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Recent Developments in Wavelet Methods
for the Solution of PDE’s.

SILVIA BERTOLUZZA (*)

Sunto. – Dopo aver ricordato alcune delle proprietà delle basi di wavelets, ed in parti-
colare la proprietà di caratterizzazione di spazi funzionali tramite coefficienti wave-
let, descriviamo due nuovi approcci rispettivamente alla stabilizzazione di proble-
mi numericamente instabili ed alla soluzione nonlineare (adattativa) di equazioni
differenziali alle derivate parziali, che sono resi possibili da dette proprietà.

Summary. – After reviewing some of the properties of wavelet bases, and in particular
the property of characterisation of function spaces via wavelet coefficients, we de-
scribe two new approaches to, respectively, stabilisation of numerically unstable
PDE’s and to non linear (adaptive) solution of PDE’s, which are made possible by
these properties.

1. – Introduction.

Wavelet bases were introduced in the late eighties as a tool for signal and
image processing. Among the applications considered at the beginning we re-
call applications in the analysis of seismic signals, the numerous applications
in image processing – image compression, edge-detection, denoising, applica-
tions in statistics, as well as in physics. Their effectiveness in many of the men-
tioned fields is nowadays well established: wavelets are actually used by the
US Federal Bureau of Investigation (or FBI) in their fingerprint database,
and they are one of the ingredient of the new MPEG media compression stan-
dard. Quite soon it became clear that such bases allowed to represent with a
low number of degrees of freedom objects (signals, images, turbulent fields)
with singularities of complex structure, a property that is particularly promi-

(*) Conferenza tenuta a Milano il 10 settembre 2003 in occasione del XVII Congres-
so U.M.I.
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sing when thinking of an application to the numerical solution of partial diffe-
rential equations: many PDEs have solutions which present singularities, and
the ability to represent such solution with as little as possible degrees of free-
dom in essential in order to be able to implement effective solvers for such
problems. The first attempts to use such bases in this framework goes back to
the late eighties and early nineties, when the first simple adaptive wavelet
methods [26] appeared. In those years the problems to be faced were basic
ones. The computation of integrals of products of derivative of wavelets – ob-
jects which are naturally encountered in the variational approach to the nume-
rical solution of PDEs – was an open problem (solved later by Dahmen and Mi-
chelli in [21]). Moreover, wavelets were defined on R and on Rn . Already sol-
ving a simple boundary value problem on (0 , 1 ) (the first construction of wave-
lets on the interval [16] was published in 1993) posed a challenge.

Many step forward have been made since those pioneering works. In parti-
cular thinking in terms of wavelets gave birth to some new approaches in the
numerical solution of PDEs. In this paper we want to show some of these new
ideas. In particular we want to show how one key property of wavelets (the
possibility of writing equivalent norms for the scale of Besov spaces) allows to
write down some new methods.

2. – Hierarchical bases and wavelets.

Let us start by explaining what we mean by wavelets. There are in the lite-
rature many definitions of wavelets and wavelet bases, going from the more
strict ones (a wavelet is the dilated and translated version of a mother wavelet
satisfying a suitable set of properties) to more and more general definitions.
In this paper we will call wavelet basis any basis for L 2 (V) satisfying certain
properties. The aim of this section is to review what are these properties, or, in
other words, to explain what is for us a wavelet basis.

Almost all constructions of wavelet bases for L 2 (V) (V’Rn denoting an
open domain) start with a nested sequence ]Vj (jF0 of closed subspaces of

L 2 (V), whose union is assumed to be dense in L 2 (V) gL 2 (V) 40
j

Vjh . If we

consider a sequence of bounded projectors Pj : L 2 (V) KVj – note that Vj 4

Pj (L 2 (V) ) and that Vj %Vj11 implies Pj11 Pj 4Pj – we can introduce the diffe-
rence spaces

Wj 4 (Pj11 2Pj )Vj11 4 (Pj11 2Pj )L 2 (V)

and we can decompose

L 2 (V) 4V0 5j Wj .
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Now, a hierarchical basis on V is constructed by taking a basis ]f l , l�K( for
V0 and bases ]c l , l�L j ( for each of the Wj and assembling them in order to
compose a basis for the whole L 2 (V):

L 2 (V) 4span af l , l�K , c l , l�NL j b.

The functions c l for l�L j , jF0 are the wavelets.
In order to simplify the notation in the following it will be useful to set

L 21 4K , and for l�L 21 , c l4f l .

This will allow us to write

L 2 (V) 4span oc l , l�L4 0
jF21

L jp

and

f4 !
l�K

fl f l1 !
jF0

!
l�L j

fl c l4 !
jF21

!
l�L j

fl c l4 !
l�L

fl c l .

Remark however that, for l�L 21 , the functions c l4f l have a different
behaviour from the actual wavelets, i.e. the functions c l l�L j for jF0.

When talking of a wavelet basis, we assume that a number of properties
hold: first we assume that we are dealing with a Riesz’s basis, that is the
L 2 (V) norm of a function is equivalent to the l 2 norm of its coefficients. In
other word, setting

cK 4 ]cl(l�L and V cKVl 2 (L) »4o !
l�L

cl
2(1)

we have the norm equivalence

V !
l�L

cl c l VL 2 (V) CV cKVl 2 (L) ,(2)

(throughout this paper we will employ the notation A�B (resp. A�B) to say
that the quantity A is bounded from above (resp. from below) by cB , with a
constant cD0; the expression ACB will stand for A�B�A).

Since almost all applications in the field of the numerical solution of PDEs
deal with compactly supported wavelets, we will assume that the wavelet c l

are compactly supported.
A key role is played by the so called dual basis. The application fK fl that

maps each L 2 (V) function f4!
l

fl c l onto its l-th coefficient fl is linear and

bounded. Then, by the Riesz representation theorem, there exists an L 2 (V)
function c

A
l such that for all f�L 2 (V) we have fl4 a f , c

A
l b, where aQ , Qb denotes
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the L 2 (V) scalar product. In other words, we have the representation

f4 !
l�L

a f , c
A

l b c l .(3)

The set ]c
A

l , l�L( forms a second Riesz’s basis for L 2 (V) which is bior-
thogonal to original one, that is for l , l 8�L we have

ac l , c
A

l 8 b 4d l , l 8 , (where d l , l 8 is the Kronecker’ s d) .

We observe that we can express the projectors Pj in terms of the dual ba-
sis. More precisely, for all f�L 2 (V) we can write

Pj f4 !
m421

j21

!
l�L j

a f , c
A

l b c l .

2.1. The classical wavelet for L 2 (R): The frequency domain point of view vs.
the space domain point of view.

When handling or dealing with wavelets it is usually useful to think in ter-
ms of frequency localisation though when V is a domain different from Rn the
concept of frequency content of a function (strictly related to its Fourier tran-
sform) is not well defined. In order to explain what thinking in terms of fre-
quency means, let us first give a brief look at the case V4R .

In the classical constructions of wavelet bases for L 2 (R) [27], all basis fun-
ctions c l , l�L j with jF0, as well as the duals c

A
l , are constructed by tran-

slation and dilation of a single mother wavelet c (resp. c
A). Here the indexes

l�L j are of the form l4 ( j , k) and

c l4c j , k 42 j/2c(2 jx2k), c
A

l4 c
A

j , k 42 j/2c
A(2 jx2k).

Clearly, the properties of the function c will transfer to the functions c l and
will imply properties of the corresponding wavelet basis.

In this framework, the key property of wavelets is their simultaneous good
localisation both in space and in frequency. As we already mentioned we will
deal with compactly supported wavelets. Therefore we can assume that there
exists an LD0 and an LA D0 such that

supp c’ [2L , L] ¨ supp c l’ [2(k1L) /2 j, (k1L) /2 j] ,(4)

supp c
A

’ [2LA, LA] ¨ supp c
A

l’ [2(k1LA) /2 j, (k1LA) /2 j] .(5)

that is, both the wavelet c l (l4 ( j , k) ) and its dual c
A

l will be supported
around the point xl4k/2 j, the size of their support will be of the order of
22j .

Now, for each wavelet c l�L 2 (R) we can consider its Fourier transform
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c×l�L 2 (V). Since c is compactly supported, by Heisenberg’s indetermination
principle its Fourier transform c× cannot be itself compactly supported. How-
ever it is localised as well as possible around the frequency 1 . More precisely
the following properties hold: there exist an MD0 and an RD0, with MDR ,
such that for n40, R , M and for s such that 0 GsGR one has

a )
d n c×

dj n
(0) 40, and b ) s(11NjN2 )s Nc×(j)Ndj�1 .(6)

Analogously, for c
A there exist an MA D0 and an RA D0 such that for

n40, R , MA and for s such that 0 GsG RA one has

a )
d n c×

dj n
(0) 40, and b ) s(11NjN2 )s Nc×(j)Ndj�1 .(7)

The frequency localisation property (6) can be rephrased directly in terms
of the function c l , rather than in terms of its Fourier transform:

sx n c(x) dx40, n40, R , M , and VcVH s (R) �1, 0 GsGR ,(8)

which, by a simple scaling argument implies

sx n c l (x) dx40, n40, R , M , and Vc l VH s (R) �2 js, 0 GsGR .(9)

Analogously, we can write, for c
A

l

sx n c
A

l (x) dx40, n40, R , MA, and Vc
A

l VH s (R) �2 js, 0 GsG RA .(10)

REMARK 1. – Heisenberg’s indetermination principle states that a fun-
ction cannot be arbitrarily well localised both in space and frequency. More
precisely, introducing the position uncertainty Dx and the momentum uncer-
tainty Dj defined by

Dj l »4 gs(x2xl )2 Nc l (x)N2 dxh
1/2

Dj l »4 gs(j2j l )2 Nc×l (j)N2 djh
1/2

with xl4xj , k 4k/2 j and j l4j j , k A2 j defined by j l4 sjNc×l (j)N2 dj , one ne-
cessarily have Dx QDjF1. In our case Dx QDj�1, that is wavelets are simulta-
neously localised in space and frequency nearly as well as possible.

Before going on in seeing what the space-frequency localisation properties
of the basis function c (and consequently of the wavelets c l’s) imply, let us for
a moment consider functions with a stronger frequency localisation. Let us
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then for a moment drop the assumption that c is compactly supported and as-
sume that its Fourier transform verifies

Nsupp (c×)N% [1 , 2 ], and that Nsupp ( f×)N% [0 , 1 ] (f�V0 .

(where Nsupp (Q)N denotes the set ]NjN , j� supp (Q)(). Then one can easily de-
duce several properties of the basis functions c l : since one can easily check
that for l4 ( j , k), jF0, Nsupp (c×)N% [2 j, 2 j11], observing that on supp (c×l )
we have NjNC2 j and that, for l�L j and m�L m with mc j , supp (c× l )O
supp (c×m ) 4¯ , one immediately obtains the following equivalence: letting
f4!

l
fl c l

V f VH s
2 4s

R

(11NjN2 )s N f×(j)N2 djC!
j

22 jsNN !
l�L j

flc×lNN
L 2

(remark that for j421 we have 22 js 4222s C1) which, thanks to the Riesz’s
basis property (2) implies

V f VH s
2 C !

jF21
22 js !

l�L j

NflN
2 .(11)

If we only consider partial sums, we easily derive direct and inverse ine-
quality, namely:

NN !
j421

J

!
l�L j

fl c lNN
H s

�2JsNN !
j421

J

!
l�L j

fl c lNN
L 2

(12)

and

NN !
j4J11

Q

!
l�L j

fl c lNN
L 2

�22JsNN !
j4J11

Q

!
l�L j

fl c lNN
H s

.(13)

Properties (12) and (13) – which, as we saw, are easily proven if c× is com-
pactly supported – go on holding, though their proof is less evident, in the case
of c compactly supported, provided (6) holds. The same is true for property
(11). More precisely we can prove the following inequalities:

Direct Inequality. For all f�L 2 (R)OH r (V) and for s , r with 2RA GsG

rGR

NN !
mF j

!
l�L m

a f , c
A

l b c lNN
s
�22j(r2s)NN !

mF j
!

l�L m

a f , c
A

l b c lNN
r
�V f Vr(14)

Inverse Inequality. For all f�Vj and for all s , r with 2RA GsGrGR it
holds that

V f Vr � NN !
m421

j

!
l�L m

a f , c
A

l b c lNN
r
�2 j(r2s)NN !

m421

j

!
l�L m

a f , c
A

l b c lNN
s
�V f Vs .(15)
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All functions f�Wj verify both direct and inverse inequality:

V f VH r (V) C2 jr
V f VL 2 (V) .

In particular, the wavelets themselves satisfy

Vc l VH r (V) C2rj , l4 (k , j), jF0 r�]2RA, R[ .(16)

REMARK 2. – Note that an inequality of the form (12) is satisfied by all
functions whose Fourier transform is supported in the interval [22J , 2J ],
while an inequality of the form (15) is verified by all functions whose Fourier
transform is supported (away from 0) in (2Q , 22J ]N [2 j, Q). Such ine-
qualities are inherently bound to the frequency localisation of the functions
considered, or, to put it in a different way, to their more or less oscillatory
behaviour. Saying that a function is «low frequency» means that such fun-
ction does not oscillate too much. This translates in an inverse type inequali-
ty. On the other hand, saying that a function is «high frequency» means that
it is oscillating, that is that it is locally orthogonal to polynomials (where the
meaning of «locally» is related to the frequency) and this translates in a di-
rect inequality. In many applications (14) and (13) can actually replace the
informations on the localisation of the Fourier transform. In particular this
will be the case when we deal with functions defined on a bounded set V , for
which the concept of Fourier transform does not make sense. Many of the
things that can be proven for the case V4R by using Fourier transform te-
chniques, can be proven in an analogous way for bounded V by suitably
using inequalities of the form (14) and (15).

2.2. The general case: V domain of Rn.

Let us go back to the general case of V being a (possibly bounded) Lip-
schitz domain of Rn . For the sake of simplicity let us not take into account the
problem of boundary conditions (which certainly needs to be faced when ai-
ming at an application in the framework of the numerical solution of PDEs),
and let us consider wavelet bases that do not satisfy any kind of boundary con-
ditions. We will briefly comment on this issue later on, in subsection 2.4.

The properties of being localised in space can be easily state also for wave-
let bases on general domains.

Localisation in space. For each l�L j we have that

diam(supp c l ) �22j , and diam(supp c l ) �22j .

and for all k4 (k1 , k2 , R , kn ) there are at most K (resp. KA) values of l�L j
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such that

supp c lOpj , k c¯ ( resp. supp c
A

lOpj , k )

(where pj , k denotes the cube of centre k/2 j and side 22j). This last requirement
is equivalent to asking that the basis functions at j fixed are uniformly distri-
buted over the domain of definition. It avoids, for instance, that they accumu-
late somewhere.

Clearly, the concept of frequency and the definition of Fourier transform
do not make sense in such framework. Still, we can ask that the basis functions
have the same property in term of oscillations. We will then assume that they
satisfy (9). More precisely we assume that the basis function c l verify

s
V

x n c l (x) dx40, n40, R , M , and Vc l VH s (V) �2 js, 0 GsGR .(17)

Analogous relations hold for the dual basis:

s
V

x n c
A

l (x) dx40, n40, R , MA, and Vc
A

l VH s (V) �2 js, 0 GsGRA .(18)

Additionally we will assume that the functions in the spaces Vj do not oscil-
late «too much» (i.e., that they verify a suitable inverse type inequality) and
that the remainders f2Pj f are actually oscillating functions (i.e., they satisfy
a suitable direct inequality). In other words, we will ask that the following to
properties hold.

Direct Inequality. For all f�L 2 (V) and for s , r with 2RA GsGrGR

NN !
mF j

!
l�L m

a f , c
A

l b c lNN
s
�22j(r2s)NN !

mF j
!

l�L m

a f , c
A

l b c lNN
r
�V f Vr .(19)

Inverse Inequality. For all f�Vj and for all s , r with 2RA GsGrGR it
holds that

V f Vr � NN !
m421

j

!
l�L m

a f , c
A

l b c lNN
r
�2 j(r2s)NN !

m421

j

!
l�L m

a f , c
A

l b c lNN
s
�V f Vs .(20)

Before going on in describing the properties of wavelets bases, let us spend
some word on some examples. For V4R and V4Rn , different constructions
verifying all the properties mentioned here for arbitrary values of the parame-
ters R and M are available in the literature [23]. Just to mention some of them,
let us recall orthonormal (cA 4c) Daubechies wavelets, orthonormal Coiflets
(built in such a way that particularly simple quadrature formulas are available
for computing aQ , c

A
l b), biorthogonal spline wavelets (the c l are compactly sup-

ported splines of order r , and the c
A

l are constructed in an implicit way (no clo-
sed form representation is available) in order to satisfy biorthogonality). A ge-
neral strategy to build bases with the required characteristics for ]0 , 1[n out of
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the bases for Rn has been proposed in several papers [16], [1]. To actually build
wavelet bases for general bounded domains, several strategies have been fol-
lowed. Following the same strategy as for the construction of wavelet bases
for cubes, wavelet frames (all the property mentioned here hold but, for each j
the elements set ]c l , l�L j ( are not linearly independent) for L 2 (V) (V Lip-
schitz domain) can be constructed according to [14]. The most popular approa-
ch nowadays is domain decomposition: the domain V is split as the disjoint
union of tensorial subdomains V l and a wavelet basis for V is constructed by
suitably assembling wavelet bases for the V l ’s [13], [22], [17]. The construc-
tion is quite technical, since it is not trivial to retain in the assembling proce-
dure the properties of the wavelets.

2.3. Charachterisation of Function spaces.

A consequence of the validity of properties (19) and (20) is the charachteri-
sation, through the wavelet coefficients, of the scale of Besov spaces [19]. We
first observe that, since all the functions c

A
l have a certain regularity, namely

c
A

l�H R
A

(V), the Fourier development (3) makes sense (at least formally), pro-
vided f has enough regularity for af , c

A
l b to make sense, at least as a duality

product, that is provided f� (H R
A

(V) )8 . The properties of wavelets imply that
by looking at the absolute values of the coefficients a f , c

A
l b of such formal

Fourier development, it is possible to establish whether or not a function be-
longs to certain function spaces, and it possible to write an equivalent norm for
such function spaces in terms of the wavelet coefficients. More precisely, let-
ting B s , p

q (V) 4B s
q (L p (V) ) denote the Besov space of regularity index s , sum-

mability index p (q being the third index involved in the definition of Besov
spaces, see [28]), given f� (H R

A
(V) )8 , then for s� [2RA, R], f belongs to B s , p

q if
and only if

V f Vs , p , q 4g!
j

2 j(s1n/22n/p)qg !
l�L j

Na f , c
A

l bNphq/ph1/q

.(21)

Moreover the norm V QVs , p , q is an equivalent norm for such a space:

for all f in B s , p
q (V) V f Vs , p , q CV f VB s , p

q (V)

Two cases are of particular interest for us. For p4q42 the Besov space
B s , p

q 4B s , 2
2 coincides with the Sobolev space H s (V) (or (H 2s (V) )8 for nega-

tive s). We have then the following charachterisation of the Sobolev norms: for
positive s

V f VH s CV f Vs , 2 , 2 4g!
j

22 js !
l�L j

Na f , c
A

l bN2h1/2

(22)
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while for sE0

V f V(H 2s )8CV f Vs , 2 , 2 4g!
j

22 js !
l�L j

Na f , c
A

l bN2h1/2

.(23)

Thanks to these norm equivalences we can then evaluate the Sobolev nor-
ms for spaces with negative and/or fractionary indexes by using simple opera-
tions, namely the evaluation of L 2 (V) scalar products and the evaluation of an
(infinite) sum. Moreover, it is easy to realize that the norm V QVs , 2 , 2 is an hilber-
tian norm, induced by the scalar product

( f , g)s 4!
j

22 js !
l�L j

a f , c
A

l ba f , c
A

l b .(24)

Equation (24) provides us with an equivalent scalar product for the Sobolev
spaces H s (V), sF0 and, for sE0, for the dual space (H 2s (V) )8 , which is mo-
re easy evaluated than the original one.

Another case of the norm equivalence (21) which will be of interest is the
case in which the norm on the right hand side is the l t norm of the wavelet
coefficients. This happens provided s , p and q are related by the relation

p4q4t , s4n/p2n/2 .(25)

If we consider the space B s , t
t we have the equivalent norm

V f Vs , t , t4 g !
l�L

Na f , c
A

l bNth1/t
.(26)

In the following Section we will see that the Besov spaces B s , t
t play a key role

in the analysis on nonlinear approximation in L 2 (V).

2.4. The issue of boundary conditions.

When aiming at using wavelet bases for the numerical solution of PDE’s,
one has to take into account the issue of boundary conditions. If, for instance,
in the equation considered, essential boundary conditions (for example u4g)
need to be imposed on a portion G e of the boundary G4¯V of the domain V of
definition of the problem, we will want that the basis functions c l , l�L , sati-
sfy themselves the corresponding homogeneous boundary conditions on G e

(that is, in the example mentioned above, c l40 on G e). Depending on the pro-
jectors Pj , the dual wavelets c

A
l will not however need to satisfy themselves

the same homogeneous boundary conditions, though this might be the case (if
for instance the projector Pj is chosen to be the L 2 (V) orthogonal projector).
Depending on whether the c l and the c

A
l satisfy or not some homogeneous

boundary conditions, the same boundary conditions will be incorporated in the
spaces that we will be able to charachterise through such functions. It is not
the aim of this paper to go into details but only to give an idea on the kind of
results that hold. To fix the ideas let us then consider the case of G e 4G and of
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Dirichlet boundary condition of order zero, namely u40 on G and let us con-
centrate on the charachterisation of Sobolev spaces. If, for all l�L , c l40 on
G , then (20) will hold provided f belongs to the H s closure of H s OH 1

0 , that we
will denote Hs

0 (V). If all the c
A

l’s satisfy c
A

l40, we cannot hope to charachte-
rise (through scalar products with such functions) the space (H s (V) )8 , but
only the space (Hs

0 (V) )8 . In particular, provided for all l�L c
A

l40, for s421
we will have a charachterisation of the form

V f VH 21 (V)
2 Cg!

j
222 j !

l�L j

Na f , c
A

l bN2h1/2

.(27)

Then, again, an equivalent H 21 (V) scalar product can be defined as

( f , g)21 4!
j

222 j !
l�L j

a f , c
A

l ba f , c
A

l b .(28)

Clearly, if for all l�L the c l’s satisfy an homogeneous boundary condi-
tion, we can expect a direct inequality of the form (19) to hold only if we assu-
me that the function f to approximate satisfy itself the same homogeneous
boundary conditions.

We would finally like to point out that the real challenge which is presen-
ted by essential boundary conditions in this framework is the actual construc-
tion of wavelet bases satisfying such boundary conditions. In simple cases, for
example V equals a square or a cube (or the union of squares or cubes) and G e

equals to the union of edges or faces of the squares or cubes respectively, this
can be done quite easily. More complicated situations may pose problems and
a general solution is not yet available.

3. – Wavelet Stabilisation of unstable problems.

Let us then see how the properties of wavelets can be exploited in order to
design new numerical methods for the solution of partial differential equa-
tions. Throughout the paper we will concentrate on simple model problems,
though in general the ideas that we are going to present can be easily genera-
lised to a wide class of differential equation (provided a wavelet basis for the
domain of definition of the problem can be constructed).

As we saw in the previous section, wavelet bases give us a way of practical-
ly realizing equivalent scalar products for Sobolev spaces of negative and/or
fractionary index. This is the key ingredient in the wavelet stabilisation
technique.

To fix the ideas, let us consider the example of the Stokes problem. Given
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f� (H 21 (V) )3 (V bounded domain of R3) find u : VKR3 and p : VKR such
that

.
/
´

2Du1˜p

˜ Qu

4 f ,

40 ,
(29)

u40, on ¯V , s
V

p40(30)

or, in variational formulation,

Stokes Problem. Find u�U4 (H 1
0 (V) )2 and p�Q4L 2

0 (V) such that for
all v�U and q�Q one has

s
V

(˜u Q˜v2p˜ Qv) 4s
V

f Qv ,(31)

s
V

˜ Quq40,(32)

where L 2
0 (V) %L 2 (V)

L 2
0 (V) 4mq�L 2 (V) : s

V

q40n .(33)

denotes the space of L 2 functions with zero mean value. It is well known that
the bilinear form a : (U3Q)3 (U3Q) KR

a(u , p ; v , q) 4s
V

˜u Q˜v2s
V

˜ Qvp1s
V

˜ Quq ,(34)

corresponding to such a problem is not coercive. Existence and uniqueness of
the solution of such a problem are ensured by the inf-sup condition

inf
q�Q

sup
v�U

s
V

˜ Qvq

VvV1, V VpV0, V

FaD0 .(35)

As a consequence, in charachterisation such a problem, an arbitrary choice of
the discretisation spaces for the velocity u and for the pressure p can lead to
an unstable discrete problem. In order to have stable discretisations, the vel-
ocity and pressure approximation spaces Uh and Qh need to be coupled in such
a way that they satisfy a discrete inf-sup condition [12]:

inf
qh�Qh

sup
uh�Uh

s
V

˜ Quh qh

Vuh V1, V Vqh V0, V

Fa 1 D0 ,(36)

with a 1 independent of the discretisation step h .
The idea of the wavelet stabilised method [3] is to introduce the following

equivalent formulation of the Stokes problem:
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Regularized Stokes problem. Find u� (H 1
0 (V) )3 and p�L 2

0 (V) such that
for all v� (H 1

0 (V) )3 and q�L 2
0 (V) we have

s
V

(˜u Q˜v2p˜ Qv) 4s
V

f Qv ,(37)

s
V

˜ Quq1g(2Du1˜p , ˜q)21 4g( f , ˜q)21 ,(3.8)

where (Q , Q)21 : (H 21 (V) )3 3 (H 21 (V) )3 is the equivalent scalar product for the
space (H 21 (V) )3 defined according to (28). It is easy to check that the bilinear
form astab : ((H 1

0 (V) )3 3L 2
0 (V) )2 KR which is defined by

(39) astab (u , p ; v , q) 4s
V

˜u Q˜v2s
V

p˜v1s
V

˜ Quq1g(2Du1˜p , ˜q)21 ,

and which corresponds to such a formulation, is continuous. Moreover it is pos-
sible to prove that it is coercive for suitable choices of the constant g . More
precisely the following lemma holds [2].

LEMMA 1. – There exists a constant g 0 (depending on the domain V) such
that if g satisfies 0 EgEg 0 , then the bilinear form astab is coercive.

Given any finite dimensional subspaces Uh % (H 1
0 (V) )3 and Qh %L 2

0 we can
then consider the following discrete problem:

Discrete Stabilised Problem. Find uh �Uh and ph �Qh such that (vh �Uh

and qh �Qh we have

s
V

(˜uh Q˜vh 2ph ˜ Qvh ) 4s
V

f Qvh ,(40)

s
V

˜uh qh 1g(2Duh 1˜ph , ˜qh )21 4g( f , ˜qh )21 .(41)

for which, using the standard theory for the Galerkin discretisation of coercive
operators we immediately obtain the following error estimate.

PROPOSITION 1. – Let (u , p) be the solution of problem (31) and (uh , ph ) the
solution of problem (40) Then the following error estimate holds:

Vu2uh V1, V1Vp2ph V0, V �g inf
vh�Uh

Vu2vh V1, V1 inf
qh�Qh

Vp2qh V0, Vh .(42)

The use of the stabilised formulation gives then rise to an optimal discreti-
sation of the Stokes problem, for which the choice of the approximation spaces
is not subject to limitations on the coupling of the discretisations for velocity
and pressure.

Many problems share the same characteristics as the Stokes problem, and
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can therefore benefit from an analogous approach. An abstract result can be
found [2] [4]. This has been applied in the domain decomposition framework
(see [8], [5]), as well as to the Lagrange multiplier formulation of Dirichlet
problems [6]. The use of wavelets to realize negative and/or fractionary scalar
product has also been applied in the framework of the Least Squares method
(see [11], [20]). An analogous technique, based on the wavelet evaluation of a
21/2 scalar product, has also been applied to convection-diffusion problems
with dominating convection [7].

4. – Nonlinear approximation.

One of the most significant development that took place thanks to the the-
ory of wavelets is the new insight on the concept of nonlinear approximation
[24]. It is well known that, in order to approximate a function with singulari-
ties in an efficient way, the approximation space must be tailored to the fun-
ction itself, by concentrating the degrees of freedom near the singularities.
This process takes a particularly simple form when considering wavelet
approximations.

Assume that we want to approximate in H r (V) a given function f ,

f4 !
l�L

fl c l ,(43)

as a sum of O(N) wavelets.
The first, more classical, possibility is to take all the terms of the sum (43)

below a given scale J , with JA log2 N/n , (we recall that V’Rn), that is to look
for an approximation v belonging to the linear space VJ . Clearly, the best
H r (V) approximation to f in VJ is its H r (V) orthogonal projection on VJ . It is
not difficult to see that

inf
v�VJ

V f2vVH r (V) �V f2PJ f VH r (V) � NN !
jFJ

!
l�L j

fl c lNN
H r (V)

.

The following well known theorem holds.

THEOREM 1. – Assume that VJ contains polynomials up to degree M21,
and let f�H r1s (V), 0 GsGM2r , then we have

inf
v�VJ

V f2vVH r (V) �N 2s/n
V f VH r1s (V) .

where N42Jn .

The second way in which we can approximate f is to choose which coeffi-
cients fl to retain and which to discard without fixing a priori a maximum level
of resolution. Then, we rather look for an approximation v to f belonging to the
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non linear space S N

S N 4 mv4!
l

vl c l : vK 4 ]vl(l�L�s Nn(44)

of functions of L 2 (V) which can be expressed as a linear combination of at mo-
st N basis functions, where we denote by s N

s N 4 ]vK � l 2 (L) : J]l : vlc0( GN( ,

the set of l 2 sequences with at most N non zero elements.
The space S N is clearly non linear. The sum of two elements of S N will be,

in general, an element of S 2N rather than an element of S N .
In order to construct an approximant to any given function f4 !

l�L
fl c l , a

non linear projector PN : H r (V) KS N can be defined as follows: we at first re-
scale the basis functions and the coefficients in the wavelet decomposition (43)
in such a way that the basis functions are uniformly bounded in H r (V). More
precisely, for l�L j we let

c
q

l 422jr c l , f
q

l 42 jrfl ,

so that f4 !
l�L

fl c l4 !
l�L

f
q

l c
q

l . We next introduce a decreasing rearrange-

ment ]N f
q

l(n)N(n�N

N f
q

l(1)NFN f
q

l(2)NFN f
q

l(3)NFRFN f
q

l(n)NFN f
q

l(n11)NFR

of the sequence ]N f
q

l N(l�L , where the function n�NKl(n) �L is any bijecti-
ve function such that

nEmKNfl(n)NFNfl(m)N ;

PN ( f ) is then defined by:

PN ( f ) 4 !
n41

N

fl(n) c l(n) ,

that is only the N greatest (in rescaled absolute value) coefficients of f are re-
tained. By abuse of notation we will also indicate by PN : l 2 Ks N the operator
associating to the sequence f

K

the coefficients of the function PN (!
l

fl c l ):

wK 4 (wl )l�L4PN ( f
K

) ` !
l�L

wl c l4PNg!
l

fl c lh .

Following [24, 25] it is possible to prove the following estimate on the ap-
proximation error.

THEOREM 2. – Let f�B r1s , t
t (V) with t such that 1/t4s/n11/2 , then

inf
w�S N

V f2wVH r (V) �V f2PN f VH r (V) �N 2r/n
V f VB r1s

t , t (V) ,

where the implicit constants in the bounds are independent of N .
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Remark that, for the space B r1s , t
t (V) we have the norm equivalence

V f VB r1s , t
t (V) CV f Vr1s , t , tCg!

j
2 jrt !

l�L j

Naf , c
A

l bNth1/t

4V f
q

K

Vl t ,

that is B r1s , t
t (V) is the space of functions such that the sequence of rescaled

coefficients is in l t . For r40 we obtain exactly the space B s , t
t (V) mentioned

in section 2.3.

REMARK 3. – Actually the rate of convergence of the nonlinear approxima-
tion of a function is directly related to a weaker norm of the sequence of its
(rescaled) wavelet coefficients. Let us in fact consider the weak-l t space l w

t

which can be defined as follows: a sequence vK 4 ]vl(l belongs to the space l t
w

if and only if

J]l : NvlNFe( GCe2t ,(45)

the norm V vKVl w
t

t of the given sequence being defined as the smallest constant C
which verifies relation (45). The main result in [25] is that V f2

P( f )VH r (V) �N 2s/n if and only if ] f
q

l (l�L belongs to l t
w , with t such that 1/t4

s/n11/2 . Since l t% l t
w , Theorem 2 easily follows.

REMARK 4. – The analog result for linear approximation, namely Theo-
rem 1, tells us that, when we measure the approximation error in H r (V), the
same error rate O(N 2s/d ) is achieved by linear approximation only for fun-
ctions belonging to the Sobolev space H r1s (V), which is much smaller than
the space that allow to obtain the same convergence rate for non linear ap-
proximation, namely the Besov space B r1s

t , t (V). In particular, functions with
isolated singularities may belong to B r1s

t , t (V) for quite large values of r , while
not belonging to H s1r (V). On such functions one can then hope to obtain a
good approximation rate through non linear approximation, while linear
method would give a poor result.

5. – Nonlinear methods for the solution of PDE’s.

The perhaps most interesting new idea that has recently been put forward
in the fields of wavelet methods for the solution of PDE’s is related to the con-
cept of nonlinear approximation described in the previous section 4.

To fix the ideas, let us consider a simple model problem: the reaction-dif-
fusion equation. Given g find u such that

2Du1u4g in V ,(46)

and assume that, rather than using the standard form of adaptive method
(computing an approximate solution, evaluate an error indicator, refine/derefi-
ne the approximation space, iterate until convergence) one would like to desi-
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gn an algorithm that looks for the solution in the space S N previously
defined.

The first step in order to do so (see [15], [10]), is to rewrite problem (46) as
an equivalent infinite discrete problem, written in terms of the wavelet coeffi-
cients, with respect to a sufficiently regular (at least H 1 (V)) wavelet basis.
Letting a : H 1 (V)3H 1 (V) KR denote the bilinear form

a(u , v) 4s
V

(˜u Q˜v1uv)

corresponding to the reaction-diffusion operator and expressing u in terms of
the rescaled basis ]c

q

l 422j c l(l , we can rewrite (46) in terms of the rescaled
Fourier coefficients uq

K

4 ]uql(l�L4 ]2 jul(l�L of the unknown solution u4

!
l

ul c l , as an infinite dimensional system of linear equations:

A uq
K

4 gK(47)

where

A 4 (am , l )m , l�L , am , l4 a2Dc
q

l , c
q

m b, gK 4 ]gm(m�L , gm4 ag , c
q

m b ,

are a bi-infinite matrix and an infinite array respectively. It is not difficult to
check that A � L(l 2 , l 2 ) (L(l 2 , l 2 ) denoting the space of bounded linear opera-
tor from l 2 to l 2) and that it is boundedly invertible; that is:

V A VL(l 2 , l 2 ) E1Q , V A21
VL(l 2 , l 2 ) G1Q .

Moreover the basis ]c
q

l (l can be chosen in such a way that for some t 0 E2,
A � L(l t 0 , l t 0 ) (this holds provided the wavelet basis is sufficiently well locali-
sed, which is true for a wide class of wavelet bases [15]).

Let us now recall that S N ’H 1 (V),(see definition (44)) is defined as the
non linear space of functions in L 2 (V) which can be represented as the linear
combination of at most N elements of the basis ]c l(l (or equivalently ]c

q

l (l).
Let us also recall that, given a function u4 !

l�L
ul c l�H 1 (V), a quasi-best

H 1 (V) approximation PN u�S N can be obtained as a truncate wavelet Fourier
series by retaining, in the wavelet expansion, the components corresponding
to the N biggest (in absolute value) rescaled coefficients uql , and discarding
the remaining.

In order to find an approximation in S N to the solution of (46), the idea is
then to formally write a convergent iterative scheme for the solution of the in-
finite linear system (47), and then discretise each step of such a scheme by

l evaluating the infinite matrix-vector multiplication approximately in a
finite number of operations

l force (by applying the projector PN) the iterates of the scheme to belong
to S N .
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To fix the ideas let us consider the simplest iterative scheme, namely Ri-
chardson scheme:

uq
K

n11 4 uq
K

n 1w( gK2 A uq
K

n ) .(48)

The convergence of such scheme is a consequence of a property of wavelets
that is often referred at as wavelet preconditioning. The boundedness of the
operator A and of its inverse A21 (which are a consequence of the bounded-
ness of the Laplace operator and of its inverse, and of the norm equivalences
(22) and (23)) imply that

cond(A) 4V A VL(l 2 , l 2 ) V A21
VL(l 2 , l 2 ) 4aEQ ,

and this implies that there exists w 0 D0 (depending on a) such that, provided
wEw 0 the iterate uqn converges to the unique fixed point of the operator

vKv1w( f2 A v),

that is the solution of (47).
In order to force the iterate of the numerical scheme to belong to the nonli-

near space S N we simply apply at each iteration the nonlinear projector PN .
We end then up with the following iterative scheme:

uq
K

n11 4PN (uq
K

n 1w( gK2 A uq
K

n ) ) .(49)

As already stated, this is still a formal algorithm, since it involves operations
on infinite matrices and vectors. Such scheme has to be coupled with suitable
compression steps applied both to the operator A and to the right hand side gK,
which will allow to actually implement it efficiently. Nevertheless it is intere-
sting to consider such a scheme in order to analyze the influence of the nonli-
near operator PN . In particular it is possible to prove the following Theorem
(see [9]):

THEOREM 3. – Let A � L(l t 0 , l t 0 )O L(l 2 , l 2 ) for some t 0 E2. Then there
exists a tA E2 and a u 0 D0 such that, for all u , 0 EuEu 0 , it holds (the impli-
cit constants in the inequalities depending on u)

(i) stability: if gK � l 2 , we have

V uq
K

n
Vl 2 �V gKVl 2 , (n�N ;(50)

(ii) approximation error estimate: if gK � l t
w , tA EtG2 then for some

mE1:

V uq
K

2 uq
K

n
Vl 2 �m n

V uq
K

2 uq
K

0
Vl 2 1

1

12m
N

2g 1

t
1

1

2
h ;(51)

In other words, the method is stable and convergent. Remark that it is pos-
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sible to prove that asking gK to belong to l 2 is equivalent to asking that g�
(H 1 (V) )8 (which is the natural space for the right hand side of equation
(46)).

Clearly, this simple idea can be refined and generalised in many possible
directions and applied to a wide class of PDEs (see [15], [18]). Other solvers
than the Richardson method can be used (for example, the Conjugate Gra-
dient Method); moreover it makes sense to vary the number N of degrees of
freedom as the procedure goes on, in such a way that N is small (and therefore
the computation is less expensive) during the first steps of the iterative
method [15].

6. – Operations on infinite matrices and vectors.

For the applications considered we ended up with methods that implied
the computation of either an infinite sum or of an infinite matrix/vector multi-
plication involving

l matrices A expressing a differential operator with good properties (con-
tinuity, coercivity, R);

l vectors uK of wavelet coefficients of a discrete function.

This is the case of both the computation of the equivalent scalar product
(Q , Q)21 appearing in section 3 and of the infinite matrix/vector multiplication
appearing in Section 5. These matrices and vector are not directly maniable.
However, thanks to the properties of wavelets it is in general possible to ap-
proximate such infinite sums by finite sums with an arbitrary precision, or
even to replace the infinite sum by a finite one without substantially changing
the resulting method.

For the sake of simplicity let us concentrate on the case of V bounded do-
main, so that for any fixed level j the cardinality of L j is finite. To fix the ideas,
let us consider the equivalent scalar product (Q , Q)21 in Section 3. Heuristically,
the argument that we have in mind is that if a discrete function satisfies an
inverse inequality (A it is «low frequency»), then the levels in the infinite
sum corresponding to «high frequency» components will be superfluous and
then the infinite sum in (28) can be truncated. Just for this example we would
like to show how this heuristics can be made rigorous. The aim is to replace the
scalar product

(F , G)21 4!
j

!
l�L j

222 j aF , c
A

l baG , c
A

l b
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in (37), with a bilinear form

(F , G)21, J 4 !
jGJ

!
l� L

A
j

222 j aF , c
A

l baG , c
A

l b ,

while retaining the properties (coercivity on the discrete space of the stabili-
zed operator) of the resulting discrete method.

Since the aim of adding the stabilisation term to the original equation is to
obtain control on the pressure ph through a coercivity argument, that is one
wants to obtain a bound of the form

astab (vh , qh ; vh , qh ) �Vvh VH 1 (V)
2 1Vqh VL 2 (V)

2 ,

and since the velocity is controlled through coercivity already for the original
bilinear form a , the fundamental property of (Q , Q)21 that we want to keep, in
this case, is that for arbitrary elements qh �Qh one has

(˜qh , ˜qh )21, J 4 !
jGJ

!
l� L

A
j

222 j Na˜qh , c
A

l bN2
�V˜qh VH 21 (V) .(52)

We will have to replace the heuristical concept qh is «low frequency» by a
suitable inverse inequality: more precisely we will assume that ˜Qh %H t (V)
for some t with 21 E t , and that for all qh �Qh

V˜qh Vt �h 2t21
V˜qh V21 .

Under this assumption it is actually possible possible to prove that there exists
a J4J(h) depending on the mesh-size parameter h such that (52) holds. The
proof is simple and gives an idea of how these kind of argument works in gene-
ral. For any given JD0 we can write

V˜qh VH 21 (V)
2 C !

jGJ
!
l

222 j Na˜qh , c
A

l bN2 1 !
jDJ

!
l

222 j Na˜qh , c
A

l bN2 .

Let us analyse the last term:

!
jDJ

!
l

222 j Na˜qh , c
A

l bN2
�222(t11)J !

jDJ
!
l

22 tj Na˜qh , c
A

l bN2
�

222(t11)J
V˜qh V

2
H t (V) �222(t11)J h 22(t11)

V˜qh VH 21 (V)
2

Then we can write

V˜qh VH 21 (V)
2 G !

jGJ
!
l

222 j Na˜qh , c
A

l bN2 1C 8222(t11)J h 22(t11)
V˜qh VH 21 (V)

2

whence

(12C 8222(t11)J h 22(t11) )V˜qh VH 21 (V)
2

� !
jGJ

!
l

222 j Na˜qh , c
A

l bN2



RECENT DEVELOPMENTS IN WAVELET METHODS ETC. 589

which, provided J is chosen in such a way that (12C 8222(t11)J h 22(t11) ) G1/2
yields

V˜qh VH 21 (V)
2

� !
jGJ

!
l

222 j Na˜qh , c
A

l bN2 .

We will not go here into details on how this result allows to write down compu-
table stabilised methods for the Stokes equation, and prove stability, conver-
gence and optimal error estimates for such methods.

An analogous result holds for the evaluation of the infinite matrix/vector
multiplication A uq

K

that is found in (49). Taking advantage of the fact that, by
construction, uq

K

is the linear combination of a finite number of wavelets and
that, thanks to the localisation property of wavelets, the infinite matrix A can
be sparsified (by retaining, per line, only a finite number of entries which are,
in absolute value, greater than a suitable tolerance e) one can compute the pro-
ducts A uq

K

in a finite number of operations within a given tolerance [15].
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