BOLLETTINO UNIONE MATEMATICA ITALIANA

ABEL CASTORENA

Curves of genus seven that do not satisfy the Gieseker-Petri theorem

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 8-B (2005), n.3, p. 697–706.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2005_8_8B_3_697_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Curves of Genus Seven That Do Not Satisfy the Gieseker-Petri Theorem.

ABEL CASTORENA (*)

Sunto. – Nello spazio dei moduli delle curve di genere g, \mathcal{M}_g , indichiamo con \mathcal{GP}_g il luogo delle curve che non soddisfano il teorema di Gieseker-Petri. In questo lavoro noi proviamo che nel caso di genere sette, \mathcal{GP}_7 è un divisore di \mathcal{M}_7 .

Summary. – In the moduli space of curves of genus g, \mathcal{M}_g , let \mathcal{GP}_g be the locus of curves that do not satisfy the Gieseker-Petri theorem. In the genus seven case we show that \mathcal{GP}_7 is a divisor in \mathcal{M}_7 .

0. - Introduction

Let \mathcal{M}_g be the moduli space of smooth and irreducible projective curves of genus g. Let $C \in \mathcal{M}_g$ and let K_C be the canonical bundle of C. Let L be a line bundle on C and consider the Petri map $\mu_L : H^0(C, L) \otimes H^0(K_C \otimes L^{-1}) \to H^0(C, K_C)$.

The Gieseker-Petri theorem (see [5], p.285) says that for every line bundle L on a general curve $C \in \mathcal{M}_g$, μ_L is injective. Consider the locus

 $\mathcal{GP}_g := \{C \in \mathcal{M}_g | C \text{ does not satisfy the Gieseker-Petri theorem}\}.$

By the Gieseker-Petri Theorem, \mathcal{GP}_g is a closed Zariski subset in \mathcal{M}_g . Let C be a smooth irreducible projective curve of genus g and $L \to C$ a line bundle of degree d with $r+1=h^0(C,L)$. The Brill-Noether number is defined by $\rho(g,r,d):=h^0(C,K_C)-h^0(C,L)h^0(C,K_C\otimes L^{-1})=g-(r+1)(g-d+r)$. So if $\rho(g,r,d)<0$, the Petri map μ_L is not injective. Let $\mathcal{M}_{g,d}^r:=\{C\in\mathcal{M}_g|G_d^r(C)\neq\emptyset\}$. In [7] Steffen showed that if $\rho(g,r,d)<0$, each component of $\mathcal{M}_{g,d}^r$ has codimension at most $-\rho(g,r,d)$ in \mathcal{M}_g . When $\rho=-1$, in [3] Eisenbud and Harris showed that $\mathcal{M}_{g,d}^r$ has a unique irreducible component of codimension one in \mathcal{M}_g . M. Teixidor showed (see [8], [9]) that the locus $\mathcal{M}_g^1:=\{C\in\mathcal{M}_g|C$ has a autoresidual $g_{g-1}^1\}$ is an irreducible divisor in \mathcal{M}_g . The above results give us some divisorial components of \mathcal{GP}_g .

We refer the above components as Eisenbud-Harris and Teixidor components respectively. To give all components of \mathcal{GP}_g is a difficult problem, however for specific low genus we can study \mathcal{GP}_g using the projective geometry of curves. For example in [2], the varieties W_d^r for general curves for low genus are described. Using this analysis one can describe all components of \mathcal{GP}_g for $3 \le g \le 6$. The genus seven case is a non trivial case for studying \mathcal{GP}_7 . In this work the main theorem is

THEOREM. \mathcal{GP}_7 is a divisor in \mathcal{M}_7 .

We show the theorem with a degeneration argument. First we study curves of genus seven with a primitive g_d^r , r = 1, 2, d = 1, ..., 6, for which the Petri map is not injective. In sections 2.1-2.7 we describe two codimension one components of \mathcal{GP}_7 . These are the Eisenbud-Harris and the Teixidor components. The third codimension one component of \mathcal{GP}_7 that we denote by \mathcal{D} , is formed by curves of genus seven with a g_5^1 for which the Petri map is not injective. To show that $\mathcal{D} \subset \mathcal{M}_7$ has codimension one we proceed as follow: In proposition 2.8 we show that a pentagonal curve C of genus seven does not satisfy the Gieseker-Petri theorem if and only if it has a g_5^1 such that the residual $g_7^2 = |K_C - g_5^1|$ induces a birational morphism on a septic Γ in \mathbb{P}^2 with eight double points, seven of them lying on a conic. Now consider $\mathcal{V}^{7,7}$ the Severi variety of reduced and irreducible plane curves of degree seven and geometric genus seven. Consider $\mathcal{V}_8^{7,7} \subset \mathcal{V}^{7,7}$ the locus consisting of plane curves having eight double points as singularities. In this case, the dimension of $\mathcal{V}_8^{7,7}$ is equal to 27 (see [5], p. 30). The quotient $\mathcal{V}:=\mathcal{V}_8^{7,7}/PGL(3,\mathbb{C})$ of $\mathcal{V}_8^{7,7}$ with the automorphisms of \mathbb{P}^2 is of dimension 19. Consider the subvariety \mathcal{D}_0 of \mathcal{V} defined by $\mathcal{D}_0 := \{ \Gamma \in \mathcal{V} | \text{ seven double points of } \Gamma \text{ lying on a conic} \}$. A consequence of the corollary 2.10 shows that \mathcal{D}_0 is irreducible and of dimension 17 in \mathcal{V} . In section 3 we consider the natural morphism $\phi: \mathcal{V} \to \mathcal{M}_7$, $\Gamma \to \phi(\Gamma) = \text{normalization of } \Gamma$. Since by excess linear series (see [2], p. 329) a pentagonal curve C of genus seven has dim $W_5^1(C) = 1$, we have that the image $\mathcal{D} := \phi(\mathcal{D}_0)$ has codimension one in \mathcal{M}_7 if for each $C \in \mathcal{D}$, the fiber $\phi^{-1}(C) \simeq W_5^1(C)$ intersects only a finite number of elements of \mathcal{D}_0 . This means that \mathcal{D} has codimension one in \mathcal{M}_7 if for $C \in \mathcal{D}$ we have that for the general element $L \in W_5^1(C)$, the Petri map μ_L is injective. To show this, in 3.2 we degenerate a curve $\Gamma \in \mathcal{D}_0$ to a compact type curve $X_0 = \mathbb{P}^1 \cup Z$, $\{p\} := \mathbb{P}^1 \cap Z$, where Z is a sextic with three not collinear double points. By stable reduction ([5], p. 118) the normalization C_0 of Z is the stable limit of X_0 . In Proposition 3.3 we show that for the general linear series $|D| = g_5^1$ on C_0 the Petri map μ_D is injective. This implies that for each $C \in \mathcal{D}$ and for a general element L of $W_5^1(C)$, the Petri map μ_L is injective. So we have that \mathcal{D} is an irreducible component of \mathcal{GP}_7 of codimension one in \mathcal{M}_7 . Thus the components of \mathcal{GP}_7 are \mathcal{M}_7^1 , \mathcal{M}_{74}^1 , \mathcal{D} . Thus of this way we will prove the theorem.

It is an interesting open problem to prove that every irreducible component of \mathcal{GP}_g is divisorial in \mathcal{M}_g .

Acknowledgements. The author is grateful to Ciro Ciliberto for fruitful discussions and for having introduced me to this subject during a year of posdoc at the University of Rome II. Also I am grateful with Sevin Recillas(IMATE-Morelia) and Armando Sanchez(IFM-UMSNH) for having explained to me some facts on moduli spaces and linear systems on curves.

1. - Preliminaries.

1.1. – Let C be a smooth projective irreducible curve of genus g, D a divisor on C and K_C the canonical bundle on C. We say that the linear series |D| is primitive if |D| and $|K_C - D|$ are free of base points.

Let D be a divisor on C. We write $r=r(D):=h^0(C,D)-1$. Suppose that |D| is not primitive and let $p\in C$ be a base point of $|K_C-D|$, by Riemann-Roch we have that $r(D+p)=\dim |D+p|=\deg D+1-g+h^0(K-(D+p))$, now since $h^0(K_C-D-p)=h^0(K_C-D)=r(D)+g-\deg D$, then r(D+p)=r(D)+1, that is, p is not base point of |D+p|. In this way we transferred a base point of $|K_C-D|$ to the series |D| obtaining two series $|K_C-(D+p)|$ and |D+p|, residual one to the other with respect to the canonical series and of dimension r-d+g and r+1 respectively. Iterating this process we can obtain from a pair of non primitive series $(|D|,|K_C-D|)$ a pair of primitive series $(|D'|,|K_C-D'|)$.

LEMMA 1.2. – If there exists |D| such that $\mu_D: H^0(C,D) \otimes H^0(C,K_C-D) \to H^0(C,K_C)$ is not injective then there exists a primitive series |D'| such that $\mu_{D'}$ is not injective.

PROOF. — Let |D| be a non primitive series such that $\mu_{0,D}$ is not injective. We can write $|D|=p_1+\cdots+p_n+|D_1|$ and $|K_C-D|=q_1+\cdots+q_m+|D_2|$, where $|D_1|$ and $|D_2|$ are free of base points. Let $L_i, i=1,2$ be the line bundles defined by D_i . Consider the map $\mu_1: H^0(C,L_1)\otimes H^0(C,L_2)\to H^0(C,L_1\otimes L_2)$. There exists an isomorphism $\psi:$ Kernel $\mu_D\to$ Kernel μ_1 given by $\psi(\sum s_i\otimes t_i)=\sum_{f_1}^{s_i}\otimes \frac{t_i}{f_2}$, where $s_i\in H^0(C,D),\quad t_i\in H^0(C,K_C-D),\quad (f_1)=p_1+\cdots+p_n,\quad (f_2)=q_1+\cdots+q_m$. Applying the above process of transfering base points we obtain $D_1'=D_1+q_1+\cdots+q_m$ and $D_2'=D_2+p_1+\cdots+p_n$ such that $D_2'=K-D_1'$ and $|D_1'|,\ |D_2'|$ are primitive. Since $D_1\subset D_1',\ D_2\subset D_2'$ then $H^0(C,L_i)\subset H^0(C,L_i'),\ i=1,2,$ where L_i' is the line bundle defined by D_i' . We have the following commutative diagram

$$\begin{array}{cccc} H^0(C,L_1)\otimes H^0(C,L_2) & \xrightarrow{\mu_1} & H^0(C,L_1\otimes L_2) \\ & & & & & & \downarrow \\ \\ H^0(C,L_1')\otimes H^0(C,K_C\otimes (L_1')^{-1}) & \xrightarrow{\mu_{L_1'}} & H^0(C,K_C) \end{array}$$

Since Kernel $\mu_1 \neq 0$, then Kernel $\mu_{L'_1} \neq 0$, that is, Kernel $\mu_{D'_1} \neq 0$.

Thus we consider primitive linear series for which the multiplication map is not injective. Since $W^r_d(C) \simeq W^{g-d+r-1}_{2g-2-d}(C), \ |D| \to |K_C-D|,$ we only consider special primitive linear series |D| such that $r=h^0(C,D)-1>0$, and $g-d+r=h^0(C,K_C-D)>0$, with $d=\deg D< g$. By Clifford theorem ([2]), a linear series |D| of degree $d\leq 2g-1$ satisfies $2r\leq d$ with equality if and only if D=0, D is the canonical divisor or C is hyperelliptic and D is a multiple of the hyperelliptic involution. Then for our analysis we only need to consider special linear series |D| such that r>0 and $2r\leq d< g$.

Also we use *The Base point free pencil trick* ([2], p.126): if |D| is a pencil free of base points, we have that Ker $\mu_D \simeq H^0(C, K_C(-2D))$.

2. - The locus \mathcal{GP}_7 .

Let $C \in \mathcal{M}_7$. We study primitive linear series on C of dimension r and degree d such that $2r \le d \le g - 1 = 6$, for which the Petri map is not injective.

- **2.1.** $r=1,\ d=2,3,4$. In this case we have $\rho(7,1,d)<0$, and by gonality, $\mathcal{M}_{7,2}^1\subseteq\mathcal{M}_{7,3}^1\subseteq\mathcal{M}_{7,4}^1$. For d=4, $\rho(7,1,4)=-1$, so by [3], $\mathcal{M}_{7,4}^1$ is an irreducible divisor in \mathcal{M}_7 .
 - **2.2.** r = 1, d = 5. We postpone this case.
- **2.3.** r=1, d=6. By the base point free pencil trick, the multiplication map for a g_6^1 on C is not injective if and only if g_6^1 is autoresidual. By [8, 9], the locus \mathcal{M}_7^1 is an irreducible divisor in \mathcal{M}_7 .
- **2.4.** r=2, d=4. By the genus formula, a genus seven curve C with a g_4^2 is hyperelliptic, then $C \in \mathcal{M}_{72}^1$.
- **2.5.** r=2, d=5. By the genus formula a curve of genus seven has no primitive g_5^2 .
- **2.6.** r=2, d=6. Let $C\in\mathcal{M}_7$ be a non hyperelliptic curve with a g_6^2 that induces a map $\psi:C\to\mathbb{P}^2, X:=\psi(C)$. If the degree of X is two or three, either X is trigonal or bielliptic, so $C\in\mathcal{M}_{7,4}^1$. If the degree of X is six, either X has a triple point or it has three double points, in any case X is either trigonal or tetragonal. So a curve C with a g_6^2 belongs to $\mathcal{M}_{7,4}^1$.
- **2.7.** r=3, d=6. By Castelnuovo's bound ([2], p. 116) a curve of genus seven with a g_6^3 is hyperelliptic.

Now we study the case 2.2. Let C be a pentagonal curve. The residual of a primitive g_5^1 on C is a base point free g_7^2 . This g_7^2 defines a birational map of C onto

a plane curve in \mathbb{P}^2 . Since a septic curve of genus seven with a triple point has a g_4^1 cut out by lines through the triple point, we only consider septic curves with double points. Let Γ be such a curve and $f: C \to \Gamma$ the normalization of Γ . We denote by \triangle_{Γ} the scheme of singular points of Γ and $\triangle := f^*(\triangle_{\Gamma})$, note that \triangle is a divisor of degree sixteen. By the genus formula the length of $(\triangle_{\Gamma}) = 8$, i.e. \triangle_{Γ} consists of eight points which can be infinitely near. However by our assumption that Γ has only double points the scheme \triangle_{Γ} is in any case curvilinear.

Proposition 2.8. –

- a) Let Γ be a plane curve of degree seven and genus seven with only double points and let $f: C \to \Gamma$ be its normalization. Suppose that there is a conic Q such that the scheme theoretic intersection of Q with \triangle_{Γ} has length equal to seven, i.e. $f^*(Q)$ contains a divisor of degree fourteen contained in \triangle , then C does not satisfy the Gieseker-Petri theorem.
- b) Conversely if C is a pentagonal curve of genus seven such that there is a $|D|=g_5^1$ on C for which μ_D is not injective, then there is in \mathbb{P}^2 a birational model Γ of C of degree seven with only double points such that the g_5^1 is cut out by lines passing through a double point p and there is a conic Q such that Q contains $\triangle_{\Gamma} - \{p\}.$

PROOF. - First I will prove the part (a). Also I will only consider the most complicated case in which the support of $\Delta_{\Gamma} = \{x\}$. The other cases are easier and can be left to the reader.

If the support of $\triangle_{\Gamma} = \{x\}$, then Γ has eight infinitely near double points. Let $\eta := f^*(x)$, so that η is a divisor of degree two and $\triangle = 8\eta$. Our hypothesis means that the pullback f^*Q on C contains 7η . Consider the $|D|=g_5^1$ cut out on C by the lines through x. Let ℓ_1, ℓ_2 be general such lines, cutting out on C two effective divisors $D_1, D_2 \in |D|$. The pullback of $Q + \ell_1 + \ell_2$ contains $9\eta + D_1 +$ $D_2 \sim 9\eta + 2D$. By adjunction formula ([2],p. 53), one has $K_C \sim \mathcal{O}_C(4)(-\triangle)$, and therefore $K_C - 2D$ is effective. Since ker $\mu_D \simeq H^0(C, K_C - 2D)$, we have the assertion.

The proof of part (b) is as follow: Let $|D| = g_5^1$ be a primitive linear series on Cfor which μ_D is not injective. Consider $g_7^2 = K_C - D$. This g_7^2 determines a birational morphism $C \to \Gamma \subset \mathbb{P}^2$ and Γ has only double points. Since C fails the Gieseker-Petri theorem for the g_5^1 , we have that ker $\mu_D \simeq H^0(C, K_C - 2D)$, but $K_C - 2D \sim g_7^2 - g_5^1$ is effective, so necessarily the g_5^1 is cut out by a pencil of lines through a singular point p of Γ . The existence of the conic Q is now clear.

Remark 1. – Suppose we have a curve Γ like in proposition 2.8. Then we claim that the conic Q cannot be singular at any point of \triangle_{Γ} . Suppose in fact that $p \in \triangle_{\Gamma}$ is singular for Q. Suppose that $Q = L_1 + L_2$, where L_1, L_2 are lines through p. Suppose that L_1 contains i double points infinitely near to p.

Therefore Q has to contain 7-i more double points of Γ which can be distinc or infinitely near. If j of such points are on L_1 one has $2i + 2j \le 7$. If $L_1 = L_2$ we must have i+j=7 which gives a contradiction. Suppose then that $L_1 \neq L_2$ and suppose that k double points lie on L_2 off p. Then $2+2k \le 7$ and moreover i+j+k=7 which again gives a contradiction. Let $\mathcal{V}^{7,7}$ be the family of reduced, irreducible plane curves of degree seven with geometric genus seven. This is an irreducible variety (see [5] p.30). Let $\mathcal{V}_8^{7,7}$ be the Zariski open subset of $\mathcal{V}^{7,7}$ defined by all irreducible curves in $\mathcal{V}^{7,7}$ with only eight double points. The dimension of $\mathcal{V}_8^{7,7}$ is 27 (see [5] p.30). We will denote by \mathscr{E} the Zariski open subset of the Hilbert Scheme of locally complete intersection zero-dimensional subschemes in \mathbb{P}^2 of length 8, formed by curvilinear subschemes. Now consider the subvariety $\mathscr{T} \subseteq \mathcal{V}_8^{7,7} \times \mathscr{U} \times \mathscr{X}$, where $\mathscr{U} \subset |\mathcal{O}_{\mathbb{P}^2}(2)|$ is the open set of smooth conics in \mathbb{P}^2 . The variety \mathscr{T} consists of all triples (Γ, Q, Δ) such that $\Delta = \Delta_{\Gamma}$ and $Q \cap \triangle_{\Gamma}$ contains seven points. Note that by proposition 2.8. the image of the projection map $\Pr_1: \mathscr{T} \to \mathcal{V}_8^{7,7}$ is the subvariety $\Sigma := \Pr_1(\mathscr{T})$ of $\mathcal{V}_8^{7,7}$ consisting of curves for which the Gieseker-Petri fails for a g_5^1 .

Proposition 2.9. – \mathcal{I} is irreducible of dimension 25.

PROOF. – Consider the projection $\pi_3: \mathscr{T} \to \mathscr{K}$. Let $S \in \pi_3(\mathscr{T})$ be any point. Namely S is a curvilinear scheme of lenght 8, seven points of which lie on a irreducible conic. Therefore, if $(\Gamma, Q, S) \in \pi_3^{-1}(S)$, then Q is uniquely determined by S. Moreover Γ belongs to the linear system of plane curves of degree seven which are singular at S. Let \mathscr{L}_S be this linear system.

FIRST CLAIM: The dimension of $\mathcal{L}_S = 11$ and the general element of \mathcal{L}_S is irreducible of geometric genus seven.

PROOF OF THE FIRST CLAIM: Let \mathscr{L} be the proper transform of \mathscr{L}_S on the surface X which is \mathbb{P}^2 blowed up at S. Let \tilde{Q} the proper transform of Q on X. Consider the exact sequence:

$$0 o \mathscr{L}(-\tilde{Q}) o \mathscr{L} o \mathscr{L}|_{\tilde{Q}} o 0$$

we remark that $\mathscr{L}|_{\tilde{Q}}=\mathcal{O}_{\tilde{Q}}$. Moreover $\mathscr{L}(-\tilde{Q})$ is the proper transform on X of the linear system of quintics of \mathbb{P}^2 with a double point off Q and seven points on Q. It is easily seen that $h^1(\mathscr{L}(-\tilde{Q}))=0$ and $h^0(\mathscr{L}(-\tilde{Q}))=11$. Hence $h^0(\mathscr{L})=12$. The proof of the irreducibility of the general element of \mathscr{L}_S is easily obtained by Bertini theorem. We omit the details. In order to finish the proof it is sufficient to show that:

SECOND CLAIM: $\pi_3(\mathcal{T})$ is irreducible of dimension 14.

PROOF OF THE SECOND CLAIM. Let $\pi_{23}: \mathscr{T} \to \mathscr{U} \times \mathscr{X}$ be the projection on the

second and third factor and let $\mathcal{Y} := \pi_{23}(\mathcal{I})$ be. The above discussion implies that \mathscr{Y} is the variety formed by pairs (Q, \triangle) such that $Q \cap \triangle$ consists of seven points. Let $\pi_1: \mathcal{Y} \to \mathcal{U}$ be the projection to the first factor which is dominant. The fiber is of course irreducible of dimension 9. This shows that $\dim \mathcal{Y} = 14$. On the other hand $\pi_3: \mathcal{Y} \to \mathcal{X}$ is finite, so the assertion follows.

Corollary 2.10. – The subvariety $\Sigma := \Pr_1(\mathscr{T}) \subset \mathcal{V}_8^{7,7}$ is irreducible of dimension 25.

PROOF. – The map $\Pr_1:\mathscr{T}\to\mathcal{V}_8^{7,7}$ is generically finite. By proposition 2.9. we have that Σ is irreducible of dimension 25.

3. - Proof of the theorem.

In this section we will prove that \mathcal{GP}_7 is a divisor in \mathcal{M}_7 .

Consider the natural morphism $\phi: \Sigma \to \mathcal{M}_7$ where the general fiber of this map has dimension at least 8, because $PGL(3, \mathbb{C})$ acts on Σ and any orbit lies in a fiber of ϕ . Let $\mathcal{V} := \mathcal{V}_8^{7,7}/PGL(3,\mathbb{C})$. Note that $\mathcal{D}_0 := \Sigma/PGL(3,\mathbb{C}) \subset \mathcal{V}$ is of dimension 17. Now we will prove that the general fiber of $\phi: \mathcal{D}_0 \to \mathcal{M}_7$ is zerodimensional, that is, $\mathcal{D} := \phi(\mathcal{D}_0)$ has codimension one in \mathcal{M}_7 . This will prove that $\mathcal{D} := \phi(\mathcal{D}_0)$ is an irreducible component of \mathcal{GP}_7 of codimension one in \mathcal{M}_7 . We will prove the theorem with a degeneration argument following the next steps:

3.1. Consider the conic $Q(x,y,w)=y^2-txw$. When $t\to 0$ we obtain that Q tends to the double line $y^2=0$. In \mathbb{CP}^2 consider the points [t:t:1], $[4t:2t:1],[9t:3t:1] \in Q$. Restricting to \mathbb{C}^2 we have the points $p_1(t)=(t,t)$, $p_2(t) = (4t, 2t), p_3(t) = (9t, 3t)$ on the conic $y^2 - tx$. Let $I_1(x) = \langle x - t, y - t \rangle$, $I_2(t) = \langle x - 4t, y - 2t \rangle$, $I_3(t) = \langle x - 9t, y - 3t \rangle$ the ideals that define $p_1(t)$, $p_2(t)$, $p_3(t)$ respectively. The schemes Spec $\mathbb{C}[x,y]/I_k^2(t)$ define $p_k(t)$ as double points for k=1,2,3. Set $J(t):=\bigcap_{k=1}^3 (I_k^2(t)).$ For $t\neq 0$, the scheme $S_t:=\operatorname{Spec} \mathbb{C}[x,y]/J(t)$ is the union of these three double points. Using ([4]) we have that a Groebner basis for J(t) is given by the polinomials $x^3 - 12x^2y + 47xy^2 - 60y^3 + 11x^2t - 84xyt +$ $157y^2t + 36xt^2 - 132yt^2 + 36t^3, \ y^4 - 2xy^2t + x^2t^2, \ xy^3 - x^2yt - 6xy^2t + 11y^3t + 11y^$ $6x^2t^2 - 11xyt^2 - 6y^2t^2 + 6xt^3, x^2y^2 - 12x^2yt + 22xy^2t + 36x^2t^2 - 144xyt^2 + 121y^2t^2 + 22xy^2t + 36x^2t^2 - 144xyt^2 + 121y^2t^2 + 12x^2y^2t + 12x^2y$ $72xt^3 - 132yt^3 + 36t^4$. So we have that $J(0) = \langle f_1, f_2, f_3, f_4 \rangle$, where $f_1 = x^3 - 12x^2y +$ $47xy^2 - 60y^3$, $f_2 = y^4$, $f_3 = xy^3$, $f_4 = x^2y^2$. Note that J(0) defines the flat limit for $t \to 0$ of the scheme S_t . Remark that $f_1 = (x - 4y)(x - 3y)(x - 5y)$. It is then clear that J(0) consists of all polinomials f(x,y) such that f=0 defines a curve with an ordinary triple point at the origin with tangent lines x = 3y, x = 4y, x = 5y. In conclusion, the limit of the three double points, at $p_1(t)$, $p_2(t)$, $p_3(t)$ is an ordinary triple point with fixed tangent lines. In a similar way when we take the points $[\frac{1}{t}:1:1], [\frac{2}{t}:4:1], [\frac{3}{t}:9:1]$ and $t\to 0$, the limit of these three points as double points will be another ordinary triple point. Finally we can let another double point p(t) on Q tend for t=0 to the point [1:0:1]. for instance take $p(t)=[1:\sqrt{t}:1]$

3.2. If we apply the above specialization to a conic Q on which we have seven double points of an irreducible curve Γ_t of degree seven and genus seven, we have that we can specialize this curve Γ_t to a curve Γ_0 of degree seven with two triple points and one double point on a line ℓ , so that the line ℓ splits off Γ_0 , that is, $\Gamma_0 = \ell \cup Z$, where Z is a sextic curve with three double points. Notice that we can make the above limit in such a way that the three double points of Z are not collinear. Let $\psi_t : C_t \to \Gamma_t$ be the normalization of $\Gamma_t, t \neq 0$. $\{C_t\}$ form the fibers of a family $\pi : \mathcal{X}^* \to D(0,1) - \{0\}$, where $D(0,1) := \{t \in \mathbb{C} : |t| < 1\}$. By stable reduction ([5], p. 118), we can make a base change and complete the family $\pi : \mathcal{X}^* \to D(0,1) - \{0\}$ to a family $\pi : \mathcal{X} \to D(0,1)$ of stable curves. In this case \mathcal{X} is smooth, and the stable limit of the C_t is the central fiber of the family $\pi : \mathcal{X} \to D(0,1)$ which is the normalization C_0 of Z. The dimension of $W_5^1(C_0)$ is one: We apply Martens's theorem ([2, p. 191]) and the proof of the Mumford theorem ([2, p. 193]) to the case d = 5, g = 7 to deduce that dim $W_5^1(C_0) = 1$.

REMARK 2. – We remark that C_0 has only three g_4^1 , i.e. the ones cut out by the lines through the double points of Z. We recall that the double points of Z are not collinear. It is clear that C_0 is not trigonal. Let g_4^1 be on Z and $D=q_1+q_2+q_3+q_4\in g_4^1$ a general divisor. Note that D imposes only three conditions to cubics through the double points p_1,p_2,p_3 of Z. Consider the conic Q passing through p_1,p_2,p_3,q_1,q_2 , we claim that $q_3,q_4\in Q$, otherwise, by monodromy q_3,q_4 both do not lie on Q. Let ℓ_0 be a general line through q_3 so that $q_4\notin \ell_0$. Then $Q+\ell_0$ contains p_1,p_2,p_3,q_1,q_2,q_3 but not q_4 a contradiction. Now I claim that Q splits in the line ℓ_{12} through p_1,p_2 and a line ℓ containing p_3,q_1,q_2,q_3,q_4 . In fact, if one uses the Cremona transformation based at p_1,p_2,p_3 , then Z is mapped to another sextic curve with three double points and the g_4^1 is now contained in the g_6^2 cut out by the lines, hence it is cut out by the lines through a double point. This implies that also on Z the same happens.

Now note that one component W_1 of $W_5^1(C_0)$ is formed by the family of g_5^1 cut out by lines through a general point of the sextic Z. A second component W_2 is formed by the g_5^1 's cut out by conics through the three double points p_1, p_2, p_3 and a general point of Z. We can go from W_1 to W_2 via the quadratic Cremona transformation based at the double points p_1, p_2, p_3 of Z. A third componet W_{p_1} is formed by the g_5^1 's given by $g_4^1 + q$, $q \in Z$ general, where the g_4^1 is cut out by lines through the double point p_1 . In analogous way we have the components W_{p_2}, W_{p_3} . Now take a g_5^1 not belonging either to W_1 or Wp_i , i=1,2,3. Let $D=q_1+\cdots+q_5\in g_5^1$ be a general divisor. We have that no three points of D are no collinear, then D lies on a irreducible conic Q_D . Suposse that Q_D does not

contain p_1, p_2, p_3 . Since the linear system $\mathcal{M} := |K_{C_0} - D|$ is cut out by of cubics through p_1, p_2, p_3, q_1, q_5 and has dimension two, we can split off Q_D for a cubic of \mathcal{A} , and the residual D would be a line containing p_1, p_2, p_3 which is not possible. In a similar way we see that it cannot be the case that Q_D does not contain some of the points p_1, p_2, p_3 , in other words $p_1, p_2, p_3 \in Q_D$ and therefore $g_5^1 \in W_2$.

Proposition 3.3. – Let $f: C_0 \to Z$ be the normalization of Z. μ_D is not injective only for a finite number of pencils g_5^1 on C_0 .

PROOF. - We have that for a $|D|=g_5^1$, ker $\mu_D\simeq H^0(C_0,K_{C_0}-2D)$, where $K_{C_0} - 2D$ is the pullback under f of the linear system of cubics through p_1, p_2, p_3 and D_1, D_2 with $D_1, D_2 \in |D|$. Note that $H^0(C, K_{C_0} - 2D) = 0$ if D belongs either W_1 or W_2 . Let $D \in W_{p_i}$ for some i = 1, 2, 3. By simplicity assume that $D \in W_{p_1}$. Thus we have that $|D|=g_4^1+q,\,q\in Z$ general and the g_4^1 is cut out by the lines through the double point point p_1 . Every divisor $D \in |D|$ has four points lying on a line through p_1 . A section of $H^0(C, K_{C_0} - 2D)$ will be a cubic G that has four intersection points with two lines ℓ_1,ℓ_2 where the four points of $D_1,D_2\in |D|$ respectively lie. Thus G splits in $G = \ell_1 \cdot \ell_2 \cdot \ell_3$, where ℓ_3 is the line through p_2, p_3 . If $G \neq 0$, q must lie on ℓ_3 , that is, q must be one of the other two points z_1, z_2 on Z where ℓ_3 intersects Z. So for $D \in W_{p_1}$, μ_D is not injective only for $|D| = g_4^1 + z_j$ j=1,2.

The following corollary is now clear.

COROLLARY 3.4. – Let $C \in \mathcal{D}$. Let L be a general point in $W_5^1(C)$, then the Petri map $\mu_L: H^0(C,L)\otimes H^0(C,K\otimes L^{-1})\to H^0(C,K)$ is injective.

So we have shown that \mathcal{D} is an irreducible component of \mathcal{GP}_7 of codimension one in \mathcal{M}_7 . Thus \mathcal{M}_7^1 , $\mathcal{M}_{7.4}^1$, \mathcal{D} are the components of \mathcal{GP}_7 , then our theorem is proved.

REFERENCES

- [1] E. Arbarello M. Cornalba, Su una congettura di Petri, Comment. Math. Helvetici, **56** (1981) 1-38.
- E. Arbarello M. Cornalba P. Griffiths J. Harris, Geometry of Algebraic Curves Volume I, Grundlehrem der Mathematischen Wissenschaften 267, Springer-Verlag 1984.
- [3] D. EISENBUD J. HARRIS, Irreducibility of some families of linear series with Brill-Noether Number -1, Ann. Scient. Ec. Norm. Sup. 4 série t. 22 (1989), 33-53.
- [4] G. M. Greuel G. Pfister H. Schöneman, Singular 2.0 A Computer Algebra System for Polinomial Computations, Centre for Computer Algebra, University of Kaiserslautern (2001), http://www.singular.uni-kl.de.
- [5] J. Harris I. Morrison, Moduli of curves, Graduate texts in Mathematics 187, Springer-Verlag 1998.

- [6] R. HARTSHORNE, Algebraic Geometry, Graduate texts in Mathematics 52, Springer-Verlag 1997.
- [7] F. Steffen, A generalized principal ideal theorem with applications to Brill-Noether theory, Invent. Math. 132 (1998), 73-89.
- [8] M. TEIXIDOR I BIGAS, half-canonical series on algebraic curves, Trans. Amer. Math. Soc. 302 (1987), 99-115.
- [9] M. TEIXIDOR I BIGAS, The divisor of curves with a vanishing theta-null, Compositio Mathematica 66 (1988), 15-22.

Instituto de Matemáticas UNAM, Campus Morelia. Apdo. Postal 61-3(Xangari). C.P. 58089. Morelia, Michoacán. MEXICO. e-mail address: abel@matmor.unam.mx

Pervenuta in Redazione il 30 maggio 2003 e in forma rivista il 23 dicembre 2004