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On a Class of Monge-Ampère Type Equations
with Lower Order Terms.

C. TROMBETTI (*)

Sunto. – Si dimostrano risultati di confronto per soluzioni di equazioni tipo Monge-
Ampère in dimensione due, considerando anche il caso delle autofunzioni.

Summary. – We prove some comparison results for Monge-Ampère type equations in
dimension two. We consider also the case of eigenfunctions and we prove a kind of
«reverse» inequalities.

1. – Introduction.

In this paper we discuss some results presented at the XVII UMI Confe-
rence. All the proofs and further developements are contained in [4] and [5].

We consider the following Dirichlet problem

.
/
´

det D 2 u4 f1su 2

u concave

u40

in V

in V

on ¯V

(1.1)

where V is a convex, bounded open set of R2 , f is a «smooth» and positive fun-
ction, sD0. Our aim is to compare the solution to problem (1.1) with the sol-
ution to a symmetrized problem that is

.
/
´

det D 2 v4 f J1sv 2

v concave and continuous in the closure

v40

in Vy

of Vy ,

on ¯Vy .

where f J is the spherically decreasing rearrangement of f (see section 2 for

(*) Comunicazione presentata a Milano in occasione del XVII Congresso U.M.I.
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the definiton) and Vy is the ball centered at the origin having the same peri-
meter LV as V .

The first result in this framework is contained in the paper by Talenti (see
[19]). In such paper he proved that if u is the solution of

.
/
´

det D 2 u4 f

u concave

u40

in V

in V

on ¯V

(1.2)

and v the solution of the symmetrized problem

.
/
´

det D 2 v4 f J

v concave and continuous in the closure

v40

in Vy

of Vy ,

on ¯Vy

then

u y (2pNxN) Gv(x)

where u y is a suitable rearrangement of u (see Section 2). This result has been
generalized, in the papers of Tso (see [22]) and Trudinger (see [21]), to any di-
mension and to the case of general Hessian operators, involving the so called
symmetrization by «quermassintegrals». The Monge-Ampère type equation

det D 2 u4g(x , u , Du)

has been widely studied. Existence and regularity results can be found for in-
stance in [9], [13], [17], [23], [25] under different assumptions on g and V and
with different methods. In what follows one of our basic hypotheses will be
fD0 in V.

A preliminary result, that we will need in the following, concerns unique-
ness of solutions to problem (1.1). It is related to the eigenvalue s 1 (V) of Mon-
ge - Ampère operator, introduced by P. L. Lions in [18]. We recall the
definition.

DEFINITION 1.1. – s 1 (V) 4 inf ]s 1
A : A�V( where

V4 ]A4 (aij (x) ) 4 (aji (x) ) �C(V), aij D0 in V, det AF1/4(

and s 1
A is the first eigenvalue of the linear second order elliptic operator

2aij ¯ij with zero boundary conditions.
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There exists also a variational characterization of s 1
2 (see [23], [25]) that is

(1.3) s 1
2 (V) 4 inf{ s

V
u det D 2 u

s
V

u 3
: u�C 2 (V)OC 0, 1 (V),

u is nonzero , concave and vanishes on ¯V} .

It is shown (see [18], [23], [25])) that problem (1.3) has a unique (up to a multi-
plicative constant) minimizer f which satisfies

.
/
´

det D 2 f4 (s 1 f)2

f40

in V

on ¯V .

The function f is called an eigenfunction of Monge-Ampère operator.

2. – Notation and Preliminaries.

Given a measurable function u : VKR , we recall the definition of decrea-
sing rearrangement of u . If

m(t) 4 L2 (]x�V : Nu(x)ND t() , tF0 ,

denotes the distribution function of u , then the decreasing rearrangement of
u is the distribution function of m that is

u *(s) 4 sup ]tF0 : m(t) Fs( , s� [0 , NVN] .

By the spherically decreasing rearrangement of u we mean

u J (x) 4u *(p!xN2 ), x�VJ ,

where VJ is the ball centered at the origin, having the same area as V .
If V is a convex set of R2 and u has convex level sets, we also define l(t) as

the perimeter of the level sets of u , ]x�V : Nu(x)ND t(. The rearrangement
of u with respect to the perimeter is defined as

u y (s) 4 sup ]tF0 : l(t) Fs( , s� [0 , LV ] ,

where LV is the perimeter of V .
From now on we consider only functions belonging to the class

F 0 (V)4]u : VKR : u�C 2 (V)OC 0, 1 (V), u concave in V , u40 on ¯V( ;

we easily infer that uF0 in V . Moreover, the perimeter l(t) of the level set
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]uD t( equals

l(t) 4 length ]x�V : u(x) 4 t(

for 0 E tE max u .
The following statements hold for u�F 0 (V) (see [19], [22]):

i) l(t) is a non increasing function on [0 , max u];

ii) 2l 8 (t) 4 s
u4 t

kNDuN21 , where

k42NDuN23gg uyy

2uxy

2uxy

uxx
h Du , DuhF0

is the curvature of the level line ]u4t(;

iii) u y is a non increasing, concave function on [0 , L] and u y (0) 4

max u and u y (LV ) 40;

iv) u y (l(t) ) 4 t;

v) u y (2pNxN) �F 0 (Vy ), where Vy is the ball centered at the origin,
having the same perimeter LV as V .

Isoperimetric inequality ensures that (see [21])

VuVL p (V) GVu y (2pNxN)VL p (Vy ) , pF1 .(2.1)

We also recall the Gauss-Bonnet theorem

s
u4 t

k42p

and the following rapresentation formula for the Hessian determinant of u

det D 2 u42
1

2
div (A(u)Du) ,

where A(u) is the matrix given by

A(u) 4u2uyy

uxy

uxy

2uxx

v
which is positive definite for every u�F 0 (V), solution to (1.1).

Furthermore we consider the integral functional (see [23], [21])

I(u , V) 4s
V

u det D 2 u

and we recall the following extension of the Polya-Szegö principle (see
[21]).
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THEOREM 2.1. – Let V be convex and u�F 0 (V). Then

I(u , V) FI(u y (2pNxN), Vy ) .(2.2)

As an immediate consequence of (1.3), (2.2) and (2.1) we have a Faber-
Krahn type inequality

s 1 (V) Fs 1 (Vy ) .

Finally the following existence and uniqueness result holds true (see
[18]).

THEOREM 2.2. – Let H : (x , t) �V3RK]0 , 1Q[ be a smooth function

such that
¯H

¯t
Gs 0 Es 1 for (x , t) � V3R . Then the problem

.
/
´

( det D 2 u)1/2 4H(x , u)

u concave

u40

in V

in V

on ¯V

(2.3)

has a unique solution in C 1, 1 (V)OC 2 (V).

REMARK 2.1. – We need to observe that solvability of problem (1.1) has been
proved, for example, by Lions [18], Tso [23], Wang [24]. For various proofs of
the uniqueness we refer the reader to [15], [18], [23], [25].

REMARK 2.2. – Returning to problem (1.1) we observe that, if H(x , t) 4

kf(x)1st 2 , the above condition
¯H

¯t
Gs 0 Es 1 is satisfied if sGs 0

2 .

3. – Main result.

In this section we will prove that the rearrangement of the solution u to
problem (1.1) can be estimated by the solution of the conveniently symmetri-
zed problem (3.1). In order to prove this comparison result we will follow an
argument which can be found in [12] in the case of p-laplacian operator. We
need that there exists a unique solution to problem (3.1), which is decreasing
and spherically symmetric, and this is true, for example, if sGs 0

2 Es 1
2 (Vy ).

Now we can state our main result.
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THEOREM 3.1. – Let u be a classical solution to problem (1.1) and let v be
the solution to problem

.
/
´

det D 2 v4 f J1sv 2

v concave and continuous in the closure

v40

in Vy

of Vy ,

on ¯Vy .

(3.1)

Then

u y (2pNxN) Gv(x) , x�Vy .(3.2)

PROOF. – Let 0 E tEmax u and let us integrate the equation in (1.1) on the
level set ]uD t(. By divergence theorem we get

s
uD t

det D 2 u42
1

2
s

u4 t

uu uyy

2uxy

2uxy

uxx

v Du ,
Du

NDuN
v4(3.3)

4
1

2
s

u4 t

kNDuN2 4 s
uD t

f1s s
uD t

u 2 .

Since

s
uD t

u 2 4 s
t

1Q

s 2 (2m 8 (s) ) ds4 t 2 m(t)1 s
t

1Q

2sm(s) ds(3.4)

by (3.3), (3.4), Hardy-Littlewood inequality and isoperimetric inequality we
obtain

(3.5)
1

2
s

u4t

kNDuN2G s
0

l2 (t)

4p

f *(s) ds1st 2 l 2 (t)

4p
2s s

0

l(t)

2

4p
s 2 u y (s) u y (s)8 ds .

Let us consider the left hand side of (3.5). By Hölder inequality and Gauss-
Bonnet theorem we have

1

2
s

u4 t

kNDuN2 F
1

2

g s
u4 t

kh3

g s
u4 t

kNDuN21h2
4

4p 3

(2l 8 (t) )2
.(3.6)

From (3.5) and (3.6), with s4l(t), we deduce the following inequality in terms
of the rearrangement u y of u

(2u y (s)8 )2 G
s

8p 4 s
0

s

ru y (r)2 dr1
1

4p 3 s
0

s 2 /4p

f *(r) dr , s� (0 , LV ) .(3.7)
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Setting c1 4
s

8p 4
and c2 4

1

4p 3
, for v(NxN) 4v y (2pNxN) the following equality

holds

(2v y (s)8 )2 4c1s
0

s

rv y (r)2 dr1c2 s
0

s 2 /4p

f *(r) dr .(3.8)

Let

U(s) 4s
0

s

ru y (r)2 dr V(s) 4s
0

s

rv y (r)2 dr ,

we want to prove that U(s) GV(s), s� (0 , LV ). By choosing

W 1 (s) 4
(U(s)3/2 2V(s)3/2)1

U(s)1/2
, W 2 (s) 4

(U(s)3/2 2V(s)3/2)1

V(s)1/2

as test functions in (3.7) and (3.8) respectively, and integrating by parts one
can deduce that NUDVN40. Hence U(s) GV(s) s� (0 , LV ). Then by (3.7) and
(3.8) we have

2u y (s)8G2v y (s)8 s� (0 , LV )

and integrating between s and LV

u y (s) Gv y (s) s� (0 , LV ) . r

4. – The case of eigenfuntions.

Let us consider a fixed eigenfunction u of problem

.
/
´

det D 2 u4 (s 1 u)2

u concave

u40

in V

in V

on ¯V

(4.1)

and the ball B centered at the origin such that s 1 (B) 4s 1 (V). Let vq be the
corresponding eigenfunction such that

s
0

LV

r(u y (r) )q dr4s
0

LB

r(vq
y (r) )q dr 0 EqE1Q ,(4.2)

where LV and LB are the perimeters of V and B respectively, and let vQ be the
corresponding eigenfunction having the same L Q-norm as u . In other words
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vq , 0 EqG1Q , solves the following problem

.
/
´

det D 2 vq 4 (s 1 vq )2

vq concave

vq 40

in B

in B

on ¯B .

By Faber-Krahn inequality, s 1 (B) Fs 1 (Vy ) and so LB GLV . The follo-
wing comparison results hold.

THEOREM 4.1. – Let u and vq be defined as above, we have

i) if 0 EqE1Q , then

s
0

s

r(u y (r) )q drGs
0

s

r(v y
q (r) )q dr , s� [0 , LB ] ;

ii) if q41Q , then

u y (s) Fv y
Q (s), s� [0 , LB ] .

A consequence of Theorem 4.1 is the following reverse inequality.

THEOREM 4.2. – Let u be an eigenfunction of problem (4.1). Then, for
0 EqEpG1Q , we have

u s
0

LV

r(u y (r) )p drv
1/p

Gc(p , q , s 1 )u s
0

LV

r(u y (r) )q drv
1/q

.(4.3)
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