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On a Class of Monge-Ampére Type Equations
with Lower Order Terms.

C. TROMBETTI (*)

Sunto. — St dimostrano risultati di confronto per soluzioni di equazioni tipo Monge-
Ampere in dimensione due, considerando anche il caso delle autofunzioni.

Summary. — We prove some comparison results for Monge-Ampére type equations in
dimension two. We consider also the case of eigenfunctions and we prove a kind of
«reverse» inequalities.

1. — Introduction.

In this paper we discuss some results presented at the XVII UMI Confe-
rence. All the proofs and further developements are contained in [4] and [5].
We consider the following Dirichlet problem

[detD2u=f+ou2 in Q
1.1 % concave in Q
u=0 on 989

where  is a convex, bounded open set of R?, fis a «<smooth» and positive fun-
ction, 0 > 0. Our aim is to compare the solution to problem (1.1) with the sol-
ution to a symmetrized problem that is

det D%v =f* + ov? in Q*
v concave and continuous in the closure of Q%*,
v=0 on 9Q*.

where f# is the spherically decreasing rearrangement of f (see section 2 for

(*) Comunicazione presentata a Milano in occasione del XVII Congresso U.M.IL.
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the definiton) and Q* is the ball centered at the origin having the same peri-
meter L, as Q.

The first result in this framework is contained in the paper by Talenti (see
[19]). In such paper he proved that if « is the solution of

[ detD?u=f in Q
1.2) % concave in Q
u=0 on 0%

and v the solution of the symmetrized problem

detD%v = f* in Q*
v concave and continuous in the closure of Q%*,
v=0 on 9Q*

then
u*2m|x|) <v(x)

where u * is a suitable rearrangement of u (see Section 2). This result has been
generalized, in the papers of Tso (see [22]) and Trudinger (see [21]), to any di-
mension and to the case of general Hessian operators, involving the so called
symmetrization by «quermassintegrals». The Monge-Ampere type equation

det D%u = g(x, w, Du)

has been widely studied. Existence and regularity results can be found for in-
stance in [9], [13], [17], [23], [25] under different assumptions on g and £ and
with different methods. In what follows one of our basic hypotheses will be
f>0in Q.

A preliminary result, that we will need in the following, concerns unique-
ness of solutions to problem (1.1). It is related to the eigenvalue o,(£2) of Mon-
ge - Ampere operator, introduced by P. L. Lions in [18]. We recall the
definition.

DEFINITION 1.1. — 0,(Q) =inf{0o%: AV} where

V={A= (a;(®) = (a;(x) e C(Q), a; >0 in 2,detA=1/4}

and of is the first eigenvalue of the linear second order elliptic operator

—a;; 9 with zero boundary conditions.
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There exists also a variational characterization of o2 (see [23], [25]) that is

JudetD?u
13)  o03(Q) = inf e LueCHQ)NCO1@),
u
Q

u is nonzero, concave and vanishes on 00

It is shown (see [18], [23], [25])) that problem (1.3) has a unique (up to a multi-
plicative constant) minimizer ¢ which satisfies

detD%?¢p = (0,¢)* in Q
¢=0 on 0Q .

The function ¢ is called an eigenfunction of Monge-Ampere operator.

2. — Notation and Preliminaries.

Given a measurable function u : 2 — R, we recall the definition of decrea-
sing rearrangement of %. If

ut) = L{xeQ: |u@) | >t}), =0,

denotes the distribution function of u, then the decreasing rearrangement of
u is the distribution function of u that is

w*(s) =sup{t=0:u(t) =s}, sel0, |2]].
By the spherically decreasing rearrangement of # we mean
w?(x) =u*(@lx|?), weQ?,

where Q7 is the ball centered at the origin, having the same area as Q.

If Q is a convex set of R? and » has convex level sets, we also define A(¢) as
the perimeter of the level sets of u, {xe Q: |u(x)| >t}. The rearrangement
of u with respect to the perimeter is defined as

u*(s)=sup{t=0:A(t)=s}, sel0, Lgl,

where L is the perimeter of €.
From now on we consider only functions belonging to the class

Dy ={u: Q—->R:uecC*(Q2)NC"(Q), u concave in 2, u=0 on 9Q};

we easily infer that u =0 in 2. Moreover, the perimeter A(f) of the level set
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{u >t} equals
A(t) =length {xe Q: u(x) =t}

for 0 <t < max u.
The following statements hold for ue @,(£2) (see [19], [22]):

i) A(t) is a non increasing function on [0, max u];
ii) —A'(t) = [ k|Du|!, where
u=t

= —|Du|‘3(( o

Uy

— Uyy
Du,Du) =0
um’

is the curvature of the level line {u=t};

iii) #* is a non increasing, concave function on [0, L] and w*(0) =
max % and u*(Lg) = 0;

iv) u*(At)) =t;
v) u*(2m|x]) e Do(2%), where Q* is the ball centered at the origin,
having the same perimeter L, as Q.

Isoperimetric inequality ensures that (see [21])
2.1) lillzoce) < lu* @l pr@r, p=1.

We also recall the Gauss-Bonnet theorem
f k=2n
u=t
and the following rapresentation formula for the Hessian determinant of
1
det D2y = — Ediv (A(w)Du),

where A(u) is the matrix given by

—Uu, Uy,
A(u) _ ( Yy Y )
u:cy — Uy

which is positive definite for every ue @ (L), solution to (1.1).
Furthermore we consider the integral functional (see [23], [21])

I(u, Q) = fu detD?%u
Q

and we recall the following extension of the Polya-Szeg6 principle (see

[21D).
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THEOREM 2.1. — Let Q be convex and ue @y (2). Then
2.2) I(u, Q) = I(u*2x|x|), 2%).

As an immediate consequence of (1.3), (2.2) and (2.1) we have a Faber-
Krahn type inequality

0.(R)=0,(2%).

Finally the following existence and uniqueness result holds true (see
[18]).

THEOREM 2.2. — Let H :(x,t) e Q2 X R—]0, + [ be a smooth function
such that % <0y<o0, for (x,t) e @ XR. Then the problem

(detD?*u)"?=H(x,u) in
(2.3) % concave in Q
u=>0 on 0Q

has a unique solution in C11(2) N C*(RQ).

REMARK 2.1. — We need to observe that solvability of problem (1.1) has been
proved, for example, by Lions [18], Tso [23], Wang [24]. For various proofs of
the uniqueness we refer the reader to [15], [18], [23], [25].

REMARK 2.2. — Returning to problem (1.1) we observe that, if H(x,t) =
\/f(x) + ot?, the above condition % < o0,<o0; is satisfied if o < o3.

3. — Main result.

In this section we will prove that the rearrangement of the solution % to
problem (1.1) can be estimated by the solution of the conveniently symmetri-
zed problem (3.1). In order to prove this comparison result we will follow an
argument which can be found in [12] in the case of p-laplacian operator. We
need that there exists a unique solution to problem (3.1), which is decreasing
and spherically symmetric, and this is true, for example, if 0 < 0% < o2(2*).
Now we can state our main result.
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THEOREM 3.1. — Let u be a classical solution to problem (1.1) and let v be
the solution to problem

det D2v =f# + ov? in Q*
3.1) v concave and continuous in the closure  of Q%*,
v=0 on 9Q*.
Then
(3.2) u*@2r|x|) Sv(x), wel*.

ProoF. — Let 0 <t <maxwu and let us integrate the equation in (1.1) on the
level set {u >t}. By divergence theorem we get

< e (e )

w>t w=t v

-2 [ ffﬂ, [

u>t u>t

Since

+ o0

(3.4) [ uz= f s2(—u'(s)) ds = t2u(t) + fzsu(s) ds

u>t
by (3.3), (3.4), Hardy- thtlewood inequality and 1soper1metrlc inequality we
obtain

A2(t)
At)

—of iSzu"‘(s)u"‘(s)’ols.
; %4

1 J A%t
35 = fk|Du|2S f f*(s) ds + ot? ®
Zu: . ; 47
Let us consider the left hand side of (3.5). By Holder inequality and Gauss-
Bonnet theorem we have
3
f k) 473

(36 3 f’“'D i ( f“ktlb ul ) T ror

u=t

From (3.5) and (3.6), with s = A(), we deduce the following inequality in terms
of the rearrangement u* of u

s2/ax

(3.7)(—%*(3)’)2< fm*(T)sz+— ff*(r)dr se (0, Lg).
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Setting ¢; = — and ¢, = LS , for v(|x|) =v*(27|x|) the following equality
holds ~ iz

s/an

(3.8 (—v*@) F=c [ro*Pdr+e, [ fH0)dr.
0 0

Let
U(s) = fm*(r)zdr V(s) = fm;*(r)w,
0 0

we want to prove that U(s) < V(s), se (0, Lo). By choosing

( U( 8)3/2 - 8)3/2)+ ( U( 8)3/2 - 8)3/2)+
U(S)l/z ’ QDZ(S) = V(S)I/Z

@q(8) =

as test functions in (3.7) and (3.8) respectively, and integrating by parts one
can deduce that |U > V| = 0. Hence U(s) < V(s) se (0, Ly). Then by (3.7) and
(3.8) we have

—u*(s)' < —v*(s) se(0,Ly)

and integrating between s and L

u*(s) <v*(s) se(0,Ly). =

4. — The case of eigenfuntions.

Let us consider a fixed eigenfunction % of problem

detD%u = (o,u)® in Q
4.1) % concave in
u=>0 on 09

and the ball B centered at the origin such that o,(B) = 0,(£2). Let v, be the
corresponding eigenfunction such that

Lo Lp
4.2) [raw*myidr= [rreyidr 0<q< + o,
0 0

where L, and Ly are the perimeters of Q and B respectively, and let v,, be the
corresponding eigenfunction having the same L *-norm as %. In other words
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vy, 0 <q< + o, solves the following problem
detD*v, = (0,v,)* in B
v, concave in B

V=0 on 9B .

By Faber-Krahn inequality, o,(B) = ¢,(2*) and so Lz < Lg. The follo-
wing comparison results hold.

THEOREM 4.1. — Let u and v, be defined as above, we have
)if0<qg< + oo, then

S

fr(u*(r))qdfr < fr('vq*(fr))qdr, se[0, Lgl;
0

0
i) if g = + oo, then

u*(s)=vx(s), sel0,Lgl.

A consequence of Theorem 4.1 is the following reverse inequality.

THEOREM 4.2. — Let u be an eigenfunction of problem (4.1). Then, for
0<g<ps< + o, we have

Lo 1/p Lo 1/q
4.3) (f"r(u*(r))pd"r) <cp, q, 01)(fr(u*(r))qdr) :

0 0
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