0b}| coincide. Since integrals only depend on the dis-

1 1
tribution function, the me lue = d =— d
ribution function mean values (f o p); i Iffopan o l‘(p(l))pz!;f L

are the same. The identity of the distribution functions also proves (f o p)* = f*.
So we have

Hfyoy=H(fop)r CH(fop); =HfF,

which proves the statement. O

As an example let Py be the unit circle S! with the standard metric (as a subset
of C) and with the one-dimensional Hausdorff measure. S! is a curve interval by
p :[0,27] — S, p(t) := e'. For functions f : S — B with convexly arranged range
the theorem deals with the mean values on p(Z), which is the set of all non-
degenerated arcs not having 1 = e’ as an «inner» point. For the (in this context
more interesting) set S of all nondegenerates arcs we get cave visibility and the
extremal property, too: choose p : [0,27] — S, p(t) = el to get S = p(Z) U p(T)
and with Lemma 1.1 Hfs = Hf,o) N Hf;z C Hf; plus the visibility of Hfs.

Space filling curves yield interesting N-dimensional results. Such curves
produce curve interval systems, which allow only point degeneration and not
line/plane degeneration like N-dimensional intervals. For example let
hy : [0,1] — [0, 11V be the N-dimensional Hilbert curve, cf. [Sag94]. It is well
known that [0,11" is a curve interval by hy. The range of each dyadic interval
[k/2N" (k +1)/2N"] c [0, 1]is a cube in P. Every other set in P is a certain union
of at most contably many such cubes. These unions may have a complicate
boundary, but P is similar to the cube system WV and only allows point degen-
eration in the following sense: For every P € P acube W D> P and a cube V C P
with 1 < [W|/|V| < 4V exist (the first inequality is trivial, the second is a con-
sequence of the construction of hy).

5. — Applications to reverse inequalities

We apply our method to functions satisfying reverse inequalities like reverse
Holder inequalities, oscillation inequalities or Muckenhoupt inequalities. For
c¢>1andq>1let RH(c,q,Z) be the set of all continuous f : [0,1] — [0, oo[ sa-
tisfying reverse Holder inequalities f, f7 < ¢(f, f)? for all I € 7. For 0 < ¢ < 2
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and g > 1 let OS(c, q,Z) be the set of all continuous f : [0,1] — [0, oo[ satisfying
oscillation inequalities (Gurov-Reshetnyak condition) §; |f — f1|* < ¢(f, f)? for
all I € 7. In the most important case we abbreviate OS(c,Z) := 0S(c,1,Z). For
c>0and g >1let MU(c,q,7) be the set of all continuous f : [0,1] — [0, oo[
satisfying Muckenhoupt inequalities f; f(f, /=Y (‘I*D)q_l <c¢ for all I € Z. For
N > 2 we define in the same way the sets RH(c, q, Q), RH(c,q,P), OS(c,q, Q),
0S(c,q,P), MU(c,q, Q), MU(c, q, P) of continuous functions f : [0, 1y - [0, oo
satisfying corresponding inequalities. Here Q is the system of the N-dimensional
intervals and P := hy(Z) the system of N-dim. Hilbert intervals (see Section 4).
The restriction to continuous functions is made to simplify the considerations. It
is no serious restriction, since for discontinuous functions regularization yields
the same reverse inequalities for an approximating sequence of continuous
functions (at least for reverse Holder inequalities, see [BoIw83]).

For the present purpose we suppose more generally (negative values al-
lowed), continuous f : [0, 11V — R. Let k:[inf f,supf] —[0,0c[ be a convex
Lipschitz function. This function k takes the role of x+— ¢ for reverse Hoélder,
x— |x —y|? for oscillation inequalities and '+ x~Y/“~D for Muckenhoupt
inequalities. Since k is fixed in every context, we suppress k-dependence in
notations. The decreasing rearrangement f*:[0,1] — R is defined by
fit) :=inf{y e R: |{s €[0,11V : f(s) > y}| <t}. Obviously, h:=(f,kof):
[0,11Y — graph(k) is a function with convexly arranged range and the decreas-
ing rearrangement of /, as defined in Section 1 and 2, is 2* = (f*,k o f*). In the
previous sections we have analysed mean value sets like

M(f,T) = hy = {(ff,fkof): IEZ}

or M(f,Q),M(f,W),M(f,P). For such sets we define the upper boundary
B(f,I) = 0M(f,Z) N OE(f,T) C Jinff,supfI x [0, ool

as the joint boundary of M(f,Z) and of the unbounded connected component
E(f,T) of (Jinf f,supf[ x [0,00[) \ M(f,Z). Note that it is in no way obvious that
the upper boundary is the graph of a function. The following theorem is a
summary of the previous results for the special situation considered here.

THEOREM 5.1 (Caves in the graph situation). — 1. For a monotone, continuous
f:10,1] — R the upper boundary Bf is the union of the ranges of the paths
w:]0,1] — C and v :=[0,1[ — C, defined as

w(t) == (ff,fmf) and v(t) == (flf,flkof)
0 0 t t



758 WERNER CLEMENS

2. For every continuous function f :[0,1] — R there is a Lipschitz function
br - Jinf f,supfT — R that describes the upper boundary: B(f,T) = graph(by).
This Lipschitz function is bounded from below by the corresponding Lipschitz
function for the decreasing rearrangement:

br(t) > bp-(t) for all t € Jinff,supf[.

3. The same is true for continuous f : [0,11 — R and for the upper boundary
B(f, Q) or B(f,P), but not in this form for B(f, W).

Proor. — Apart from trivial cases (k linear or f constant) this is a summary of
the Theorems 1.2, 1.3, 1.4, 2.2, 2.4, 4.1 for the graph situation. For that we choose
the open, convex set A bordered by the graph B of k and the line segment
C .= J(inff, k(inf f)), (supf, k(supf))[. The Lipschitz property is a consequence
of the visibility which implies in fact also an estimate of the Lipschitz constant in
terms of inf f, supf and k. The counterexamples in Section 3 are discontinuous
functions, but smoothing these examples yields the negative results for B(f, W).

a

For the terms in reverse inequalities in particular we can state

COROLLARY 5.2. — Let f : [0,1] — [0, oo[ be continuous and t € 10, 1[.

1a) An interval I € T exists with §, f = §, f* and §, 7> § £.

1b) An interval I € T exists with §, f = £ f* and §, f7 > § f*.

2a) An interval I € T exists with f, f = fg frandf |f —f1|" > J((f lf* = foal™
2b) An interval I € T exists with §, f = § f*and §; |f —fil! > § \f* —finl%
3a) An interval I € T exists with §, f = § f* and §, f~1/@D > § (£~
3b) An interval I € T exists with §, f = § f* and §, f~1/@D > 1 (f)~ V@D,

All these statements are optimal, since for monotone f the equality
fr=htr implies 1< A -RIU< K= figlh g fYED
< fg (FHVCY and the equality § f = ftl f* implies the corresponding in-
equalities.

For continuous f : [0, 1Ny - [0, ool similarly Q € Q and P € P exist with
analogous properties.

PROOF. — For every t with fot f*and thl f*inlinf f, sup f[ the statements 1a and
1b follow directly from Theorem 5.1 for k(x) = 7. In the «borderline» cases, e.g.
fg f* = supf, the decreasing rearrangement f* is constant on [0, t] and continuity
of f implies the existence of the stated 1. Statements 3a and 3b are proved in the
same way with k(x) = =1/, To prove 2a we consider k;(x) := |x — Jiogl? for
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every t € 10,1[. There is an interval I € 7 with §, f = fgf* and §; |f —f1|?
= If —foal” > fg |f — fio.n|"- Statement 2b follows analogously. O

COROLLARY 5.3 [Monotone rearrangement in reverse inequalities]. — Reverse
mequalities for a function imply exactly the same for its decreasing rearrange-
ment:

1) f € RH(c,q,T), RH(c,q, Q) or RH(c, q,P) implies f* € RH(c,q,T).

2) f € 0S8(c,q,7), OS(c,q, Q) or OS(c, q, P) implies f* € OS(c,q,T).

3) feMU(c,q,I), MU(c,q, Q) or MU(c, q, P) implies f* € MU(c,q,T).

Thus reverse inequalities on Z, Q, P reduce to the easier monotone situation.
For decreasing power functions f(x) = x~'/? it need just an integration to check
for which p reverse inequalities fg (x~1/P) < c(fg x Y p)q are true. Elementary
calculations like this yield the below equalities below defining the sharp bounds.
It has been proved that these bounds are the sharp bounds indeed for all
monotone functions satisfying reverse Holder inequalities [ApSb90],
Muckenhoupt inequalities [Kor92a], or oscillation inequalities with ¢ =1
[Kor92b]. This allow us to state the following sharp versions of important, clas-
sical results about reverse inequalities. Note that these theorems for continuous
functions imply higher integrability for general (measurable) functions satisfy-
ing the respective hypothesis.

THEOREM 5.4 (Sharp version of the Gehring lemma). — For a function
fe€RH(c,q,T), RH(c,q,Q) or RH(c,q,P) and p € [q,Ql a constant ¢ exists with
f*e€ RH(c,p,T). The sharp bound Q s determined by

)

THEOREM 5.5 (Sharp version of the Gurov-Reshetnyak theorem). — For a
function f € 0S(c,T), OS(c, Q) or OS(c, P) and p € [1, Q[ a constant ¢ exists with
fg <tV forall t € 10,1). The sharp bound Q is determined by

P

THEOREM 5.6 (Sharp version of the Muckenhoupt theorem). — For a function
feMU(e,q,I), MU(c,q, Q) orMU(c,q, P)and p € 1Q, q] a constant ¢ exists with
f*e MU(¢,p,T). The sharp bound Q is determined by

q-Q

1 (e = 1.
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REMARK 5.7 (Comparison with other results). — The Gehring lemma was first
proved in [Geh73]. Many proofs, generalisations and applications have been
found. Detailed references are in [Iwa98]. In [FrMo85] and [Sbo86] a reduction to
monotone functions is used. Since the resulting reverse Holder inequalities for f*
have an enlarged constant, the proof cannot yield sharp results. The question of
sharp bounds in the Gehring lemma is posed e.g. in [Boj85, Iwa82]. In [Boj85,
Wik90] some asymptotic answers are given. In [ApSb90] the sharp bound for
monotone functions is calculated, see also [Nan90]. Our approach gives some
additional information which is not contained in [ApSb90]: Only the inequalities
on the «boundary» intervals [0, t] and [¢, 1] (and not arbitrary intervals I C [0, 1])
are relevant in the reverse inequalities for monotone functions (Theorem 5.1 or
Corollary 5.2). Further calculations show that the upper boundary part
{(Jfg f, fg f9);t € 10,11} with f(x) = /9 and Q as in Theorem 5.4 is part of the
graph of cx? This makes the limit case more clear. Korenovskij proves in
[Kor92a] that for f € RH(c,q,Z) the same sharp bound as in the monotone si-
tuation is true. His main tool is the inequality

B o B
)" (F )"

where the suprema are taken over all I € Z with §, f > 0. This is an extremal
property of the decreasing rearrangement. The extremal property in Theorem
5.1 is stronger and has a geometric interpretion. Furthermore the theorem in-
cludes additional informations like the Lipschitz continuity. In [Fi096] the sharp
bound found by Koronovskij is used for one-dimensional variational problems.
Kinnunen proves in [Kin94] with another method that for f € RH(c, q, Q) the
same sharp bound as in the monotone situation is true. Again, we recover this
result with additional information. For reverse Hélder inequalities on W or si-
milar systems a Gehring lemma but no sharp bound is known. So, our con-
tributions on P is the first sharp result. Variants of the counterexamples in
Section 3 are a first negative results for W: for reverse Hoélder inequalities on W
the decreasing rearrangement f* need not satisfy the same reverse Holder in-
equalities. We do not know if for W the same sharp bound as in the monotone
situation is true or not. The counterexamples do not disprove this and Conjecture
3 would be enough to prove it.

The Gurov-Reshetnyak theorem was first proved in [GuRe76]. We also refer
to [Iwa82]. In [Kor92b] a sharp bound is found for OS(c,Z). We recover this
result with additional information. The results for OS(c, Q) and OS(c, P) are the
first sharp, higher-dimensional results.

The Muckenhoupt theorem was first proved in [Muc72]. We also refer to
[GaRu&5]. Korenovskii proves in [Kor92a] with a variant of (7) that for
f € MU(c,q,T) the same sharp bound as for monotone functions is true and he

(7 sup
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calculates the sharp bound in this easier situation. We recover the reduction of
MU(c,q,Z) to the monotone situation with additional information. For higher-
dimensional Muckenhoupt inequalities our results on O and P are the first sharp
ones.

For all mentioned sharp results [Kor92a, Kor92b, Kin94] a sharp, one-di-
mensional version of the rising sun lemma of Riesz is used. In the proof of this
covering lemma special properties of open, one-dimensional sets are needed.
There is no sharp higher-dimensional analogous statement. Our method is the
first approach to reverse inequalities without any covering lemma. Our proof
unifies the approach to reverse inequalities and is based on a new extremal
property of the decreasing rearrangement. For other extremal properties of the
decreasing rearrangement we refer to [Kol89].

In many approaches to reverse inequalities maximal functions like the
Hardy-Littlewood maximal function Mf(t) := sup;.;¢, §; |f| appear, where
Z(t)is the system of all intervals in Z containing ¢. Maximal functions are used in
a lot of other problems as well [BeSh88, Ste93]. Inequalities connecting the
decreasing rearrangement of the maximal function with f* are essential for the
usefulness of maximal functions. For example, the Herz theorem, see [BeSh8S,
Theorem 3.3.8], states the existence of a constant ¢ with

t
8) ]f < M@  forall t € 10,1].
0

We think that modified maximal functions can be useful. We take the suprema
with respect to intervals giving a prescribed mean value instead of intervals
containing a given point. This stresses the range of f instead of its domain. Thus
Theorem 5.1 with the convex function k(x) = |x| suggests the «maximal function»
Bf(t) :=sup{§; |f; I € L. f = fg f*}. The graph of Bf is the upper boundary
part of the mean value set with first coordinate larger than 3%1 f; there is no such
geometric interpretation for Mf. Theorem 5.1 yields

t
9) ]f FY| <Bf@) forall ¢ €10,1].
0

This is comparable to (8), but here the optimal constant 1 appears. We are not
aware of any optimal version of (8) and of any result for Mf comparable to the
Lipschitz property of Bf. As Bf is a better tool for reverse Holder inequalities
than Mf, we expect improvements also in other problems when Mf is sub-
stituted by Bf.

For another prominent maximal function, the sharp maximal function
fH(®) == suprez § |f — fil, the Fefferman-Stein inequality plays a similar role as
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(8) for Mf. With our notations the following version can be found in [BeShS88,
Theorem 5.7.3]: a constant ¢ > 0 exists with

t
(10) (J[ |f|*> —fI@®) < e(fH"@® for all ¢ €10,1/6].
0

The modified maximal functions Sif(¢) := sup{f; |f —fil; I € Z,., f = fot f*} and

Ss f, defined analogously with ftl f* instead of fg f*, are comparable to the sharp
maximal function and Theorem 5.1 yields a comparable result to the Fefferman-
Stein inequality:

3 1
(11) fIf* ~fionl <S1f(@®  and f = figl < Saf@#)  for allt €]0,1[
0 t

Note that here, in contrast to (10), the optimal constant 1 appears and the in-
equalities are true for the whole interval. Our results for oscillation inequalities
can be formulated with S;f and Sy f, and they are stronger than results for
oscillation inequalities proved with f*. Thus we expect improvements also in
other problems, when S; f and Ss f instead of f* are used.

Closely connected to the sharp maximal function is the BMO-«norm», de-
fined by || £l gyso = Supser §; |f — fi| for functions on [0, 1]. Functions of bounded
mean oscillation, i.e. ||f||z0 < oo, are of great importance, cf. [Ste93]. In
[Kle85] the above mentioned sharp, one-dimensional version of the rising sun
lemma of Riesz is proved and used to yield

(12) 17 l8a0 < I1f o

By taking the suprema in (11) we recover this result. Furthermore we find that
for the BMO-norm of monotone functions only the «boundary» intervals [0, ¢]
and [t,1] are important. For functions on [0, 11V we can state W\ zaro

< supqeo fy If —fol and [[f*||gyo < suppep fp |f —fpl. This are the first sharp,
higher-dimensional versions of (12).

REMARK 5.8 (Generalized reverse inequalities). — The results can easily be
generalized to reverse inequalities with convex functions more general than
w9, x| —y|? or x— a4V for example to reverse Jensen inequal-
ities. Also weighted reverse inequalities can be treated in the same way (see
Remark 1.6).

The special form of the reverse inequalities is not necessary for the reduction
to the monotone situation (for the calculation of the sharp bound in the monotone
situation it is, of course, important). What matters is a convex arrangement like
(f f, § fD. For example inequalities like §; f¢ < ch(§; f) + d with constants ¢, d
and a function % imply the same inequalities for f*.
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A function f satisfies reverse Holder inequalities if the upper boundary
B(f,Z) and hence also B(f*, Z) is bounded from above by the graph of cx?. This is
mainly a condition for small and for large values of f, since f*(t) may not increase
to fast to infinity for ¢ — 0 and may not decrease to fast to zero for t — 1. We
believe that in many applications a condition on the small values is unnatural. Our
results make clear that small and large values can be treated separately. For
example, it is possible that RH(c, ¢,Z) is a condition which is too strong for the
small values of f, but that f satisfies f, 7 < cmax ((f; ), (Jfol 7). For large
values this is the same condition as RH(c,q,Z) and would imply the same in-
tegrability.

For Theorem 5.1 we do not need functions with nonnegative values. For
f:10,11 = R inequalities like §; |f|? < ci|f; f|” + ¢z can be reduced to the
monotone situation.

With similar arguments we can treat other oscillation terms. Thus it is not
hard to prove that §; f, |f —g| < c(f; /)({, 9) for I € T imply the same in-
equalities for /* and g*.

Since our approach gives the best known results for reverse inequalities, we
also expect improvements and sharp results for the important class of weak
reverse inequalities (reverse inequalities with enlarged domain of integration).
Unfortunately, mean value sets like {( f:f: 7, f;f: /22 fO;[x —r,x+r] C [0,1]} do
not behave as nicely as the mean value sets treated above and we do not know
how to utilize our additional knowledge in this situation, yet. Thus an interesting
problem remains open.
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