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Symmetries and Kähler-Einstein Metrics.

CLAUDIO AREZZO - ALESSANDRO GHIGI (*)

Sunto. – Si considerano varietà di Fano M che ammettono un certo numero di rivesti-
menti di Galois MKMi , su delle varietà di Fano lisce Mi che ammettono una metri-
ca di Kähler-Einstein. Sotto alcune ipotesi numeriche sui divisori di ramificazione
si dimostra che allora anche su M esiste una metrica di Kähler-Einstein.

Summary. – We consider Fano manifolds M that admit a collection of finite automor-
phism groups G1 , R , Gk , such that the quotients M/Gi are smooth Fano manifolds
possessing a Kähler-Einstein metric. Under some numerical and smoothness as-
sumptions on the ramification divisors, we prove that M admits a Kähler-Einstein
metric too.

1. – Introduction.

The aim of this paper is to provide new examples of Kähler-Einstein me-
trics of positive scalar curvature. The existence of such a metric on a Fano ma-
nifold is a subtle problem, due to the presence of obstructions, that have been
discovered during the years, beginning with Matsushima’s theorem in 1957,
Futaki invariants in 1982, Tian’s theorem stating that Kähler-Einstein mani-
folds of positive scalar curvature are semistable (see [12], Theorem 8.1), up to
Donaldson’s result [4], Corollary 4, which shows that the existence of Kähler-
Einstein metrics (even more generally of a Kähler constant scalar curvature
metric) forces the algebraic underlying manifolds to be asympotically stable
(see also [2]).

Existence theorems on the other hand are always very hard. The only
necessary and sufficient condition, established by Tian, is of a truly analytic
character. It says that a Fano manifold M admits a Kähler-Einstein metric, if
and only if an integral functional F defined on Kähler metrics in the class
c1 (M) is proper (see Theorem 2.1 below). The equivalence of properness of F
with the algebraic stability of the underlying manifold, in an appropriate sen-
se, would represent the final solution of the problem, but is still unknown.

(*) Comunicazione presentata a Milano in occasione del XVII Congresso U.M.I.



CLAUDIO AREZZO - ALESSANDRO GHIGI606

(This has been suggested by Yau, and made precise by Tian, who has also pro-
ved that properness implies stability.) Work in progress by Paul and Tian [9]
indicates a new stability condition as a candidate for the equivalence with the
existence of a Kähler-Einstein metric.

Although by now there is a good deal of examples, the only broad class of
manifolds for which the problem is solved is the one of toric Fano manifolds,
thanks to a recent theorem of Xujia Wang and Xiaohua Zhu ([14], see also Do-
naldson’s work [5] for related results for extremal metrics). Otherwise, even
for manifolds that are deceptively simple from the algebro-geometric point of
view, one has often no clue on how to check the properness of F , and finding
the metric. The case of Del Pezzo surfaces is quite eloquent from this point of
view, as the reader of [11] might verify. Another striking example of the diffi-
culties on which one suddenly runs, is the hypersurface case. Indeed, it is
expected that any smooth Fano hypersurface has a Kähler-Einstein metric,
nonetheless the only one for which this is known is the Fermat’s hypersurface
(see [13, p. 85-87]).

The aim of this paper is to use the symmetries of the underlying manifold
to prove existence of Kähler-Einstein metrics, inspired by Tian’s work on Fer-
mat hypersurfaces. In Section 2 we study the behaviour of properness of Fv in
presence of a Galois covering and find conditions under which the existence of
a Kähler-Einstein metric on the base allows one to prove a version of proper-
ness, and thus existence, on the covering space. We find algebraic conditions
on the covering maps (Theorems 2.3 and 2.5) ensuring that the desired inequa-
lities hold on the covering space. In 3 we show how this can be used to prove
the existence of Kähler-Einstein metrics on some classes of Fano manifolds,
chosen from the lists of Del Pezzo manifolds, and Fano threefolds with Pic4Z
(see [6], p. 214-215]). Our examples include:

a) hypersurfaces of the form ]x0
d 1R1xk21

d 1 f (xk , R , xn11 ) 40( %
Pn11 where f is a homogeneous polynomial of degree d , and kDn122d;

b) n-dimensional intersections of hypersurfaces of the same form as above,
all of the same degree d and with kDn122d;

c) arbitrary intersections of two (hyper)quadrics;

d) double covers of Pn ramified along a smooth hypersurface of degree 2d

with
n11

2
EdGn;

e) double covers of the n-dimensional quadric Qn %Pn11 with smooth bran-
ching locus cut out by a hypersurface of degree 2d with

n

2
EdEn .

(See section 3.) Example (a) generalises Tian’s theorem about Fermat’s
hypersurfaces. Both (a) and (b) give positive-dimensional families of Kähler-
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Einstein manifolds, instead of just isolated examples. This becomes even more
striking in examples (c), (d) and (e), since every element in the moduli of such
manifolds has a Kähler-Einstein metric. (c) had been proved previously, for
two special quadrics in P5 , by Alan Nadel (see [8], p. 589]).

This paper is an abridged version of [1]. Full proofs can be found
there.

We wish to thank Gang Tian for many helpful conversations and for his in-
terest in this work.

2. – Existence theorems on covering spaces.

Let M be a Fano manifold, G a compact subgroup of Aut (M), and v a G-in-
variant Kähler metric in the class 2pc1 (M). Put

PG (M , v) 4 ]W�C Q (M) : v WD0, and W is G-invariant((1)

where v W4v1 i¯¯W , and by v WD0 we mean that v W is a Kähler metric. If
G4]1( we simply write P(M , v). Recall the definition of the following func-
tionals on the space PG (M , v)

Iv (W) 4
1

V s
M

W(v n 2v n
W ) Jv (W) 4s

0

1
Iv (sW)

s
ds

F 0
v (W) 4Jv (W)2

1

V s
M

Wv n .

(2)

Here V4 a[M], [v]n b 4n! vol (M , v). Let f4 f (v) be the unique function on M
satisfying Ric (v) 4v1 i¯¯f (v) and s

M
e f (v)v n 4V . Then we define

Fv (W) 4F 0
v (W)2 log y 1

V
s

M

e f (v)2Wv nz .(3)

We say that Fv is proper on PG (M , v) if there is a proper increasing function
m : RKR , such that the inequality

Fv (W) Fm(Jv (W))

holds for any f�PG (M , v). The importance of this notion is mainly due to the
following theorem (see [12], Theorem 1.6] and [13] Chapter 7).

THEOREM 2.1 (Tian). – Let M be a Fano manifold and G a maximal com-
pact subgroup of Aut (M). Then M admits a Kähler-Einstein metric if and
only if Fv is proper on PG (M , v). Moreover, in this case Fv is bounded from
below on all P(M , v).
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We consider the following set of «normalised» potentials:

QG (M , v) 4 ]f�PG (M , v) : Av (W) 40( .

For any W�PG (M , v), W1Av (W) �QG (M , v) is the corresponding normali-
sed potential.

The following proposition gives a sufficient condition for the existence of
Kähler-Einstein metrics on Fano manifolds.

PROPOSITION 2.1. – Let M be a Fano manifold, and v a Kähler metric in
the class 2pc1 (M). If there are constants C1 , C2 D0 such that

Fv (W) FC1 sup
M

W2C2(4)

for any f�QG (M , v), then M admits a Kähler-Einstein metric.

PROPOSITION 2.2. – If there are constants C1 , C2 D0 and bD0 such
that

Fv (W) FC1 log y 1

V
s

M

e f (v)2 (11b) Wv nz2C2(5)

for any f�QG (M , v), then M admits a Kähler-Einstein metric.

Below we will need a slight extension of the integral functionals defined
above. Let M be a compact complex manifold and g a continuous hermitian
form on M . A closed positive current T of bidegree (1,1) is called a Kähler cur-
rent if for some constant cD0 one has TFcg in the sense of currents. The de-
finition does not depend on the choice of g , since M is compact. If M is a Fano
manifold, G%Aut (M) is a compact subgroup, and v is a G-invariant Kähler
form in the class 2pc1 (M), we put

P 0
G (M , v) 4 ]c�C 0 (M) : v1 i¯¯c is a Kähler current( .

This means that c belongs to P 0
G (M , v) if and only if v1 i¯¯cFcv in the

sense of currents for some cD0.

PROPOSITION 2.3. – The functionals Iv , Jv , F 0
v and Fv can be extended to

P 0
G (M , v). The extensions are continuous with respect to the C 0-topology.

In the proof of the next Theorem we will need the following density
result.

PROPOSITION 2.4. – Any c�P 0
G (M , v) is the C 0-limit of a sequence

W n �PG (M , v).
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This is a straightforward application of a result due to Richberg
([10]).

THEOREM 2.2. – Let M and N be Fano manifolds, p : MKN a ramified
Galois covering of degree d with structure group G , v N a Kähler-Einstein
metric on N and v�2pc1 (M) a G-invariant Kähler metric. Denote by R(p)
be the ramification divisor of p , and assume that numerically (i.e. in homo-
logy) R(p) 4bKM

21 for some b�Q . (Since R(p) is effective and KM
21 is ample,

bD0.) Then there is a constant constant C1 D0 such that for any W�
PG (M , v M )

F 0
v (W) F log y 1

V
s

M

e 2(11b) W p* v n
Nz2C1 .(6)

PROOF. – The classical Hurwitz formula for the canonical bundle of a rami-
fied covering, p* KN 4KM 2R(p), yields that

p*[v N ] 4 (11b)[v] .

Denote by G the Galois group of the covering, and choose a G-invariant u�
C Q (M) such that p* v N 4 (11b)v1 i¯¯u . We claim that any W�PG (M , v)
is of the form W4 (u1p* c) /(11b) for some c�P 0 (N , v N ). Indeed
(11b)W2u is G-invariant, so (11b) W2u4p* c for some continuous fun-
ction c , because N4M/G has the quotient topology.

LEMMA 2.1. – If p : MKN is a finite holomorphic map of compact com-
plex manifolds, the direct image via p of a Kähler current on M is a Kähler
current on N .

PROOF OF THE LEMMA. – Let R%M and B%N denote ramification and bran-
ching locus of p , and d its degree. Let g M and g N be continuous hermitian
forms on M and N respectively. Since p* g N is continuous and g M is positive
definite, there is c1 D0 such that g M Fc1 p* g N . If T is a Kähler current on M ,
by definition TFc2 g M for some c2 D0, so that TFcp* g N with c4c1 c2 D0.
Given a positive form h�Rn21, n21 (N) we have

ap * T , hb 4c Qdag N , hb

so that TFc Qdg N . This proves the lemma.

Q.D.E.
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Since

v N 1 i¯¯c4
11b

d
p *(v1 i¯¯W)

(as currents) the lemma implies that v N 1 i¯¯c is a Kähler current, i.e. that
c�P 0 (N , v N ). We have shown that to any potential W�PG (M , v) correspon-
ds a continuous potential c�P 0 (N , v N ) such that p*(v N 1 i¯¯c) 4

(11b)(v1 i¯¯W). Since N is Kähler-Einstein by hypothesis, Tian’s Theorem
2.1 implies that there is a constant C3 such that Fv N

(h) F2C3 for any h�
P(N , v N ). By Proposition 2.3 the functional Fv N

can be extended continuously
to P 0 (N , v N ), and by Proposition 2.4 P(N , v N ) is dense in P 0 (N , v N ), so we
can conclude that

Fv N
(c) F2C3(7)

for c as above. To finish the proof we need to «lift» this inequality from N to M .

(11b)n F 0
v N

(c) 4F 0
p* v N

(p* c) .(8)

Moreover

1

VN
s

N

e 2c v n
N 4

1

(11b)n

1

V
s

M

e 2(11b) W e u (p* v N )n(9)

where

VN 4 a[N], [v N ]n b 4
(11b)n

d
V .

The homogeneity of F 0 and the cocycle relation it satisfies (see [13], pp. 60-61])
yield finally

F 0
v (W) FC5 1 log y 1

V
s

M

e 2(11b) W (p* v N )nz2C4 .

Q.D.E.

The first criterion for the existence of Kähler-Einstein metrics is the
following

THEOREM 2.3. – Let M be an n-dimensional Fano manifold. Assume that
ramified coverings p i : MKMi are given for i41, R , k , satisfying the follo-
wing assumptions:

1. Mi is a Fano manifold and admits a Kähler-Einstein metric;

2. the coverings are Galois, i.e. Mi 4M/Gi for some finite group Gi ,
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3. the groups Gi are contained in some compact subgroup G%
Aut (M);

4. the intersection of the ramification E(p i ) divisors is empty;

5. the divisors R(p i ) are all proportional to the anticanonical divisor of
M , i.e. there are some (necessarily positive) rational numbers b i such that
numerically (i.e. in homology) R(p i ) 4b i KM

21 .

Then M has a Kähler-Einstein metric.

PROPOSITION 2.5. – Let M be an n-dimensional Fano manifold. Assume
that ramified coverings p i : MKMi are given for i41, R , k , satisfying the
following assumptions:

1. Mi is a Fano manifold and admits a Kähler-Einstein metric;

2. the coverings are Galois, i.e. Mi 4M/Gi for some finite group Gi ;

3. the groups Gi are contained in some compact subgroup G%
Aut (M);

4. there are (positive) rational numbers b i such that numerically
R(p i ) 4b i KM

21 .

Define h�C Q (M) by
1

k
!

i41

k

p i* v i
n 4hv n , and put c»4 sup ]lF0 : h2l�

L 1 (M , v n )( and b»4 min b i . If
1

c
Eb , then M admits a Kähler-Einstein

metric.

It is clear that the last proposition is of some use only if c can be computed
or at least bounded from below. This number is an instance of an interesting
invariant of a singularity studied – among others – by Demailly and Kollár
(see [3] and [7]). We present below two cases in which it can be computed very
easily.

THEOREM 2.4. – Let M be an n-dimensional Fano manifold, and let
p : MKN be a Galois covering with group G onto a Kähler-Einstein mani-
fold N . Assume that homologically R(p) 4bKM

21 , and that

d21 Eb(10)

where d4JG4deg (p). Then M has a Kähler-Einstein metric.

THEOREM 2.5. – Let M be an n-dimensional Fano manifold. Assume that
ramified coverings p i : MKMi are given for i41, R , k , satisfying the follo-
wing assumptions:

1. Mi is a Fano manifold and admits a Kähler-Einstein metric;

2. the coverings are Galois, i.e. Mi 4M/Gi ;
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3. the groups Gi are all contained in some fixed compact subgroup
G%Aut (M);

4. if Vi denotes the reduced divisor of M associated to the ramification di-
visor of p i , then the Vi’s are smooth hypersurfaces, that intersect transversal-
ly in a smooth submanifold V;

5. there are (positive) rational numbers b i such that R(p i ) 4b i KM
21 , and

they satisfy

1

d1 21
1R1

1

dk 21
D

1

b
(11)

where b»4 min b i and di 4JGi .

Then M has a Kähler-Einstein metric.

3. – Examples.

Consider the hypersurface

M4 ]x0
d 1R1xk21

d 1 f (xk , R , xn11 ) 40( %Pn11

where f is any homogeneous polynomial of degree d such that M is smooth.
Note that this is equivalent to saying that

V4MO ]x0 4R4xk21 40( ` ] f40( %Pn112k

be smooth.

PROPOSITION 3.1. – If kDn122d then M admits a Kähler-Einstein
metric.

PROPOSITION 3.2. – Let M%Pn1m be a complete intersection of m hypersur-
faces of degree d , given by equations of the form

Fj (x0 , R , xn1m ) 4a j
0 x0

d 1Ra j
k21 xk21

d 1 fj (xk , R , xn1m ) 40, j41, R , m .

I.e. the equations are diagonal in the first k coordinates. If n122dEk ,
then M admits a Kähler-Einstein metric.

THEOREM 3.1. – Any smooth intersection of two quadrics M4Q1 OQ2 in
Pn12 has a Kähler-Einstein metric.

THEOREM 3.2. – Let M be an n-dimensional Fano manifold that admits a
double covering p over Pn with branching divisor a smooth hypersurface of
degree 2d , with

n11

2
EdGn . Then M admits a Kähler-Einstein metric.



SYMMETRIES AND KÄHLER-EINSTEIN METRICS 613

THEOREM 3.3. – Let M be an n-dimensional Fano manifold that is a
double cover of the quadric Qn %Pn ramified along a smooth divisor cut out by
a hypersurface of degree 2d , with

n

2
EdEn . Then M admits a Kähler-Ein-

stein metric.
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