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Bollettino U. M. 1.
(8) 8-B (2005), 697-706

Curves of Genus Seven That Do Not Satisfy the
Gieseker-Petri Theorem.

ABEL CASTORENA (*)

Sunto. — Nello spazio det moduli delle curve di genere g, Mgy, tndichiamo con GP, il
luogo delle curve che non soddisfano il teorema di Gieseker-Petri. In questo lavoro noi
proviamo che nel caso di genere sette, GP7 ¢ un divisore di Mo.

Summary. — In the modult space of curves of genus g, My, let GP, be the locus of curves
that do not satisfy the Gieseker-Petri theorem. In the genus seven case we show that
GP7 is a diwvisor in Mo.

0. — Introduction

Let M, be the moduli space of smooth and irreducible projective curves of
genus g. Let C € M, and let K¢ be the canonical bundle of C. Let L be a line
bundle on C and consider the Petri map u; : H*(C,L) ® H'(Kc ® L) —
H(C,Kop).

The Gieseker-Petri theorem (see [5], p.285) says that for every line bundle L
on a general curve C € My, y;, is injective. Consider the locus

GP, :={C € M,|C does not satisfy the Gieseker-Petri theorem}.

By the Gieseker-Petri Theorem, GP, is a closed Zariski subsetin M,,. Let Cbea
smooth irreducible projective curve of genus g and L — C aline bundle of degree d
with »+1=#%C,L). The Brill—Noether number is defined by p(g,r,d) :=
”(C,K¢) — h%C, L)k(C,Kc @ L) = g — (r + 1)(g — d + 7). So if p(g,r,d) <0,
the Petri map z; is not injective. LetM 0d = = {C € My|G}(C) # 0}. In[7] Steffen
showed that if p(g,r,d) < 0, each component of M ; has codimension at most
—p(g,r,d)in My When p = —1,in[3] Eisenbud and Harrls showed that M, ; hasa
unique irreducible component of codimension one in M,,. M. Teixidor showed (see
[8], [9]) that the locus M; = {C € M,|C has a autoresidual ggfl} is an irre-
ducible divisor in M,. The above results give us some divisorial components of GP,,.

(*) The author is supported with project CONACYT-2002-C01-40876 (México).
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We refer the above components as Eisenbud-Harris and Teixidor components
respectively. To give all components of GP, is a dificult problem, however for
specific low genus we can study GP, using the projective geometry of curves. For
example in [2], the varieties W for general curves for low genus are described.
Using this analysis one can describe all components of GP, for 3 < g < 6. The
genus seven case is a non trivial case for studying GP7. In this work the main
theorem is

THEOREM. GP7 is a divisor in Mj.

We show the theorem with a degeneration argument. First we study curves of
genus seven with a primitive g;, 7 = 1,2, d = 1, ..., 6, for which the Petri map is not
injective. In sections 2.1-2.7 we describe two codimension one components of GPr.
These are the Eisenbud-Harris and the Teixidor components. The third codimen-
sion one component of GP; that we denote by D, is formed by curves of genus seven
with a gt for which the Petri map is not injective. To show that D € My has codi-
mension one we proceed as follow: In proposition 2.8 we show that a pentagonal
curve C of genus seven does not satisfy the Gieseker-Petri theorem if and only if it
has a g} such that the residual g2 = |K¢ — ¢} | induces a birational morphism on a
septic I” in P? with eight double points, seven of them lying on a conic. Now consider
V"7 the Severi variety of reduced and irreducible plane curves of degree seven and
geometric genus seven. Consider V;j C V"7 the locus consisting of plane curves
having eight double points as singularities. In this case, the dimension of V;’7 is
equal to 27 (see [5], p. 30 ). The quotient V := VZ’7 /PGL(3, C) of V;ﬂ with the au-
tomorphisms of P? is of dimension 19. Consider the subvariety D, of V defined by
Dy :={I" € V| seven double points of I" lying on a conic}. A consequence of the
corollary 2.10 shows that Dy is irreducible and of dimension 17 in V. In section 3 we
consider the natural morphism ¢:V — My, I' — ¢(I') = normalization of 7.
Since by excess linear series (see [2], p. 329 ) a pentagonal curve C of genus seven has
dim W51(C) = 1, we have that the image D := ¢(Dy) has codimension one in My if
for each C € D, the fiber qb*l(C) ~ W51(C) intersects only a finite number of
elements of Dy. This means that D has codimension one in My if for C € D we have
that for the general element L € W}(C), the Petri map 1, is injective. To show this,
in 3.2 we degenerate a curve I € Dy to a compact type curve Xy = Pl UZ,
{p} = P! N Z, where Z is a sextic with three not collinear double points. By stable
reduction ([5], p. 118) the normalization Cy of Z is the stable limit of X,. In
Proposition 8.3 we show that for the general linear series |D| = g% on C the Petri
map pp is injective. This implies that for each C € D and for a general element L of
WL(C), the Petri map 1, is injective. So we have that D is an irreducible component
of GP7 of codimension one in Mg. Thus the components of GP; are M, M%A, D.
Thus of this way we will prove the theorem.

Itis an interesting open problem to prove that every irreducible component of
GP, is divisorial in M.
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1. — Preliminaries.

1.1. — Let C be a smooth projective irreducible curve of genus g, D a divisor
on C and K¢ the canonical bundle on C. We say that the linear series |D| is
primitive if |D| and |K¢ — D| are free of base points.

Let D be a divisor on C. We write » = (D) := h°(C, D) — 1. Suppose that |D|
is not primitive and let p € C be a base point of |K¢ — D|, by Riemann-Roch we
have that »(D + p) = dim |D + p| = deg D + 1 — g + h%K — (D + p)), now since
W(Kc — D —p) = h°(Ke — D) = (D) + g —deg D, then (D +p)=1rD)+1,
that is, p is not base point of |D + p|. In this way we transferred a base point of
|K¢ — D] to the series |D| obtaining two series |K¢ — (D + p)| and |D + p|, re-
sidual one to the other with respect to the canonical series and of dimension
r—d+ g and r + 1 respectively. Iterating this process we can obtain from a
pair of non primitive series (|D|,|K¢—D]|) a pair of primitive series
(D'|, |Ke - D).

LEMMA 1.2. — If there exists |D| such that up, : H*(C,D) @ H'(C,K¢ — D) —
H(C, K¢) is not injective then there exists a primitive series |D'| such that z;, is
not injective.

PRrOOF. — Let|D|be anon primitive series such that x, , is not injective. We can
write |D| =p1 + -+ + pn + |D1] and |K¢ — D) = q1 + -+ - + @u + | D2, where |D; |
and |Dz| are free of base points. Let L;, 7 = 1,2 be the line bundles defined by D;.
Consider the map y : H*(C, L) ® H(C, L) — H(C, Ly ® Ls). There exists an
isomorphismy : Kernel u;, — Kernel y; givenbyw(> s; ®t;) = Z% ®% , where
si € H'(C,D), t;€e H(C,Kc—D), (f)=pi+-+00, (=q+ "+ qn-
Applying the above process of transfering base points we obtain
Di=Di+q1+ - -+quand Dy, = Dy +p; + - -- + p, such that D), = K — D] and
\D}|, |Dj| are primitive. Since Dy C Dy, Dy C D} then H(C,L;) ¢ H(C,L)),
t = 1,2, where L is the line bundle defined by D;. We have the following com-
mutative diagram

H'(C, L) ® H(C, L») A, HYC,Li® Ly)

Hrr
Ll

HC,L) o H'C,Kc o L)™ 1, H'(C,K¢)
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Since Kernel u; # 0, then Kernel Hy = 0, that is, Kernel Hp, #0. O

Thus we consider primitive linear series for which the multiplication map is
not injective. Since Wy(C) ~ Wzg;fl; " Lo, |D| — |K¢ — D|, we only consider
special primitive linear series |[D| such that »=#h%C,D)—1>0, and
g—d+r=h"C,K;— D) > 0,with d = deg D < g. By Clifford theorem ([2]), a
linear series |D| of degree d < 2¢g — 1 satisfies 2r < d with equality if and only if
D =0, D is the canonical divisor or C' is hyperelliptic and D is a multiple of the
hyperelliptic involution. Then for our analysis we only need to consider special
linear series |D| such that » > 0 and 2r < d < g.

Also we use The Base point free pencil trick ([2], p.126): if | D| is a pencil free of
base points, we have that Ker uj ~ H(C,Kq(—2D)).

2. — The locus GP.

Let C € My7. We study primitive linear series on C of dimension » and degree
d such that 2r < d < g — 1 = 6, for which the Petri map is not injective.

2.1. r=1, d =2,3,4. In this case we have p(7,1,d) < 0, and by gonality,
M}y C Mg C My, Ford =4, p(7,1,4) = -1, so by [3], M}, is an irreducible
divisor in Mjy.

2.2. r =1,d = 5. We postpone this case.

2.3.r = 1,d = 6. By the base point free pencil trick, the multiplication map for
a gi on C is not injective if and only if g is autoresidual. By [8, 9], the locus M% is
an irreducible divisor in Mj.

24.r =2, d = 4. By the genus formula, a genus seven curve C with a ¢ is
hyperelliptic, then C € M%2

2.5. r =2, d = 5. By the genus formula a curve of genus seven has no pri-
mitive gZ.

2.6. 7 =2, d = 6. Let C € My be a non hyperelliptic curve with a g2 that in-
duces amap y : C — P?, X := w(C). If the degree of X is two or three, either X is
trigonal or bielliptic, so C € M3 ,. If the degree of X is six, either X has a triple
point or it has three double points, in any case X is either trigonal or tetragonal.
So a curve C with a g2 belongs to M%A.

2.7.r» = 3,d = 6. By Castelnuovo’s bound ([2], p. 116) a curve of genus seven
with a g2 is hyperelliptic.

Now we study the case 2.2. Let C be a pentagonal curve. The residual of a
primitive g} on C is a base point free g2. This ¢ defines a birational map of C onto
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a plane curve in P2. Since a septic curve of genus seven with a triple point has a gl
cut out by lines through the triple point, we only consider septic curves with
double points. Let I" be such a curve and f : C — I" the normalization of I". We
denote by A the scheme of singular points of 1" and A := f*(Ar), note that A is
a divisor of degree sixteen. By the genus formula the lenght of (Af) = 8,i.e. Ar
consists of eight points which can be infinitely near. However by our assumption
that " has only double points the scheme A is in any case curvilinear.

ProposITION 2.8. -

a) Let I be a plane curve of degree seven and genus seven with only double
points and let f : C — I" be its normalization. Suppose that there is a conic () such
that the scheme theoretic intersection of @ with A has lenght equal to seven, i.e.
f*(Q) contains a divisor of degree fourteen contained in A, then C does not sa-
tisfy the Gieseker-Petri theorem.

b) Conversely if C is a pentagonal curve of genus seven such that there is a
|D| = g} on C for which y;, is not injective, then there is in IP* a birational model I”
of C of degree seven with only double points such that the g} is cut out by lines
passing through a double point p and there is a conic @ such that @ contains

Ar —{p}-.

Proor. — First I will prove the part (a). Also I will only consider the most
complicated case in which the support of Ar = {x}. The other cases are easier
and can be left to the reader.

If the support of Ay = {a}, then I" has eight infinitely near double points. Let
n :=f*(x), so that » is a divisor of degree two and A = 8. Our hypothesis means
that the pullback f*@Q on C contains 75. Consider the |D| = gt cut out on C by the
lines through x. Let ¢1, ¢; be general such lines, cutting out on C two effective
divisors D;,Ds € [D|. The pullback of @Q+/¢;+¢; contains 9+ D1+
Dy ~ 95+ 2D. By adjunction formula ([2],p. 53), one has K¢ ~ O¢(4)( — A), and
therefore Ko — 2D is effective. Since ker u;, ~ H(C, Ky — 2D), we have the
assertion.

The proof of part (b) is as follow: Let |D| = ¢} be a primitive linear series on C
for which 1, is not injective. Consider g2 = K¢ — D. This g2 determines a bira-
tional morphism C — I C P? and I" has only double points. Since C fails the
Gieseker-Petri theorem for the g}, we have that ker y;, ~ H(C, K¢ — 2D), but
K¢ — 2D ~ g2 — gl is effective, so necessarily the gt is cut out by a pencil of lines
through a singular point p of I". The existence of the conic @ is now clear. [

REMARK 1. — Suppose we have a curve I like in proposition 2.8. Then we claim
that the conic ¢ cannot be singular at any point of A,. Suppose in fact that
p € Ar is singular for . Suppose that @ = Ly + Lg, where L1, Ls are lines
through p. Suppose that L; contains ¢ double points infinitely near to p.
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Therefore @ has to contain 7 — 7 more double points of 7" which can be distinc or
infinitely near. If j of such points are on L; one has 20 +2j < 7. If L1 = Ly we
must have 7 +j = 7 which gives a contradiction. Suppose then that L; # Ls and
suppose that k& double points lie on Ly off p. Then 2 + 2k < 7 and moreover
i +j + k = Twhich again gives a contradiction. Let V"7 be the family of reduced,
irreducible plane curves of degree seven with geometric genus seven. This is an
irreducible variety (see [5] p.30 ). Let V;ﬂ be the Zariski open subset of Yo
defined by all irreducible curves in V"7 with only eight double points. The di-
mension of Vy is 27 (see [5] p.30 ). We will denote by .%" the Zariski open subset
of the Hilbert Scheme of locally complete intersection zero-dimensional sub-
schemes in P of length 8, formed by curvilinear subschemes. Now consider the
subvariety .7 C V;’7 x 7/ x 2, where 7/ C |O2(2)| is the open set of smooth
conics in P2, The variety .7 consists of all triples (I, @, A) such that A = A and
@ N A contains seven points. Note that by proposition 2.8. the image of the
projection map Pry : . — Vg’7 is the subvariety 2 := Pri(7) of V;j consisting of
curves for which the Gieseker-Petri fails for a g.

PROPOSITION 2.9. — .7 is irreducible of dimension 25.

Proor. — Consider the projection 73 : 7 — 2. Let S € n3(7) be any point.
Namely S is a curvilinear scheme of lenght 8, seven points of which lie on a ir-
reducible conic. Therefore, if (I", @, S) € 731(S), then Q is uniquely determined by
S. Moreover I” belongs to the linear system of plane curves of degree seven which
are singular at S. Let %’g be this linear system.

FirsT CLAIM: The dimension of 4 = 11 and the general element of % is
irreducible of geometric genus seven.

PRrOOF OF THE FIRST CLAIM: Let £ be the proper transform of #s on the
surface X which is P? blowed up at S. Let @ the proper transform of @ on X.
Consider the exact sequence:

OHZ(_Q)—MZHZ~ -0

we remark that & |Q = Op- Moreover Z( — Q) is the proper transform on X of
the linear system of qulntlcs of P2 with a double point off @ and seven points on
Q. It is easily seen that Z'(#(—@Q) =0 and A%(%(— Q) =11. Hence
h°(#) = 12. The proof of the irreducibility of the general element of /g is easily
obtainded by Bertini theorem. We omit the details. In order to finish the proof it
is sufficient to show that:

SECOND CLAIM: 73(.7) is irreducible of dimension 14.

PROOF OF THE SECOND CLAIM. Let np3 : .7 — 7% x .%" be the projection on the
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second and third factor and let %/ := mp3(7) be. The above discussion implies
that 7/ is the variety formed by pairs (@, 2) such that @ N'A consists of seven
points. Let 7 : %/ — % be the projection to the first factor which is dominant.
The fiber is of course irreducible of dimension 9. This shows that dim%/ = 14. On
the other hand =3 : %/ — .#" is finite, so the assertion follows. O

COROLLARY 2.10. — The subvariety 2 := Pri(7) C sz is irreducible of di-
mension 25.

Proor. — The map Pr; : 7 — ng is generically finite. By proposition 2.9. we
have that X is irreducible of dimension 25.

3. — Proof of the theorem.

In this section we will prove that GP7 is a divisor in My.

Consider the natural morphism ¢ : 2 — M7 where the general fiber of this
map has dimension at least 8, because PGL(3, C) acts on 2 and any orbit lies in a
fiber of ¢. Let V := V§7/PGL(3, (). Note that Dy := X/PGL(3, ) C V is of di-
mension 17. Now we will prove that the general fiber of ¢ : Dy — My is zero-
dimensional, that is, D := ¢(Dy) has codimension one in My. This will prove that
D := ¢(Dy) is an irreducible component of GP7 of codimension one in M. We will
prove the theorem with a degeneration argument following the next steps:

3.1. Consider the conic Q(x,y,w) = %> — txw. When ¢ — 0 we obtain that Q
tends to the double line %2 =0. In CP? consider the points [t:¢:1],
[4¢: 2t : 1],[9¢ : 3t : 1] € Q. Restricting to C% we have the points pi(t) = (¢,1),
p2(t) = (4¢,2t), ps®) = (9¢,3t) on the conic y? —tw. Let I1(x) = (x —t,y —t),
Io(t) = (x — 4t,y — 2t), I3(t) = (x — 9t,y — 3t) the ideals that define p;(t), pa(?),
ps(t) respectively. The schemes Spec Clx, y1/1 ,%(t) define py(t) as double points for
k=1,23.SetJ() := ﬂi:l (I%(t)). Fort # 0, the scheme S; := Spec Clx, y1/J(®) is
the union of these three double points. Using ([4]) we have that a Groebner basis for
J(t) is given by the polinomials x® — 1222y + 47xy> — 60y° + 1122t — Sdacyt+
15Ty2t+ 36wt? — 132yt% + 3613, y* — 2wyt + 2212, xy® — 2Pyt — 6ay®t + 1193t +
62212 — 11ayt® — 6212 + 6at3, a?y? — 1202yt + 22xy°t + 36222 — 144wyt>+ 12122 +
200t — 132yt> + 36t*. Sowe have that J(0) = (f1,/s,/3,f1), wheref; = x® — 12x%y+
4Ty — 6013, fo = ¥, f3 = 2, fr = 2®y?. Note that J(0) defines the flat limit for
t — 0 of the scheme S;. Remark that fi = (x — 4y)(x — 3y)(x — 5y). It is then clear
that J(0) consists of all polinomials f(x, %) such that f = 0 defines a curve with an
ordinary triple point at the origin with tangent lines « = 3y,x = 4y,x = 5y. In
conclusion, the limit of the three double points, at p1(t), p2(t), ps(t) is an ordinary
triple point with fixed tangent lines. In a similar way when we take the points
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[1:1:1],[%:4:11,[2:9:1] and t — 0, the limit of these three points as double
points will be another ordinary triple point. Finally we can let another double point
p(t) on Q tend for t = 0 to the point [1:0:1]. for instance take p(t) = [1 : V¢ : 1]

3.2. If we apply the above specialization to a conic @ on which we have seven
double points of an irreducible curve I'y of degree seven and genus seven, we
have that we can specialize this curve I'; to a curve I'y of degree seven with two
triple points and one double point on a line /4, so that the line ¢ splits off I'y, that is,
I'y = ¢ U Z,where Z is a sextic curve with three double points. Notice that we can
make the above limit in such a way that the three double points of Z are not
collinear. Let w, : C; — I'; be the normalization of I'y, t # 0. {C;} form the fibers
of a family = : X* — D(0,1) — {0}, where D(0,1) := {¢t € C : |{| < 1}. By stable
reduction ([5], p. 118), we can make a base change and complete the family
n: X" — D(0,1) — {0} to a family z : X — D(0,1) of stable curves. In this case X
is smooth, and the stable limit of the C; is the central fiber of the family
7 : X — D(0,1) which is the normalization Cy of Z. The dimension of W51(Co) is
one: We apply Martens’s theorem ([2, p. 191]) and the proof of the Mumford
theorem ([2, p. 193]) to the case d = 5,9 = 7 to deduce that dim Wg((]o) =1.

REMARK 2. — We remark that Cy has only three g}, i.e. the ones cut out by the
lines through the double points of Z. We recall that the double points of Z are not
collinear. It is clear that Cy is not trigonal. Let g} be on Z and D = ¢;+
q2 + q3 + g4 € g5 a general divisor. Note that D imposes only three conditions to
cubics through the double points p1,pe, p3 of Z. Consider the conic @ passing
through py, pe, p3, q1, ¢2, we claim that g3, ¢4 € @, otherwise, by monodromy gs, g4
both do not lie on Q. Let ¢y be a general line through ¢s so that q4¢ ¢y. Then
Q + ¢y contains p1, P2, Ps3, q1, @2, g3 but not q4 a contradiction. Now I claim that @
splits in the line /1o through p, pe and a line ¢ containing ps, q1, g2, g3, g4. In fact,
if one uses the Cremona transformation based at p1, pz, ps, then Z is mapped to
another sextic curve with three double points and the g; is now contained in the
g2 cut out by the lines, hence it is cut out by the lines through a double point. This
implies that also on Z the same happens.

Now note that one component Wi of W2(Cp) is formed by the family of g} cut
out by lines through a general point of the sextic Z. A second component Wy is
formed by the g1’s cut out by conics through the three double points p1, p2, ps and
a general point of Z. We can go from W; to Wy via the quadratic Cremona
transformation based at the double points p1, ps, ps of Z. A third componet W), is
formed by the g}’s given by ¢} + ¢, ¢ € Z general, where the g} is cut out by lines
through the double point p;. In analogous way we have the components Wp,, W,,,.
Now take a ¢! not belonging either to W; or Wp;, i=1,2,3. Let
D = q + -+ ¢ € g} be a general divisor. We have that no three points of D are
no collinear, then D lies on a irreducible conic @p. Suposse that Qp does not
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contain pi, p2, ps. Since the linear system . 7 := |K¢, — D| is cut out by of cubies
through p1, pe2, p3, q1,, ¢5 and has dimension two, we can split off Qp for a cubic of
7, and the residual D would be a line containing py, ps, ps which is not possible.
In a similar way we see that it cannot be the case that Qp does not contain some
of the points py, p2, ps, in other words p1, p2, ps € @p and therefore gt € W.

ProposiTioN 8.3. — Let f : Cy — Z be the normalization of Z. yp is not in-
jective only for a finite number of pencils gt on Cj.

PRrOOF. — We have that for a |D| = gi, ker u;, ~ H(Cy, K¢, — 2D), where
K¢, — 2D is the pullback under f of the linear system of cubics through p1, p2, p3
and Dy, Ds with Dy, Ds € |D|. Note that H(C, K¢, —2D) = 0if D belongs either
Wi or Ws. Let D € W), for some ¢ = 1,2, 3. By simplicity assume that D € W,,,.
Thus we have that |D| = g} + ¢, ¢ € Z general and the g} is cut out by the lines
through the double point point p;. Every divisor D € |D| has four points lying on a
line through p;. A section of H%(C, K¢, — 2D) will be a cubic G that has four in-
tersection points with two lines ¢, fs where the four points of Dy, Dy € |D| re-
spectively lie. Thus G splits in G = ¢; - ¢ - /3, where /3 is the line through ps, ps. If
G # 0, g must lie on /3, that is, ¢ must be one of the other two points 21,22 on Z
where /5 intersects Z. So for D € W, up is not injective only for |D| = g + z;
j=12. 0O

The following corollary is now clear.

COROLLARY 3.4. — Let C € D. Let L be a general point in W51 (C), then the Petri
map yy, : H'(C,L) ® H*(C,K ® L) — H°(C, K) is injective.

So we have shown that D is an irreducible component of GP7 of codimension
one in My. Thus M%, M%A, D are the components of GP7, then our theorem is
proved.
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