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Bollettino U. M. 1.
(8) 8-B (2005), 723-735

Simplicity of generic Steiner bundles.

MARIA CHIARA BRAMBILLA®

Sunto. - Un fibrato di Steiner E su P" ha una risoluzione lineare della forma
0— O(-=1° — O — E — 0. In questo lavoro proviamo che il generico fibrato di
Steiner E ¢ semplice se e solo se y(EndE) ¢ minore o uguale a 1. In parti-
colare mostriamo che E ¢ eccezionale oppure soddisfa la disuguaglianza

¢ < <n+1+\/;’n+1)2—4 )S.

Summary. — A Steiner bundle E on P" has a linear resolution of the form
0— O(—1°—0" - E — 0. In this paper we prove that a generic Steiner bundle E is
simple if and only if y(End E) is less or equal to 1. In particular we show that either E

( n+1+y/ (417> —4 )s
—s— s

18 exceptional or it satisfies the inequality t <

1. — Introduction

According to [2] a Steiner bundle £ on P(V) = PV~ has a linear resolution of
the form

0—-0(-1)°—=0" - E—0.

It is well known that Steiner bundles have rank { —s > N — 1 and if equality
holds then they are stable, in particular they are simple (see [1]). The aim of this
paper is to investigate the simplicity of Steiner bundles for higher rank.

MAIN THEOREM - Let E be a Steiner bundle on PN~ with N > 3, defined by the
exact sequence

0-0(-1) 50 - E—0,

where m is a genevic morphism in Hom (O( — 1), O, then the Sfollowing state-
ments are equivalent:

(*) The author was supported by the MIUR in the framework of the National
Research Projects «Proprieta geometriche delle varieta reali e complesse» and
«Geometria delle varieta algebriche». 2000 Math. Subject Classification: Primary
14F05. Secondary 14J60, 15A54, 15A24.
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i) E is simple, i.e. h’(EndE) = 1,
ii) s> — Nst+t® <1lie y(EndE) <1,
i) either s> — Nst + 1% < 0 i.e. t < (NN"=4)s or (¢, 5) = (ag11, ax), where

k k
(N+ \/N2—4) _ (N— NL4)
2z 2

VNZ—4

ap =

The generalized Fibonacei numbers appearing in (iii) satisfy a recurrence
relation, as it is clear from the proof of Theorem 2.1.

Our result in the case of P? is partially contained, although somehow hidden,
in [3]. Indeed Drézet and Le Potier find a criterion to check the stability of a
generic bundle, given its rank and Chern classes. In the case of a normalized
Steiner bundle E on P?, it is possible to prove that if £ satisfies condition (iii) of
the main theorem, then the Drézet-Le Potier condition for stability is satisfied.
Hence E is stable and, consequently, simple. On the other hand, when % is not
normalized, it is very complicated to check the criterion of Drézet-Le Potier, but
we can easily prove the simplicity with other techniques. Anyway the proof that
we present in this paper is independent of [3], is more elementary and works on
P" as well.

The genericity assumption cannot be dropped, because when rkE =
t —s > N — 1itis always possible to find a decomposable Steiner bundle, that is
in particular non-simple.

Since the equivalence between conditions (i) and (iii) is an arithmetic state-
ment, our theorem claims that y(End £) is the responsible for the simplicity of a
generic Steiner bundle £. Indeed it is easy to check that if £ is simple then
7(EndE) <1 (Lemma 3.2) and this is also true for some other bundles, for ex-
ample for every bundle on P%. The converse is not true in general, because it is
possible to find a non-simple bundle F on P? such that y(End F) < 1. For ex-
ample we can consider the cokernel F' of a generic map of the form

0-0(-2a0(-D'—> 0% - F -0,

where y(End F) = —3, but it can be shown that h%End F) = 5 therefore F is not
simple.

In the third statement of our theorem we claim that if £ is a simple Steiner
bundle, then either E is exceptional or it satisfies a numerical inequality (see
Theorem 2.1). We recall that exceptional bundles have no deformations. The
name exceptional in this setting is justified by the fact that they are the only
simple Steiner bundles which violate the numerical inequality. It is remarkable
to note that all the exceptional bundles on P? can be constructed by the theory of
helices, in particular there exists a correspondence between the exceptional
bundles on the projective plane and the solutions of the Markov equation
2% + 1% + 2% = Bayz (see [6]).

The plan of the article is as follows: Section 2 is devoted to the case of ex-
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ceptional bundles and Section 3 to the proof of the main theorem. At the end of
the paper, Theorem 3.8 is a reformulation in terms of matrices of the main
theorem. As a basic reference for bundles on P" see [5].

I'would like to thank Giorgio Ottaviani, for suggesting me the problem and for
his continuous assistance, and Enrique Arrondo, for many useful discussions. I
also thank very much Jean Valles, for his helpful comments concerning this
work, in particular for his collaboration in simplifying the proof of Lemma 3.7.

2. — Exceptional bundles

In [7] the theory of helices of exceptional bundles is developed in a general
axiomatic presentation. Here we give the following result as a particular case of
this theory.

THEOREM 2.1. — [6, 7] Let E}, be a generic Steiner bundle on PN=L with N > 3,
defined by the exact sequence
0—0O(-1)"'=0% — E;, — 0,

where

(N+\/2NL4)]€_(N— 21\72—4>k
ay = )
N2 -4

then K}, is exceptional (i.e. h’(EndE) = 1 and hi(End E)=0foralli>0.)

On P(V) = PY~! we define a sequence of vector bundles as follows:
(1) FO = O(l), Fl = 07 Fn+1 = ker(Fn ® Hom (Fan—l) ﬁ Fn—l)a

where y,, is the canonical map.
The following lemma can be found in [7]. We underline that it is possible to
prove it in a straightforward way only by standard cohomology sequences.

LEMMA 2.2. — Given the definition (1), for all n > 1 the canonical map v, is
an epimorphism. Moreover the following properties (A,), (B,) and (Cy) are
satisfied for all n > 1:

(4,) Hom(F,,F,) ~C, Ext'(F, F,)=0 forall i>1,
(B,) Hom(F, 1,F,)=0, Ext'(F, 1,F,)=0, foral i>1,
(€,) Hom(F,,F, )=V, Ext'(F, F,1)=0, foral i>1.

Note that (A,) means that every F, is an exceptional bundle.
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REMARK 2.3. — Following [7] the previous lemma means that (F,,,F,_1) is a
left admissible pair and (Fy 1, F),) is the left mutation of (Fy,, Fy,_1) and that the
sequence (Fy) forms an exceptional collection generated by the helix (O(2)) by left
mutations.

ProOF OF THEOREM 2.1. — Lemma 2.2 states that the bundles F',,, defined as in
(1), are exceptional for all > 0. Obviously their dual /" are exceptional too. Now
we will prove that, for every n > 1, the bundle F’ admlts the following resolution

(2) 0— O(— )"0 - F: —0,

where {a,} is the sequence defined in the statement. This implies that a generic
bundle with this resolution is exceptional. We can prove (2) by induction on 7.
First of all we notice that the sequence {a,} is also defined recursively by

ayg = 0,

ay = 1,

i1 = Nay — ay_1.
Therefore if n=1 the sequence (2) is 0— O(—-1)*—O0" — Fi—0,
i.e. 0—O—F; — 0, and this is true because F'; = O. Now let us suppose that

every I}, admits a resolution (2) for all £ < » and we will prove it for F 41+ Letus
dualize the sequence

0—-Fp—-F,Hom@F,,Fy_1) > Fyp_1—0

and by induction hypothesis we have:

0 0
0 Fr, F:V* Fiyy—0
O O QV*

O(-1)=m-2  O(-1)%-1 @ V*

We define the map a: 0% ' — F: @ V* as the comp0s1t10n of the known
maps. Since Ext!(0™1,0( = )™ ® V*) =~ H(O( - 1))“17 1@ V* =0, the map
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a induces a map @ : O™ ' — O ® V* such that the following diagram com-
mutes:

1—>0

n+

We observe that & is injective if and only if H(@) is injective and, since
H@) = H( f) they are injective. Obviously the cokernel of a is ONG =t —
O™+, Let B be the restriction of @ to O(— 1)*2. Then we can check that /)’ is
injective, its cokernel is O( — DY@tz — O~ 1)™ and the following diagram
commutes:

0 0 0
0 Fr 4 FyeVvr o 0
0 Oan-1———§-—>(’)an®v* Do+l —= ()

It follows that F7; , has the resolution 0 — O(—1)"—0O"* — F* , — 0 and

this completes the proof of our theorem. |
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3. — Proof of the main theorem

Let E be given by the exact sequence on PV~ = P(V)
(3) 0—I® O(— 1)SW @ O—E—0,

where V, I and W are complex vector spaces of dimension N > 3, s and ¢ re-
spectively and m is a generic morphism. If we fix a basis in each of the vector
spaces I and W, the morphism m can be represented by a ¢ x s matrix M whose
entries are linear forms. Let us consider the natural action of GL() x GL(W) on
the space

H=HmI0(-1D,W0)2VaIl'eW,
i.e. the action

H x GLU) x GL(W) — H

(M,A,B)y—A"'MB.

When the pair (A, B) belongs to the stabilizer of M, it induces a morphism
¢ : E — E, such that the following diagram commutes:

0—I®0(— 1) LW e O0—E—0
" by
0—I®0(— 1) LW e O0—E—0

I. Now we prove the first part of the theorem, i.e. the fact that (i) implies (ii).

REMARK 3.1. — From the sequence (3) it follows that y(E)=1t and
2(EQ)) = (Nt — s). Dualizing (3) and tensoring by E we get
(5) 0—EndE—W' @ E—I'® E(1)—0,
therefore

2(EndE) = ty(E) — sy(EQ)) = 2 — s(Nt — s) = t* — Nst 4 s%.

LEMMA 3.2. - If E is a simple Steiner bundle, then y(End E) < 1.
‘ ProOOF. - From the sequences (3) and (5) it is easy to check that
H'(End E) = 0, for all ¢ > 2. Moreover h%End E) = 1 because of the simplicity,
and consequently y(EndE) =1 — h'(EndE) < 1. |

I1. Now we prove that statement (ii) is equivalent to (iii).
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REMARK 3.3. — Obviously s®> — Nst + 1> < 0 is equivalent to (N‘— V2N2‘4>s <
t < <N+— V2NL4) s. Since t>s and N >2 this inequality is equivalent to

t< (1\’*7 VZNZ*“) s. Thus we have only to prove that s* — Nst + t* = 1 is equivalent

to (t,8) = (ax.1, ag) where ay has been defined above.

LEMMA 3.4. — All the integer solutions of s> — Nst + 1> = 1, when t > s, are

k k
(N+ VN2 74> _ (N— N2 74>
2 2z

VNZ—4

exactly s = ay,t = ay,1, where aj, =

Proor. — We already know that the sequence {ay;} is defined recursively by

ay = O,
a; = 1,
a1 = Nag — a_1.

So we prove by induction on k that (s = a;,t = @, 1) is a solution of
(6) s> — Nst+ 12 =1.

If £ =0, obviously (s =0, = 1) is a solution. Let the pair (a;_1,a;) satisfy (6),
then, using the recursive definition, we check that (ay,a;.1) is a solution too.
Hence we have to prove that there are no other solutions. By the change of co-
ordinates {r = 2t — Ns,s = s} our equation becomes the following Pell-Fermat
equation 12 — (N? — 4)s> = 4. By Number Theory results (see for example [8],
page 77, or [4]), we know that all the solutions (r, s) are given by the sequence
(7, si.) defined by

1
me+sVNZ =4 = s (N + VNZ =4,

for all £ > 0. Now we have only to prove that these solutions are exactly those
already known. We can easily check that the pair of sequences (si,?;) can be
recursively defined by
Yo = 27
So = 07

Tk+1 =
Sk+1 =

(N?—4)s+Nwy,
2 )

Nsj+r;
5 -

By a change of coordinates we define ¢}, = % and we check that the pair (s;, t;.)

is exactly (a, ax,1), for all k > 0. In fact (sg,ty) = (0,1) = (ay, a1) and, moreover,

2 2_ _
by = Spe1 and . = N8k+12+?“k+1 _ W 2)2815+N7’1¢ _ W 2)81c+é\7(2t/¢ Nsp) Nt —t, ;. N

III. Now we prove the last implication, i.e. (iii) implies (i). In the case
t,s) = (apy1,0a), the generic £ is an exceptional bundle by Theorem 2.1,
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therefore it is in particular simple. So suppose s> — Nst + t> < 0 and recall that H
denotes Hom(I @ O(— 1), W O) =2V @IV @ W. Let S be the set

{A,B,M :A"'MB =M} c GL(U) x GL(W) x H

and 7; and ne the projections on GL(/) x GL(W) and on H respectively. Notice
that, for all M € H, ny(n; 1(M)) is the stabilizer of M with respect to the action of
GL() x GL(W). Obviously (11d, AId) € Stab(M), therefore dim Stab (M) > 1.

LEMMA 3.5. - If K is defined by the sequence

) 0—I®0(—1) LW e 0—E—0
and dim Stab (M) = 1, then E is simple.

Proor. — If by contradiction E is not simple, then there exists ¢ : E — E non-
:cvrivial. Applying the functor Hom (—, E) to the sequence (7) we get that ¢ induces
¢ non-trivial in Hom (W ® O, E). Now applying the functor Hom(W ® O, —)
again to the same sequence we get Hom (W ® O, W ® O) =2 Hom (W ® O, E)
because

HomW® 0,I0(-1)=2WeIeoH(O(-1)=0
and
ExXtWo 0,12 0(-1)=2WeleH(O(-1)=0.

It follows that there exists gNé non-trivial in End (W ® O), i.e. a matrix B # Id in
GL(W). Restricting ¢ to I ® O(— 1) and calling A the corresponding matrix in
GL({), we get the commutative diagram (4). Therefore (A, B) # (11d, 21d) be-
longs to Stab (M) and consequently dim Stab (M) > 1. [ |

Finally it suffices to prove that for all generic M € H, the dimension of the
stabilizer is exactly 1. In other words we have to prove the following

PROPOSITION 3.6. — Let H=V @ I' @ W as above and suppose s* — Nst +
1> < 0. Then the generic orbit in H with respect to the natural action of
GL(I) x GL(W) has dimension exactly (s> + t> — 1).

Recall that we have defined the following diagram

S={AB,M:A'MB = M}
GL(I) x GL(W) H

Let (A, B) be two fixed Jordan canonical forms in GL(I) x GL(W). We define
Gap C GL({U) x GL(W) as the set of couples of matrices similar respectively to A



SIMPLICITY OF GENERIC STEINER BUNDLES 731

and B. Note that nan; }(Gap) = {C'MD : A-\MB =M, C € GL(I),D € GL(W)}.
Moreover GIdId = {(ﬂ.Id, AId), A€ C} and nznfl(GIdId) =H.

LEMMA 3.7. — If s> — Nst +t2 < 0 and (A,B) are Jordan canowical forms
different from (A1d, A1d) for any A, then mem; YGyp) is contained in a Zariski
closed subset strictly contained in H.

Proor. — Suppose that the assertion is false. Then there exist two Jordan
canonical forms A and B, different from (A1d, A1d), such that mom; 1(G4p) is not
contained in any closed subset. This implies that we can take a general M € H
such that AM = MB and in particular we can suppose the rank of // maximum.

Now we prove that A and B have the same minimal polynomial. First, if pp is
the minimal polynomial of B, i.e. pp(B) =0, then it follows that pp(4A)M =
Mpp(B) =0 and since M is injective we get pgp(A) =0, hence the minimal
polynomial of B divides that of A. Now if we denote by 4; (1 <1 < q) the ei-
genvalues of A and by w1 <j< q") those of B, we obtain that RS {1, 2}
foralll <j < ¢'. Letusdefine A’ = (A4 — xId) and B’ = (B — «xId;): obviously we
obtain A’M = MB'. We denote by B’ the matrix of cofactors of B’ and we know
that B'B’ = det (B')Id; = Pp(x)Id;, where Py is the characteristic polynomial of
B. Therefore

A'MB' = Pg(x)M

and developing this expression we see that ¢’ = ¢. In fact if there exists a 4; # y;
forallj=1,...,¢, then there is a row of zeroes in M and consequently M is not
generic. Then we get A and B with the same eigenvalues /; (1 <1 < q) with
multiplicity respectively a; >1 and b; > 1. The hypothesis that (A,B) #
# (AId, 21d) means that either A and B have more than one eigenvalue or at least
one of them is non-diagonal.

Now consider the first case, i.e. ¢ > 2. Since dim/ = s and dim W =, ob-
viously -7 ; a; =s e Y1 | b; =t. Now we denote M = (M;;), where M;; has di-
mension a; x b;. Since AM = MB, every block M;; is zero for all ¢ # j, i.e. it is
possible to write M with the form

M=

* O OO

SO O *
SO *x O

In particular we can define 7y = a1, me = YV , a;,m1 = by, me =Y 1, b; and
thus the matrix M becomes

(8) M = <( * )n1Xﬂ11 (O)nlxmz )

(0)712 Xmy (= )71/2 XM



732 MARIA CHIARA BRAMBILLA

where n; +ng =s and my +mg =t and n;,m; > 1 for ¢ = 1,2. Thus it only
suffices to show that a matrix in the orbit

Oy = {CMD : C € GL(s), D € GL(t), M with the form (8)},

is not generic in H if s> — Nst + t? < 0. This fact contradicts our assumption and
completes the proof.
In order to show this, we introduce the following diagrams

{(b,Il:Wl: (]1®V\/ CW1

H=Hom(IQVV,W G(Cm,C¥) x Gg(Ccm™,C))
where G(C* , (") denotes the Grassmannian of C* ¢ C* and

{6, 1, Wy : (L, @ VV) C Wy}

H=Hom(I® V", W) G(C™,C*) x G(C™ , C))

It is easy to check that the matrices of the set Oy, live in the subvariety

H = a1(B7(G1) N a2y (G2)) C H,

then, in order to prove that these matrices are not generic, it suffices to show
that dim H < dim H. Since dim (G;) = (n1ne + myms) for 1 = 1,2, we obtain

dim (a1 (B 1(G1))) < dim (B71(G1)) = mamg + mymg + N1 (my + mg) + nams)
and
dim (a2(f5 1 (G2)) < dim (5" (G2)) = ning + myme + N(mymy + ne(my + me)).

Therefore, since dim H = Nst = N(n; + ng)(m; + mg) we only need to show that
either (nime +mime — Nngmy) < 0 or (ming + mime — Nnims) < 0. In other
words we have to prove that the system

nine + mims — Nnymg > 0
n1Ng + mims — Nnagmy > 0
has no solutions in our hypotesis s> — Nst + t < 0, i.e. if

N—\/N2—4t<S<N+vN2—4t
2 - 2 '
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This is equivalent to prove that the system

NniNg + mims — Nnyms > 0
ning + mims — Nngmq > 0

n1 +mg > YN (m; + my)

n1 +mg < NEN=4 1+ my)

has no solutions. In order to do it, consider 7, and m; as parameters and write
the previous system as a system of linear inequalities in two unknowns ne and
mao.

nmng > (Nny — my)ms

(n1 — Nmyng > —myms

ng > a_mg + (a_my; — 1)

ng < ayme + (aymy — nq)

where we denote a_ = ¥=YN=4 and ¢, = ¥+VN=4 Notice that (o +a) =N
and a_a,. = 1, because they are solutions of the equation s> — Nst + > = 0. Now
let us consider three cases:

e if 0 < mny; — a,m, the system

(Nny—my)
Ng 2> == =My
ng < aymg + (@4My — ny)

has no solutions because (a;m;—n1) <0 and a, < (N";Liiml), since
1 A

N —an —my =a_ny —my = (ay)” (m —agmy) > 0;
o ifm; —a,m; <0< n;—a_m; the system is

ng = wmz

1
mi
ng < (Nmﬁnl)mz

because Nm; —mn; >a,m; —n; >0 and there is no solution because

m Nni—mp) o3 2 2 .
=™ -, since NW®Onym; —mi —ny) > 0;

e if n; —a_m; < 0 then the system

m
N2 S (lel_nl)m2
Ng > a_Mg + (a_my — nq)

has no solutions because (a_m; —n1) > 0and a_ > m ie.a, < meli;”l),
since (N —a,)my —ny = a_my —nq > 0.

Thus the proof in the case ¢ > 2 is complete.
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In the second case we consider ¢ = 1 and the two matrices are

A1
/1 i1
A= ,  Where J;= . '
J, ) /1.
and c; denotes the order of J; and
A1
L i1
B = , Wwhere L;= N
Ly Lo

A

and d; is the order of ;. We suppose that ¢; >2 ord; >2ie. h<sork <t
Then a matrix M such that AM = MB has the form M = (M;;) and M;;is ac; x d;
matrix such that

Tc if C; = d]’ =C
M= OT) if c=¢<d;
(o) if ¢>di=d
and 7 is a ¢ x ¢ upper-triangular Toeplitz matrix. It is easy to see that M has at

least &k columns in which there are at least (c; — 1) +(ca — 1)+ ... +(c, — 1) =
(s — h) zeroes in such a way that we can order the basis so as to write M in the

following form
e G hxt—k)
O s—myxk  s—myxt—k)
Analogously M has at least h rows with at least (t — k) zeroes such that it is
possible to write the matrix in the form

e O)pex(t—1)
Kok Fs—tntty |
Hence there exist non-trivial subspaces Ii,I3, Wi, We such that
MI;VV)CW,;, for i=1,2, and dimI; =s—h, dimW; =k, diml; =nh,

dim Wy = t — k. Therefore exactly the same argument used in the first case gives
that M is not generic and completes the proof. |

The previous lemma proves Proposition 3.6 and the main theorem follows.
This theorem can also be reformulated as follows:

THEOREM 3.8. — Let M a (s x t) matrix whose entries are linear forms in N
variables and consider the system

9) XM = MY,
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where X € GL(s) and Y € GL(t) are the unknowns. Then if s*> + 2 — Nst < 1,
there is a dense subset of the vector space C* @ C' @ CN, where M lives, such that
the only solutions of (9) are trivial, i.e. (X,Y) = (Ald, AId) € GL(s) x GL(¢) for
4 € C. Conversely if s> +t2 — Nst > 2, then for all M there are non-trivial so-
lutions.

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
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