BOLLETTINO UNIONE MATEMATICA ITALIANA

E. Nešović, M. Petrović-Torgašev, L. Verstraelen

Curves in Lorentzian spaces

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 8-B (2005), n.3, p. 685–696.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2005_8_8B_3_685_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Curves in Lorentzian Spaces.

E. Nešović - M. Petrović-Torgašev - L. Verstraelen

Sunto. – La nozione di angolo iperbolico tra due qualsiasi direzioni simili al tempo nel piano di Lorentz L^2 è stata appropriatamente definita e studiata da Birman e Nomizu [1, 2]. In questo articolo definiamo la nozione di angolo iperbolico tra due qualsiasi direzioni non nulle in L^2 e definiamo una misura sull'insieme di questi angoli iperbolici. Come applicazione, estendiamo il lavoro di Scofield sulle curve euclidee di precessione costante [9] all'ambiente di Lorentz, rendendo così esplicite le curve simili allo spazio in L^3 le cui equazioni naturali esprimono la loro curvatura e torsione come autofunzioni elementari del loro Laplaciano.

Summary. – The notion of «hyperbolic» angle between any two time-like directions in the Lorentzian plane L² was properly defined and studied by Birman and Nomizu [1,2]. In this article, we define the notion of hyperbolic angle between any two non-null directions in L² and we define a measure on the set of these hyperbolic angles. As an application, we extend Scofield's work on the Euclidean curves of constant precession [9] to the Lorentzian setting, thus expliciting space-like curves in L³ whose natural equations express their curvature and torsion as elementary eigenfunctions of their Laplacian.

1. – Angles between non-null vectors in the Lorentzian plane.

The Lorentzian n-dimensional space L^n is the standard vector space R^n endowed with the geometrical structure given by the Lorentzian scalar product $g(X,Y):=x_1y_1+\cdots+x_{n-1}y_{n-1}-x_ny_n$ for all $X=(x_1,\ldots,x_{n-1},x_n)$ and $Y=(y_1,\ldots,y_{n-1},y_n)$ in R^n . A vector $V=(v_1,\ldots,v_{n-1},v_n)$ in L^n is called spacelike, time-like or null (light-like) when respectively g(V,V)>0, g(V,V)<0 or g(V,V)=0 and $V\neq 0=(0,\ldots,0,0)$; a non-null vector V is said to be future-pointing or past-pointing when respectively g(V,E)<0 or g(V,E)>0 whereby $E=(0,\ldots,0,1)$, i.e. when $v_n>0$ or $v_n<0$; $\|V\|=\sqrt{|g(V,V)|}$ is called the norm or length of V, and two vectors V and V in V are said to be orthogonal when V is equal to V (see e.g. [7], [11]).

We now define the oriented «hyperbolic» angle (V, W) for any two vectors V and W in the Lorentzian plane L^2 for which $g(V, V) \neq 0 \neq g(W, W)$. Since such vectors can always be normalized, it suffices to define the oriented

hyperbolic angle (X,Y) for any two unit vectors X and Y in L^2 . Let G be the proper Lorentz group of L^2 , i.e. the group consisting of all orientation-preserving linear transformations of R^2 which also preserve the Lorentzian scalar product g and the time-orientation: G consists of all matrices of the form

$$R_{u} = \begin{bmatrix} \cosh(u) & \sinh(u) \\ \sinh(u) & \cosh(u) \end{bmatrix}$$

whereby $u \in R$. For any two unit time-like vectors X and Y in L^2 , the oriented hyperbolic angle (X,Y) from X to Y was naturally defined via hyperbolic rotations as follows [1,2]: in case X and Y are both either future-pointing or past-pointing (0.a) then (X,Y):=u whereby $R_uX=Y$, and in case X and Y have different time-orientations (0.b), (then X and the vector -Y obtained from Y by reflection in the origin are unit time-like vectors with the same time-orientation) then (X,Y):=u whereby $R_uX=-Y$.

The oriented hyperbolic angle (X,Y) between any two unit space-like vectors X and Y or between any two unit vectors X and Y of which one is space-like and the other one is time-like can equally naturally be defined as follows (cfr. also [7], p. 236). When $X=(x_1,x_2)$ and $Y=(y_1,y_2)$ are two unit space-like vectors in L^2 such that $\operatorname{sgn} x_1=\operatorname{sgn} y_1$ (1.a), respectively $\operatorname{sgn} x_1=-\operatorname{sgn} y_1$ (1.b), i.e. X and Y have the same or opposite orientations with respect to $(1,0)=E^\perp$, then (X,Y):=u whereby $R_uX=Y$, respectively $R_uX=-Y$. Thus, for two space-like vectors X and Y the angle (X,Y) can be seen as the former angle (DX,DY) of the corresponding time-like vectors DX and DY which are obtained from X and Y by the Euclidean reflection D in the first diagonal $\{(x,x) \mid x \in R\}$ of R^2 . And the case of vectors having mixed time-orientations can be dealt within a similar way. When $X=(x_1,x_2)$ and $Y=(y_1,y_2)$ are two unit vectors in L^2 such that, say, X is space-like and Y is time-like and such that $\operatorname{sgn} x_1=\operatorname{sgn} y_2$ (2.a), respectively $\operatorname{sgn} x_1=-\operatorname{sgn} y_2$ (2.b), then (X,Y):=u whereby $\overline{R}_uX=Y$, respectively $\overline{R}_uX=-Y$, for

$$\overline{R}_{u} = \begin{bmatrix} \sinh{(u)} & \cosh{(u)} \\ \cosh{(u)} & \sinh{(u)} \end{bmatrix} = R_{u}D, \qquad D = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Thus, for such vectors X and Y the angle (X,Y) can be seen as the angle between the two time-like vectors DX and Y. In terms of the Lorentzian scalar product, the above definitions for the oriented angle (X,Y)=u between unit vectors X and Y amount to the following:

(0.a)
$$\cosh(u) = -g(X, Y), \quad \sinh(u) = -g(X, DY);$$

(0.b)
$$\cosh(u) = g(X, Y), \qquad \sinh(u) = g(X, DY);$$

(1.a)
$$\cosh(u) = g(X, Y), \qquad \sinh(u) = g(X, DY);$$

(1.b)
$$\cosh(u) = -g(X, Y), \qquad \sinh(u) = -g(X, DY);$$

(2.a) $\cosh(u) = g(X, DY), \qquad \sinh(u) = g(X, Y);$

(2.a)
$$\cosh(u) = g(X, DY), \quad \sinh(u) = g(X, Y);$$

(2.b)
$$\cosh(u) = -g(X, DY), \quad \sinh(u) = -g(X, Y),$$

and for vectors X and Y of arbitrary lengths $||X|| \neq 0 \neq ||Y||$, for instance in case (2.a):

$$\cosh\left(u\right) = \frac{g(X,DY)}{\|X\|\,\|Y\|}, \quad \sinh\left(u\right) = \frac{g(X,Y)}{\|X\|\,\|Y\|}.$$

Basic properties concerning this notion of oriented hyperbolic angle and corresponding Lorentzian trigonometry can be found in [1, 6].

The unoriented or absolute hyperbolic angle [X,Y] between any two vectors X and Y in L^2 , for which $||X|| \neq 0 \neq ||Y||$, is defined as [X,Y] := |(X,Y)| where (X,Y) is the oriented hyperbolic angle from X to Y. Consider the following disjoint sets of angles of vectors X and Y in L^2 :

$$\label{eq:lambda} \begin{split} \mathcal{A}_1 &= \{[X,Y] \quad \text{whereby} \quad g(X,X) > 0 \quad \text{and} \quad g(Y,Y) > 0\}, \\ \mathcal{A}_2 &= \{[X,Y] \quad \text{whereby} \quad g(X,X) < 0 \quad \text{and} \quad g(Y,Y) < 0\}, \\ \mathcal{A}_3 &= \{[X,Y] \quad \text{whereby} \quad g(X,X) > 0 \quad \text{and} \quad g(Y,Y) < 0\}, \end{split}$$

and put $A = A_1 \cup A_2 \cup A_3$. Then, in analogy with the Euclidean situation [3], a measure m on the set A of unoriented hyperbolic angles is obtained as follows.

THEOREM 1. – The function $m: A \to R^+$ defined by

$$m([X, Y]) = \ln\left(\frac{|g(X, Y)| + |g(X, DY)|}{\|X\| \|Y\|}\right)$$

satisfies the following properties:

- a) there exist $[X,Y] \in A$ such that m([X,Y]) = 1;
- b) if[X,Y] = [V,W], then m([X,Y]) = m([V,W]);
- c) if[X,Y] + [Y,Z] = [X,Z], then m([X,Y] + m[Y,Z]) = m([X,Z]).

PROOF. – Hereafter we will restrict attention to angles in the subset A_1 ; the proofs dealing with the subsets A_2 and A_3 are analogous.

- a) For X=(1,0) and $Y=(\frac{e^2+1}{2e},\frac{e^2-1}{2e})$, the angle [X,Y] is in \mathcal{A}_1 and verification shows that $m([X, Y]) = \ln e = 1$.
- b) Next, suppose that $[X,Y],[V,W] \in A_1$ and that [X,Y] = [V,W]. Then $\cosh([X,Y]) = \cosh([V,W])$, $\sinh([X,Y]) = \sinh([V,W])$ and since $\cosh([X,Y])$

= |g(X,Y)|/||X|| ||Y||, $\sinh([X,Y]) = |g(X,DY)|/||X|| ||Y||$, it follows that

$$\begin{split} m([X,Y]) &= \ln \left(\frac{|g(X,Y)| + |g(X,DY)|}{\|X\| \, \|Y\|} \right) \\ &= \ln \left(\frac{|g(V,W)| + |g(V,DW)|}{\|V\| \, \|W\|} \right) \\ &= m([V,W]). \end{split}$$

c) Finally, suppose that $[X,Y], [Y,Z], [X,Z] \in \mathcal{A}_1$ and that [X,Y] + [Y,Z] = [X,Z]. Then $\cosh([X,Y] + [Y,Z]) = \cosh([X,Z])$, so $\cosh([X,Y]) \cosh([Y,Z]) + \sinh([X,Y]) \sinh([Y,Z]) = \cosh([X,Z])$. Since $\cosh([X,Y]) = |g(X,Y)|/||X|| ||Y||$ and $\sinh([X,Y]) = |g(X,DY)|/||X|| ||Y||$, it follows that

$$\frac{\left| g(X,Y) \right| \left| g(Y,Z) \right|}{\left\| X \right\| \left\| Y \right\|^2 \left\| Z \right\|} + \frac{\left| g(X,DY) \right| \left| g(Y,DZ) \right|}{\left\| X \right\| \left\| Y \right\|^2 \left\| Z \right\|} = \frac{\left| g(X,Z) \right|}{\left\| X \right\| \left\| Z \right\|}.$$

By assumption it follows that $\sinh{([X,Y]+[Y,Z])}=\sinh{([X,Z])}$ and therefore $\sinh{([X,Y])}\cosh{([Y,Z])}+\cosh{([X,Y])}\sinh{([Y,Z])}=\sinh{([X,Z])}$. Hence we get

$$(2) \qquad \qquad \frac{\left|g(X,DY)\right|\left|g(Y,Z)\right|}{\left\|X\right\|\left\|Y\right\|^{2}\left\|Z\right\|} + \frac{\left|g(X,Y)\right|\left|g(Y,DZ)\right|}{\left\|X\right\|\left\|Y\right\|^{2}\left\|Z\right\|} = \frac{\left|g(X,DZ)\right|}{\left\|X\right\|\left\|Z\right\|}.$$

Consequently, by using the definition of the function m and the relations (1) and (2), it follows that

$$\begin{split} & m([X,Y]) + m([Y,Z]) \\ & = \ln \left(\frac{|g(X,Y)| + |g(X,DY)|}{\|X\| \|Y\|} \right) + \ln \left(\frac{|g(Y,Z)| + |g(Y,DZ)|}{\|Y\| \|Z\|} \right) \\ & = \ln \left(\left(\frac{|g(X,Y)| + |g(X,DY)|}{\|X\| \|Y\|} \right) \left(\frac{|g(Y,Z)| + |g(Y,DZ)|}{\|Y\| \|Z\|} \right) \right) \\ & = \ln \left(\frac{|g(X,Z)|}{\|X\| \|Z\|} + \frac{|g(X,DZ)|}{\|X\| \|Z\|} \right) \\ & = m([X,Z]). \quad \Box \end{split}$$

2. – An application: curves of constant precession.

In our opinion, various topics related to hyperbolic angles in semi-Riemannian geometries may be worth-while to be studied: properties concerning angles of particular directions on Lorentzian hypersurfaces in semi-Euclidean

space with respect to their indicatrices of Dupin and Euler, the Kaehler-angles for submanifolds in indefinite complex or Sasakian spaces allowing a.o. a study of slant such submanifolds, etcetera. At this stage, as an application of the above, we will mention some results about space-like curves of constant precession in the Lorentzian space L^3 . Curves of constant precession in the Euclidean space E^3 were studied first by Scofield [9] as the curves whose Darboux-vector or centrode (i.e. the axis of instantaneous rotation of their Frenet-frame when moving along the curve), makes a fixed angle with a fixed axis and moves about this axis with a constant speed. For their connections with variational problems (k-minimality») and the theory of submanifolds of finite Chen-type, see [4, 5, 8].

A curve β in L^3 is called *space-like* when at every point it has a well-defined space-like tangent direction. Such curves can always be parameterized by an *arclength parameter s*, thus having $\|\beta'\|=1$ where 'denotes derivation with respect to s and $\beta'=T$ then is a unit space-like tangent vector field along β . In the following, we restrict to space-like curves in L^3 for which the principal normal direction β'' is nowhere a null-direction, i.e. we restrict to space-like curves β in L^3 whose principal normal N is either everywhere *space-like* (I) or is everywhere *time-like* (II).

(I). In standard notations, the Frenet formulae of a space-like curve β in L^3 with space-like principal normals are $T'=\kappa N$, $N'=-\kappa T+\tau B$, $B'=\tau N$, whereby g(T,T)=g(N,N)=-g(B,B)=1 and g(T,N)=g(N,B)=g(B,T)=0. Their centrode C is given by $C=\tau T-\kappa B$ (the «rotation»-component of C' with respect to the Frenet-frame $\{T,N,B\}$ is $\tau T'-\kappa B'=0$). Since the definition of curves of constant precession involves that at each point $\beta(s)$ the centrode C(s) makes a constant angle with a fixed direction, it is implicitly assumed that for each s there holds $\|C(s)\| \neq 0$, i.e. that either everywhere $\kappa^2 > \tau^2$ (I.A) or $\kappa^2 < \tau^2$ (I.B).

We go on here for the case (I.A). Realizing that the fixed axis involved in the definition of curves β of constant precession should be determined by a parallel vector field along β of the form $A(s)=C(s)+\mu N(s)$, $\mu\in R$, and aiming for the natural equations of such curves, we formulate two lemmata, whose proofs are straightforward. 10pt

LEMMA 1. – The following are equivalent:

- 1) $||C|| = \omega, \omega \in R_0^+;$
- 2) $||N'|| = \omega$;
- 3) $||A|| = a = \sqrt{\mu^2 \omega^2}, a \in R_0^+;$
- 4) $\sinh(C,A) = \omega/a;$
- 5) $\cosh(N, A) = |\mu|/a$.

Lemma 2. – Under a condition (1)-(5) of Lemma 1, the following are equivalent:

- 1) $||C'|| = \omega |\mu|$;
- 2) A' = 0.

The following result then characterizes curves of constant precession by their natural equations, i.e. by giving the *curvature* κ and *torsion* τ as concrete functions of an *arclength parameter s*.

THEOREM 2. – A unit speed space-like curve $\beta(s)$ with space-like principal normal in the Lorentzian space L^3 is a curve of constant precession if and only if

(*)
$$\kappa(s) = \omega \cosh(\mu s), \quad \tau(s) = \omega \sinh(\mu s),$$

for some $\omega \in R_0^+$ and $\mu \in R$.

PROOF. – If (*) holds, then $\tau' = \mu \kappa$ and $\kappa' = \mu \tau$, which implies that A' = 0 and that ||A|| is constant. Then Lemma 1 and Lemma 2 show that β is a curve of constant precession.

Conversely, if β is a curve of constant precession, then from A'=0 it follows that $\tau'=\mu\kappa$ and $\kappa'=\mu\tau$. Thus κ and τ satisfy the differential equation $f''=\mu^2 f$ whose integration, by appropriate choice of the arclength parameter, essentially yields (*).

The next purpose is to obtain explicit parameter-equations for the Lorentzian co-ordinates (x,y,z) of curves of constant precession in L^3 from (*). In the Euclidean situation, this was done based on the known parameter-equations of the spherical helices [10] which turn out to be the tangential indicatrices of curves of constant precession in E^3 . Correspondingly, in our situation, we also first look at the tangential indicatrix $\gamma(s) := T(s) = \beta'(s)$ of β . Since g(T,T) = 1, the curve γ lies on the pseudo-sphere S_1^2 with equation $x^2 + y^2 - z^2 = 1$ in L^3 . Since $\gamma' = T' = \kappa N$, by Lemma 1 (5), γ' makes a constant oriented hyperbolic angle θ with the constant vector A: the tangential indicatrix γ of β therefore is a space-like pseudo-spherical helix.

Since A is a space-like constant vector, we may take $\tilde{A} = \frac{A}{\|A\|} = (1,0,0)$. Denote by s_{γ} an arclength parameter of the curve γ . Then the parameter-equations of γ are given by

(3)
$$x_{\gamma} = s_{\gamma} \cosh \theta, \quad v_{\gamma} = v(\sigma_{\gamma}), \quad \zeta_{\gamma} = \zeta(\sigma_{\gamma}).$$

If we project γ onto the plane $\pi \equiv Oyz$ perpendicular to \tilde{A} , then its orthogonal projection $\gamma_{\pi} = \gamma_{\pi}(s_{\pi})$ has parameter-equations of the form

$$(4) \hspace{1cm} x_{\pi}=0, \quad y_{\pi}=y(s_{\gamma}), \quad z_{\pi}=z(s_{\gamma}),$$

and the curves γ and γ_{π} are related by

(5)
$$\gamma_{\pi}(s_{\nu}) = \gamma(s_{\nu}) - g(\gamma(s_{\nu}), \tilde{A})\tilde{A}.$$

Differentiating with respect to s_{γ} , and s_{π} being an arclength-parameter of γ_{π} , we get

(6)
$$\frac{d\gamma_{\pi}}{ds_{\pi}}\frac{ds_{\pi}}{ds_{\nu}} = T_{\gamma} - \cosh(\theta)\tilde{A},$$

or equivalently

(7)
$$T_{\pi} \frac{ds_{\pi}}{ds_{\gamma}} = T_{\gamma} - \cosh(\theta) \tilde{A}.$$

Hence

(8)
$$\left(\frac{ds_{\pi}}{ds_{\gamma}}\right)^2 = \sinh^2(\theta),$$

and we may therefore proceed by taking

$$(9) s_{\pi} = \sinh(\theta) s_{\gamma}.$$

From (6) we have

(10)
$$T_{\pi} = \frac{d\gamma_{\pi}}{ds_{\pi}} = \frac{1}{\sinh(\theta)} T_{\gamma} - \coth(\theta) \tilde{A},$$

and consequently

$$(11) \qquad T_{\pi}' = \frac{dT_{\pi}}{ds_{\pi}} = \frac{d^{2}\gamma_{\pi}}{ds_{\pi}^{2}} = \frac{dT_{\pi}}{ds_{\gamma}} \frac{ds_{\gamma}}{ds_{\pi}} = \left(\frac{1}{\sinh\left(\theta\right)} T_{\gamma}'\right) \frac{1}{\sinh\left(\theta\right)} = \frac{1}{\sinh^{2}\left(\theta\right)} \kappa_{\gamma} N_{\gamma}.$$

On the other hand

$$(12) T'_{\pi} = \kappa_{\pi} N_{\pi}$$

which together with (11) implies that

(13)
$$\kappa_{\gamma} = \sinh^{2}(\theta)\kappa_{\pi}, \quad N_{\gamma} || N_{\pi}.$$

Differentiating the relation

$$\cosh{(\theta)} = g(T_{\gamma}, \tilde{A}) = \text{constant},$$

with respect to s_{γ} , we obtain that

$$(15) g(N_{\gamma}, \tilde{A}) = 0.$$

It follows that

(16)
$$\tilde{A} = \cosh(\theta)T_{\gamma} + \sinh(\theta)B_{\gamma},$$

and differentiation with respect to s_{γ} yields

(17)
$$\cosh(\theta)T'_{\nu} + \sinh(\theta)B'_{\nu} = 0.$$

Using the corresponding Frenet-equations, we get

(18)
$$\frac{\kappa_{\gamma}}{\tau_{\gamma}} = -\tanh(\theta) = \text{constant}.$$

Moreover, differentiating $g(\gamma(s_{\gamma}), \gamma(s_{\gamma})) = 1$ with respect to s_{γ} and using the corresponding Frenet-equations, we find that

(19)
$$\gamma(s_{\gamma}) = -\frac{1}{\kappa_{\gamma}} N_{\gamma} + \frac{1}{\tau_{\gamma}} \left(\frac{1}{\kappa_{\gamma}}\right)' B_{\gamma}$$

and therefore that

(20)
$$g(\gamma(s_{\gamma}), \gamma(s_{\gamma})) = \left(\frac{1}{\kappa_{\gamma}}\right)^{2} - \left(\frac{1}{\tau_{\gamma}}\left(\frac{1}{\kappa_{\gamma}}\right)'\right)^{2} = 1.$$

Put $\tilde{\kappa}_{\gamma} = 1/\kappa_{\gamma}$ and $\tilde{\tau}_{\gamma} = 1/\tau_{\gamma}$. Then the previous equation becomes

$$\tilde{\kappa}_{\gamma}^2 - (\tilde{\tau}_{\gamma} \tilde{\kappa}_{\gamma}')^2 = 1.$$

By (18) and integration, we get

(21)
$$\tilde{\kappa}_{v}^{2} - s_{v}^{2} \coth^{2}(\theta) = 1.$$

Put $\tilde{\kappa}_{\pi} = 1/\kappa_{\pi}$. Then by (9) and (13), (21) becomes

(22)
$$\tilde{\kappa}_{\pi}^2 - s_{\pi}^2 \cosh^2(\theta) = \sinh^4(\theta),$$

or equivalently

(23)
$$\kappa_{\pi}^{2} = \frac{1}{\sinh^{4}(\theta) + s_{\pi}^{2}\cosh^{2}(\theta)}.$$

Denote by ϕ the oriented hyperbolic angle from $e_2 = (0, 1, 0)$ to the vector T_{π} , which by (10) is seen to be a unit timelike vector in π . Then

(24)
$$T_{\pi} = \sinh(\phi)e_2 + \cosh(\phi)e_3.$$

Moreover, since $\gamma_{\pi}'(s_{\pi}) = T_{\pi}(s_{\pi})$, we get

$$\gamma_{\pi} = \int rac{1}{\kappa_{\pi}(\phi)} (\sinh{(\phi)}e_2 + \cosh{(\phi)}e_3) d\phi.$$

From $\phi'(s_{\pi}) = \kappa_{\pi}(s_{\pi})$ and (22) it follows that

(26)
$$\phi(s_{\pi}) = \int \frac{ds_{\pi}}{\sqrt{\sinh^4(\theta) + s_{\pi}^2 \cosh^2(\theta)}}.$$

Therefore

(27)
$$\phi(s_{\pi}) = \frac{1}{\cosh(\phi)} \sinh^{-1} \left(\frac{s_{\pi} \cosh(\theta)}{\sinh^{2}(\theta)} \right),$$

such that

(28)
$$s_{\pi} = \frac{\sinh^{2}(\theta)}{\cosh(\theta)} \sinh(\phi \cosh(\theta)).$$

Substituting (28) into relation (22), we find that

(29)
$$\kappa_{\pi} = \frac{1}{\sinh^{2}(\theta)\cosh(\phi\cosh(\theta))}.$$

Substituting (29) into (25) and integrating, we find that the parameter-equations of γ_{π} are given by

$$\begin{cases} x_{\pi} = 0, \\ y_{\pi} = \frac{\sinh^2 \theta}{2} \left(\frac{1}{1 + \cosh \theta} \cosh \left(\phi (1 + \cosh \theta) \right) + \frac{1}{1 - \cosh \theta} \cosh \left(\phi (1 - \cosh \theta) \right) \right), \\ z_{\pi} = \frac{\sinh^2 \theta}{2} \left(\frac{1}{1 + \cosh \theta} \sinh \left(\phi (1 + \cosh \theta) \right) + \frac{1}{1 - \cosh \theta} \sinh \left(\phi (1 - \cosh \theta) \right) \right). \end{cases}$$

Further, any arclength-parameters s and s_{γ} of the curves β and its tangent indicatrix γ being related by

(31)
$$\frac{ds_{\gamma}}{ds} = \kappa(s),$$

and by (*) having $\kappa(s) = \omega \cosh(\mu s)$, organizing a choice for s and s_{γ} such that $s_{\gamma} = 0$ when s = 0, we have

(32)
$$s_{\gamma} = -\frac{\omega}{\mu} \sinh(\mu s).$$

By Lemma 1, $\cosh(\theta) = |\mu|/a$ and $\sinh(\theta) = \omega/a$. Using (28), the relation (9) becomes

(33)
$$s_{\gamma} = -\frac{\omega}{u} \sinh (\phi \cosh (\theta)).$$

Then (32) and (33) imply

$$\phi = as.$$

Therefore, since $\sinh(\theta) = \omega/a$, $\cosh(\theta) = |\mu|/a$ and by using (34), the parameter-equations (30) become

(35)
$$\begin{cases} x_{\pi} = 0, \\ y_{\pi} = \frac{\omega^{2}}{2a} \left(\frac{1}{a+\mu} \cosh((a+\mu)s) + \frac{1}{a-\mu} \cosh((a-\mu)s) \right), \\ z_{\pi} = \frac{\omega^{2}}{2a} \left(\frac{1}{a+\mu} \sinh((a+\mu)s) + \frac{1}{a-\mu} \sinh((a-\mu)s) \right). \end{cases}$$

Hence (3),(4),(32) imply that the tangent indicatrix γ of β has parameter-equations of the form

(36)
$$\begin{cases} x_{\gamma} = \frac{\omega}{a} \sinh(\mu s), \\ y_{\gamma} = \frac{\mu - a}{2a} \cosh((a + \mu)s) - \frac{a + \mu}{2a} \cosh((a - \mu)s), \\ z_{\gamma} = \frac{\mu - a}{2a} \sinh((a + \mu)s) - \frac{a + \mu}{2a} \sinh((a - \mu)s). \end{cases}$$

Finally, integrating (36) we obtain the parameter-equations of β that we were aiming for.

THEOREM 3. – The parameter-equations of a unit speed space-like curve $\beta = \beta(s)$ of constant precession with space-like principal normal and for which $\tau^2(s) > \kappa^2(s)$ are given by

$$(37) \qquad \begin{cases} x(s) = \frac{\omega}{\mu a} \cosh(\mu s), \\ y(s) = \frac{\mu - a}{2a(a+\mu)} \sinh((a+\mu)s) - \frac{a+\mu}{2a(a-\mu)} \sinh((a-\mu)s), \\ z(s) = \frac{\mu - a}{2a(a+\mu)} \cosh((a+\mu)s) - \frac{a+\mu}{2a(a-\mu)} \cosh((a-\mu)s), \end{cases}$$

whereby $\omega \in R_0^+$, $\mu \in R$, $\mu^2 > \omega^2$ and $a = \sqrt{\mu^2 - \omega^2}$.

Remark 1. – From (37) it may be observed that these curves β lie on the quadric $\frac{\mu^2}{\omega^2}x^2+y^2-z^2=-\frac{4\mu^2}{\omega^4}$ and are non-closed curves.

The cases (I.B) and (II) can be dealt with in a perfectly similar way so as to lead to the following results. For case (I.B), corresponding to Theorem 3 we have the next theorem.

THEOREM 4. – The parameter-equations of a unit speed space-like curve $\beta = \beta(s)$ of constant precession with space-like principal normal N and for which $\tau^2(s) < \kappa^2(s)$ are given by

$$\begin{split} x(s) &= \frac{\omega}{\mu a} \sinh{(\mu s)}, \\ y(s) &= \frac{a-\mu}{2a(a+\mu)} \sinh{((a+\mu)s)} - \frac{a+\mu}{2a(\mu-a)} \sinh{((\mu-a)s)}, \\ z(s) &= \frac{a-\mu}{2a(a+\mu)} \cosh{((a+\mu)s)} + \frac{a+\mu}{2a(\mu-a)} \cosh{((\mu-a)s)}, \end{split}$$

whereby $\omega \in R_0^+$, $\mu \in R$ and $a = \sqrt{\omega^2 + \mu^2}$.

Remark 2. – Such curves β lie on the quadric $\frac{\mu^2}{\omega^2}x^2 - y^2 + z^2 = \frac{4\mu^2}{\omega^4}$ and are non-closed curves.

For case (II), i.e. for space-like curves β whose principal normal N is everywhere time-like, the Frenet formula's are given by $T'=\kappa N$, $N'=\kappa T+\tau B$, $B'=\tau N$ whereby g(T,T)=g(B,B)=-g(N,N)=1 and g(T,N)=g(N,B)=g(B,T)=0. Their centrode C is given by $C=-\tau T+\kappa B$ and thus everywhere has a well-defined non-null direction. Corresponding to Theorems 2 and 3, for case (II) we have the following.

Theorem 5. – A unit-speed space-like curve $\beta = \beta(s)$ with time-like principal normal in the Lorentzian space L^3 is a curve of constant precession if and only if

(**)
$$\kappa(s) = \omega \cos(\mu s), \quad \tau(s) = \omega \sin(\mu s),$$

for some $\omega \in R_0^+$ and $\mu \in R$.

THEOREM 6. – The parameter-equations of a unit-speed space-like curve $\beta = \beta(s)$ of constant precession with time-like principal normal are given by

$$x(s) = \frac{a - \mu}{2a(a + \mu)}\cos((a + \mu)s) + \frac{a + \mu}{2a(a - \mu)}\cos((a - \mu)s),$$

$$y(s) = \frac{a - \mu}{2a(a + \mu)}\sin((a + \mu)s) + \frac{a + \mu}{2a(a - \mu)}\sin((a - \mu)s),$$

$$z(s) = -\frac{\omega}{\mu a}\cos(\mu s),$$

whereby $\omega \in R_0^+$, $\mu \in R$, $\omega^2 < \mu^2$ and $a = \sqrt{\mu^2 - \omega^2}$.

REMARK 3. – Such curves β lie on the quadric $x^2 + y^2 - \frac{\mu^2}{\omega^2}z^2 = \frac{4\mu^2}{\omega^4}$ and are closed if and only if μ/a is rational number.

REFERENCES

- G. S. BIRMAN K. Nomizu, Trigonometry in Lorentzian geometry, Amer. Math. Monthly 91, (1984), 543-549.
- [2] G. S. BIRMAN K. Nomizu, The Gauss-Bonnet theorem for 2-dimensional spacetimes, Michigan Math. J., 31 (1984), 77-81.
- [3] K. Borsuk W. Szmielew, Foundations of Geometry, North-Holland (Amsterdam, 1960).
- [4] B. Y. Chen, Total mean curvature and submanifolds of finite type, World Scientific (Singapore, 1984).
- [5] F. DILLEN L. VERSTRAELEN (eds.), Handbook of Differential geometry, Vol. I (Elsevier, Amsterdam, 2000).
- [6] E. NEŠOVIĆ, Differential geometry of curves in Minkowski space, Doctoral thesis, University of Kragujevac, Faculty of Science (Kragujevac, 2002).
- [7] B. O'NEILL, Semi-Riemannian Geometry, Academic Press (New York, 1983).
- [8] M. Petrović J. Verstraelen L. Verstraelen, *Principal normal spectral variations of space curves*, Proyecciones 19 (2000), 141-155.
- [9] P. D. Scofield, Curves of constant precession, Amer. Math. Monthly, 102 (1995), 531-537.
- [10] D. J. Struik, Lectures on classical differential geometry, Addison-Wesley (Boston, 1950).
- [11] J. L. Synge, Relativity: the special theory, North-Holland (Amsterdam, 1972).

Emilija Nešović - Miroslava Petrović-Torgašev: Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Yugoslavia E-mail addresses: emilija@knez.uis.kg.ac.yu mirapt@knez.uis.kg.ac.yu

Leopold Verstraelen: Kath. Univ. Leuven, Fak. Wetenschappen, Dep. Wiskunde, Celestijnenlaan 200 B, 3000 Leuven, Belgium E-mail address: Leopold.Verstraelen@wis.kuleuven.ac.be

Pervenuta in Redazione il 12 maggio 2003