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Curves in Lorentzian Spaces.

E. NESoVIC - M. PETROVIC-TORGASEV - L. VERSTRAELEN

Sunto. — La nozione di angolo iperbolico tra due qualsiast direzioni simili al tempo nel
piano di Loventz L? ¢ stata appropriatamente definita e studiate da Birman e
Nomizu [1, 2]. In questo articolo definiamo la nozione di angolo iperbolico tra due
qualsiasi divezioni non nulle in L? e definiamo una misura sull’insieme di questi
angoli iperbolici. Come applicazione, estendiamo il lavoro di Scofield sulle curve
euclidee di precessione costante [9] all’ambiente di Lorentz, rendendo cosi esplicite le
curve simili allo spazio in L le cui equazioni naturali esprimono la lovo curvatura e
torstone come autofunzioni elementari del loro Laplaciano.

Summary. - The notion of <hyperbolic» angle between any two time-like divections in the
Lorentzian plane L? was properly defined and studied by Birman and Nomizu [1,2].
In this article, we define the notion of hyperbolic angle between any two non-null
directions in L? and we define a measure on the set of these hyperbolic angles. As an
application, we extend Scofield’s work on the Euclidean curves of constant precession
[9] to the Loventzian setting, thus expliciting space-like curves in L3 whose natural
equations express their curvature and torsion as elementary eigenfunctions of their
Laplacian.

1. — Angles between non-null vectors in the Lorentzian plane.

The Lorentzian n-dimensional space L" is the standard vector space R" en-
dowed with the geometrical structure given by the Lorentzian scalar product
9X,Y) =xy1 + -+ X 1Yn1 — Xy, for all X =(xy,...,2, 1,2,) and
Y =W1,...,Yu1,%n) in R". Avector V = (v1,...,v,_1,vy) in L" is called space-
like, time-like or null (light-like) when respectively g(V,V) > 0, g(V,V) < 0 or
gV, V)=0and V #0=1(0,...,0,0); a non-null vector V is said to be future-
pointing or past-pointing when respectively g(V, E) < 0 or g(V, E) > 0 whereby
E=1(0,...,0,1),ie.whenwv, > 0orwv, < 0; ||[V] = +/|g(V,V)]is called the norm
or length of V, and two vectors V and W in L" are said to be orthogonal when
gV, W) =0 (see e.g. [7], [11]).

We now define the oriented «hyperbolic» angle (V, W) for any two vectors
V and W in the Lorentzian plane L? for which g(V,V) # 0 # g(W,W). Since
such vectors can always be normalized, it suffices to define the oriented
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hyperbolic angle (X,Y) for any two unit vectors X and Y in L?. Let G be the
proper Lorentz group of L?, i.e. the group consisting of all orientation-pre-
serving linear transformations of R? which also preserve the Lorentzian
scalar product g and the time-orientation: G consists of all matrices of the
form
cosh (u) sinh (u)

" | sinh(u) cosh (u)
whereby u € R. For any two unit time-like vectors X and Y in L?, the oriented
hyperbolic angle (X,Y) from X to Y was naturally defined via hyperbolic rota-
tions as follows [1, 2]: in case X and Y are both either future-pointing or past-
pointing (0.a) then (X,Y) := u whereby R, X =Y, and in case X and Y have
different time-orientations (0.b), (then X and the vector —Y obtained from Y by
reflection in the origin are unit time-like vectors with the same time-orientation)
then (X, Y) := u whereby R, X = Y.

The oriented hyperbolic angle (X, Y) between any two unit space-like vectors
X and Y or between any two unit vectors X and Y of which one is space-like and
the other one is time-like can equally naturally be defined as follows (cfr. also [7],
p. 236). When X = (x1,22) and Y = (y1, y2) are two unit space-like vectors in L?
such that sgn x; = sgn y; (1.a), respectively sgn x; = — sgny; (1.b),i.e. X and Y
have the same or opposite orientations with respect to (1,0) = E*, then
(X,Y) :=u whereby R,X =Y, respectively R, X = —Y. Thus, for two space-
like vectors X and Y the angle (X, Y) can be seen as the former angle (DX, DY) of
the corresponding time-like vectors DX and DY which are obtained from X and
Y by the Euclidean reflection D in the first diagonal {(x,)|x € R} of R%. And
the case of vectors having mixed time-orientations can be dealt within a similar
way. When X = (1, 22) and Y = (y1, y2) are two unit vectors in L? such that, say,
X is space-like and Y is time-like and such that sgn x; = sgn 5 (2.2), respectively
sgn x; = — sgn yz (2.b), then (X,Y):=u whereby R,X =Y, respectively
R, X =-Y, for

= sinh (u) cosh (u)

01
Ry = cosh (#) sinh (u) =R.D, D{l 0}

Thus, for such vectors X and Y the angle (X, Y) can be seen as the angle between
the two time-like vectors DX and Y. In terms of the Lorentzian scalar product,
the above definitions for the oriented angle (X,Y) = u between unit vectors X
and Y amount to the following:

(0.a) cosh (u) = —g(X,Y), sinh (u) = —g(X, DY);
(0.b) cosh (u) = g(X,Y), sinh (u) = g(X,DY);
(1.a) cosh (u) = g(X,Y), sinh (1) = g(X, DY);
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(1.b) cosh (u) = —g(X,Y), sinh (#) = —g(X,DY);
(2.a) cosh (u) = g(X, DY), sinh (u) = g(X,Y);
(2.b) cosh (u) = —¢g(X, DY), sinh(u) = —9(X,Y),

and for vectors X and Y of arbitrary lengths || X|| # 0 # || Y|, for instance in case
(2.2):

9X.,Y)

_ g(X,DY) B
XYY

2.0/ h ) =927
(2.0 cosh () =R 7]

sinh (u)

Basie properties concerning this notion of oriented hyperbolic angle and corre-
sponding Lorentzian trigonometry can be found in [1, 6].

The unoriented or absolute hyperbolic angle [X, Y] between any two vectors
X and Y in L2, for which ||X|| # 0 # ||Y ||, is defined as [X, Y] := |(X,Y)| where
(X,Y) is the oriented hyperbolic angle from X to Y. Consider the following
disjoint sets of angles of vectors X and Y in L?:

A; ={[X,Y] whereby ¢g(X,X)>0 and ¢(,Y) >0},
Az = {[X,Y] whereby ¢g(X,X)<0 and g¢(Y,Y) <0},
A3 ={[X,Y] whereby ¢g(X,X)>0 and g¢(Y,Y) <0},

and put A = A; U A2 U As. Then, in analogy with the Euclidean situation [3],
a measure m on the set A of unoriented hyperbolic angles is obtained as
follows.

THEOREM 1. — The function m : A — R* defined by

lg(X,Y)| + |9g(X,DY))|
XTI

m([X,Y]) = ln<

satisfies the following properties:
a) there exist [X,Y] € A such that m([X,Y]) =1,
b) if [X,Y]=[V,W], then m(X,Y]) = m([V,W])
e) f[X, Y1+ Y, Z] =[X,Z], then m([X, Y]+ m[Y,Z]) = m(X, Z)).

Proor. — Hereafter we will restrict attention to angles in the subset A;; the
proofs dealing with the subsets A2 and .43 are analogous.
a) For X = (1,0) and Y = (%!1,4-1), the angle [X,Y]is in A; and ver-
ification shows that m([X,Y]) =Ilne = 1.
b) Next, suppose that [X, Y], [V, W] € A; and that [X,Y] = [V, W]. Then
cosh ([X, Y]) = cosh ([V, W]), sinh (X, Y]) = sinh ([V, W]) and since cosh (X, Y])
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= |gX, Y)|/IX||||Y]], sinh (X, Y]) = |g(X,DY)|/|| X|| |Y]], it follows that

lg(X,Y)| + |g(X, DY)]|
XY

m(X,Y]) = ln<

_ 1[0V W)l + gV, DW))
VWl

=m([V,W]).

c¢) Finally, suppose that [X,Y],[Y,Z],[X,Z] € A; and that [X, Y]+ [V, Z]
= [X,Z]. Then cosh (X, Y] +[Y,Z]) = cosh ([X, Z]), so cosh ([X, Y]) cosh ([Y, Z])
+ sinh ([X, Y]) sinh ([Y, Z]) = cosh ([X, Z]). Since cosh ([X,Y]) = |gX, Y)|/||X||
|Y| and sinh ([X,Y]) = |9(X,DY)|/||X|| ||Y]|, it follows that
X, V)| |g(Y,2)|  l9X,DY)||g(Y.DZ)| lg(X,Z)|
2 + 2 - XIIZI"

XM= ] XY=l X1l
By assumption it follows that sinh ([X, Y]+ [Y,Z]) = sinh (X, Z]) and there-
fore sinh ([X,Y])cosh ([Y, Z]) + cosh ([X, Y])sinh ([Y, Z]) = sinh (X, Z]). Hence
we get

(2)

1)

lg&X,DY)[|9(Y,2)|  |9&X,Y)||g(Y,DZ)| _ |9X,DZ)|
2 * 2 ~ Xz
XY™ 2] XY™ 2] X121

Consequently, by using the definition of the function m and the relations (1) and
(2), it follows that

m(X, Y] +m(Y,Z])
gX,Y)| + |gX, DY) lg(Y,Z)| + |g(Y,DZ)|
=1 +1
“( XTI )“( 1YT1Z] )

[ (19X Y01+ X, DY) (190Y, 2 + lgt¥, DZ)
] Y112

l9gX,Z)|  |g(X,DZ)]|
=1 +
n(IIXII 1zl 11X 2]l )

=m(X,Z). O

2. — An application: curves of constant precession.

In our opinion, various topics related to hyperbolic angles in semi-Rie-
mannian geometries may be worth-while to be studied: properties concerning
angles of particular directions on Lorentzian hypersurfaces in semi-Euclidean
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space with respect to their indicatrices of Dupin and Euler, the Kaehler-angles
for submanifolds in indefinite complex or Sasakian spaces allowing a.o. a study of
slant such submanifolds, etcetera. At this stage, as an application of the above,
we will mention some results about space-like curves of constant precession in
the Lorentzian space L3. Curves of constant precession in the Euclidean space
E3 were studied first by Scofield [9] as the curves whose Darboux-vector or
centrode (i.e. the axis of instantaneous rotation of their Frenet-frame when
moving along the curve), makes a fixed angle with a fixed axis and moves about
this axis with a constant speed. For their connections with variational problems
(«k-minimality») and the theory of submanifolds of finite Chen-type, see [4, 5, &8].

A curve f in L3 is called space-like when at every point it has a well-defined
space-like tangent direction. Such curves can always be parameterized by an
arclength parameter s, thus having ||| = 1 where ’ denotes derivation with
respect to s and ' = T then is a unit space-like tangent vector field along . In
the following, we restrict to space-like curves in L? for which the principal normal
direction " is nowhere a null-direction, i.e. we restrict to space-like curves 8 in
L? whose principal normal N is either everywhere space-like (I) or is everywhere
time-like (I1).

(I). In standard notations, the Frenet formulae of a space-like curve f in L3
with space-like principal normals are 7" =xN, N' = —«xT +1B, B’ =1N,
whereby ¢g(T',T) = g(N,N) = —g(B,B) =1 and g(T',N) = g(N,B) = ¢(B,T) = 0.
Their centrode C is given by C = 1T — kB (the «rotation»-component of C' with
respect to the Frenet-frame {T,N, B} is 1T’ — kB’ = 0). Since the definition of
curves of constant precession involves that at each point f(s) the centrode C(s)
makes a constant angle with a fixed direction, it is implicitely assumed that for
each s there holds ||C(s)|| # 0, i.e. that either everywhere x> > 2 (I.A) or 1% < 72
(I.B).

We go on here for the case (I.A). Realizing that the fixed axis involved in the
definition of curves /3 of constant precession should be determined by a parallel
vector field along /5 of the form A(s) = C(s) + uN(s), u € R, and aiming for the
natural equations of such curves, we formulate two lemmata, whose proofs are
straightforward. 10pt

LeEmMA 1. - The following are equivalent:
D |IC| =w,w e R§;
2) [[N'|| = o
3) Al =a=+/12—? a€R];
4) sinh (C,A) = w/q;
5) cosh (N,A) = |u|/a.

LEMMA 2. — Under a condition (1)-(5) of Lemma 1, the following are equiva-
lent:
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D IC]] = olul;
2) A'=0.

The following result then characterizes curves of constant precession by their
natural equations, i.e. by giving the curvature x and torsion t as concrete
functions of an arclength parameter s.

THEOREM 2. — A unit speed space-like curve f(s) with space-like principal
normal in the Loventzian space L3 is a curve of constant precession if and only if

*) K(s) = weosh (us), 1(s) = wsinh (us),

forsome w € Rj and u € R.

ProoF. — If (*) holds, then 7 = ux and ' = ut, which implies that A’ = 0 and
that ||A|| is constant. Then Lemma 1 and Lemma 2 show that f is a curve of
constant precession.

Conversely, if ff is a curve of constant precession, then from A’ = 0 it follows
that v = i and x’ = ut. Thus x and 7 satisfy the differential equation f” = 12f
whose integration, by appropriate choice of the arclength parameter, essentially
yields (*). |

The next purpose is to obtain explicit parameter-equations for the Lorentzian
co-ordinates (x,,2) of curves of constant precession in L? from (*). In the Eu-
clidean situation, this was done based on the known parameter-equations of the
spherical helices [10] which turn out to be the tangential indicatrices of curves of
constant precession in £2. Correspondingly, in our situation, we also first look at
the tangential indicatrix y(s) := T'(s) = f'(s) of p. Since g(T,T) = 1, the curve y
lies on the pseudo-sphere S? with equation a4+ y? —22 =1 in L3. Since
Y =T = kN, by Lemma 1 (5), y makes a constant oriented hyperbolic angle 0
with the constant vector A: the tangential indicatrix y of f§ therefore is a space-
like pseudo-spherical helix.

Since A is a space-like constant vector, we may take A= H%H =(1,0,0). De-
note by s, an arclength parameter of the curve y. Then the parameter-equations
of y are given by

3) x, =s,cosh0, v, =0v(g,), { ={g).

If we project y onto the plane 7 = Oyz perpendicular to A, then its orthogonal
projection y, = y,.(s;) has parameter-equations of the form

4) =0, y.=y(s,), z==zs,),

7
7

and the curves y and y, are related by

(5) 7.(8,) = (s,) — g(y(s,), A)A.
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Differentiating with respect to s,, and s, being an arclength-parameter of y,, we
get

dy,ds, ~
(6) d_Sﬂd_S} =1y cosh (Q)A,
or equivalently
ds ~
(7) T,—— =T, —cosh(0)A.
ds,
Hence
i 2
Sn )
(8) - | = sinh*(0),
ds,

and we may therefore proceed by taking
9) $; = sinh (0)s,.

From (6) we have

S S S RNy

(10) T = ds, sinh (0)

and consequently

2
(1) T’—dT’f—dVﬂ:dTﬂds>’—< L T’) 1 L———

"~ ds, ds2 ds,ds, \sinh(0) 7)sinh(6) sinh?(0)
On the other hand
(12) T = kN,
which together with (11) implies that
(13) K, = sinh®(@)ic;, N, ||Ny.
Differentiating the relation
(14) cosh (0) = g(Ty,A) = constant,
with respect to s,, we obtain that
(15) g(N,,A) = 0.
It follows that

(16) A = cosh ()T, + sinh (0)B,,
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and differentiation with respect to s, yields

(17) cosh (H)T; + sinh (H)B; =0.

Using the corresponding Frenet-equations, we get

(18) %2 — _tanh(0) = constant.

Ty

Moreover, differentiating g(y(s,),(s,)) =1 with respect to s, and using the
corresponding Frenet-equations, we find that

/!
1 1(1
(19) ;) = ——N,+ <K> B,

Ty

7 7

and therefore that

2 n 2
1 1/(1

Put i, = 1/x, and 7, = 1/7,. Then the previous equation becomes

2 — i = 1.
By (18) and integration, we get

(21) i — s> coth? (0) = 1.
Put x, = 1/x,. Then by (9) and (13), (21) becomes
(22) iZ — 5% cosh?() = sinh*(0),
or equivalently

1

23 19 = '
(23) " sinh* (0) + s2 cosh® ()

Denote by ¢ the oriented hyperbolic angle from ez = (0,1,0) to the vector 7%,
which by (10) is seen to be a unit timelike vector in z. Then

(24) T, = sinh (¢)es + cosh (¢es.

Moreover, since y,(s;) = Tx(s;), we get

. f%@ (sinh (@)ez + cosh (Pes)dg.
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From ¢'(s;) = x;(s,) and (22) it follows that

ds,

(26) ls,) = f i .

\/sinh* (0) + 52 cosh? (0)
Therefore

1 . 1 1/ szcosh(0)
27 (s;) = ———sinh 1 [ 2= |,
27) ¢ cosh (¢) ( sinh? (0) )
such that

sinh® (0) .

(28) Sn= 0 sinh (¢ cosh (0)).
Substituting (28) into relation (22), we find that
(29) Kr L

" sinh? (9) cosh (¢ cosh (9))

Substituting (29) into (25) and integrating, we find that the parameter-equations
of y, are given by

x, =0,
sinh? 1 1
(30) Yn = 2 (m COSh (¢(1 + COSh 0)) =+ m COSh (¢(1 — COSh 0))) s
sinh? 0 1 , 1 ,
= (m sinh (¢(1 + cosh 0)) + msmh (¢(1 — cosh 0))) .

Further, any arclength-parameters s and s, of the curves f and its tangent in-
dicatrix y being related by

ds, _
ds
and by (*) having x(s) = w cosh (us), organizing a choice for s and s, such that
s, = 0 when s = 0, we have

(32) 8, = %sinh (us).

(31) K(s),

By Lemma 1, cosh (0) = |u|/a and sinh (6) = w/a. Using (28), the relation (9)
becomes

(33) 8, = %sinh (¢ cosh (0)).

Then (32) and (33) imply
(34) ¢ = as.
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Therefore, since sinh (0) = w/a, cosh () = |u|/a and by using (34), the para-
meter-equations (30) become

2, =0,

o [ 1
Yn =75, cosh ((a + w)s) + cosh ((a — p)s) |,
(35) a\&tH

o[ 1
=5 <a +ﬂsmh((a + ws) +

a—u

sinh ((a — ,u)s)) .

Hence (3),(4),(32) imply that the tangent indicatrix y of f has parameter-equati\-
ons of the form

o .
x, = Esmh (us),

(36) Y, = K _aacosh ((a 4+ ws) — ¢ —:[,u cosh ((a — u)s),
Zy = ﬂz_aasinh ((a+ ws) — a;l,u sinh ((a — u)s).

Finally, integrating (36) we obtain the parameter-equations of f that we were
aiming for.

THEOREM 3. — The parameter-equations of a unit speed space-like curve
B = B(s) of constant precession with space-like principal normal and for which
72(s) > K2(s) are given by

2(s) = 2 cosh (us),
ua
Y o atu _
(37) y(s) = R sinh ((a + u)s) Sala— 1) sinh ((a — u)s),
_ K- __AtH _
(s) = Sa(a T ) cosh ((a + p)s) Sala 1) cosh ((a — p)s),

whereby w € Rf, u € R, i > o* and a = /12 — o?.

REMAE{K 1. — From (37) i‘c2 may be observed that these curves f lie on the
quadric 4% +y? — 2% = — % and are non-closed curves.

The cases (I.B) and (II) can be dealt with in a perfectly similar way so as to
lead to the following results. For case (I.B), corresponding to Theorem 3 we have
the next theorem.
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THEOREM 4. — The parameter-equations of a unit speed space-like curve
= f(s) of constant precession with space-like principal normal N and forwhich
72(s) < K2(s) are given by

x(s) = ﬂsinh (us),
ua

a—pu atu B

y(s) = 5@ 1 0 sinh ((a + w)s) i — ) sinh ((u — a)s),
_a—pu a—+u B

(s) = a1 0 cosh ((a + w)s) + S0l —a) cosh ((u — a)s),

whereby w € R{, € R and a = \/o? + 12

. . 2 2
REMARK 2. — Such curves f lie on the quadric £ a2 — 32 + 22 = % and are non-
? I
closed curves.

For case (II), i.e. for space-like curves  whose principal normal N is ev-
erywhere time-like, the Frenet formula’s are given by 7" = kN, N’ = kT + 1B,
B' =tN whereby ¢(T,T) =¢g(B,B) = —¢g(N,N)=1 and ¢g(T,N)=g(N,B) =
g(B,T) = 0. Their centrode C is given by C = —tT + xB and thus everywhere has
a well-defined non-null direction. Corresponding to Theorems 2 and 3, for case
(IT) we have the following.

THEOREM 5. — A unit-speed space-like curve f = f(s) with time-like prin-
cipal normal in the Loventzian space L? is a curve of constant precession if
and only if

(**) 1(s) = wcos (us), t(s) = wsin (us),

for some w € R and u € R.

THEOREM 6. — The parameter-equations of a unit-speed space-like curve
B = B(s) of constant precession with time-like principal normal are given by

__ 4R _OTH _
s = Sala 0 cos((a—i—,u)s)—i—za(a 2 cos ((a — w)s),
_ G atp B
yY(s) = Sala s " (@ + ws) + Sala " (@ — p)s),
2(s) = —Z cos (us),
L

whereby w € Rf, u € R, 0 < 1% and a = /12 — ?.
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2

. . 2 2
REMARK 3. — Such curves f lie on the quadric a? + 92 — 5ot = % and are

closed if and only if x/a is rational number.
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