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Bollettino U. M. 1.
(8) 8-B (2005), 461-503

L?-Boundedness for Pseudodifferential Operators
with non Smooth Symbols and Applications.

GIANLUCA GARELLO (*) - ALESSANDRO MORANDO

Sunto. — Utilizzando una formulazione generalizzata della caratterizzazione per coro-
ne diadiche degli spazi di Sobolev, nel presente lavoro si dimostra la continuita L?
per operatori pseudodifferenziali il cui stmbolo a(x, &) non ¢ infinitamente diffe-
renziabile rispetto alla variabile x, mentre le sue derivate rispetto alla variabile &
decadono con ordine o, con 0 <o < 1. Viene pot provata una proprieta di algebra
per una classe di spazi di Sobolev pesati, che ben st applica allo studio della regola-
rita delle soluzioni di equazioni semi lineari multi-quasi-ellittiche.

Summary. — Starting from a general formulation of the characterization by dyadic
crowns of Sobolev spaces, the authors give a result of L continuity for pseudodif-
ferential operators whose symbol a(x, &) is non smooth with respect to x and whose
derivatives with respect to & have a decay of order o with 0 <o < 1. The algebra
property for some classes of weighted Sobolev spaces is proved and an application
to multi - quast - elliptic semilinear equations is given.

1. — Introduction.

The study of the local solvability and regularity of the solutions of general
nonlinear partial differential equations immediately leads to two basic pro-
blems: the algebra properties of some spaces of distributions, for example the
Sobolev or Holder spaces, and the study of linear partial differential operators
with non smooth coefficients.

In the literature of the last twenty years we find two main approaches to such
problems: the paradifferential calculus introduced by J.M. Bony [3], 1981, and
the theory of pseudodifferential operators with non smooth symbols. More pre-
cisely in this second outlook M. Beals and M.C. Reeds in [1], 1984, check the L>
continuity and the symbolic calculus for pseudodifferential operators with sym-
bols a(x, &) smooth with respect to & and whose Sobolev norm ||-||+ with respect
to the x variable satisfies suitable estimates, at least for great s.

J. Marschall, [17], [18], 1987-88, devotes many efforts in proving the L?”

(*) The author was supported by a grant FIRB 2001 of Italian Government.



462 GIANLUCA GARELLO - ALESSANDRO MORANDO

properties of pseudodifferential operators with non smooth symbols. He con-
siders the symbols in the classes H™"S)"; characterized by the estimate:

1) 8¢ ate, &)|lgrr < c, (1 + |E|)" el

For »>0 suitably large he obtains good results of continuity when 0<d<p=1.
But when o becomes strictly less than 1, Marschall himself must improve the
assumptions on the symbols in H"7S,"s in order to obtain some Sobolev conti-
nuity results, which at any rate are considerably cut down; namely the L?” con-
tinuity of the operators with symbol in H"?S? ,, p # 2, cannot be assured, also
for great .

In the present paper we prove the LP” continuity, p # 2, for a significant
subclass of the pseudodifferential operators whose symbols satisfy (1), with
0=0,0<po<L

For the sake of generality we work in the frame of the weighted Sobolev
spaces Hj'? and the weighted symbols H?S)', where A(§) is a positive
weight function suitably defined, which takes the place of the usual euclidean
norm in Rg.

Our main result may be now resumed as follows: for any a(x, &) in a sui-
table subspace of Hy?SY, 1 <p< o, meR and r large, we can show that

2) a(x, D): H{""™?—H}? continuously for 0 <s <r.

The work is essentially based on three main tools:

1) the Lizorkin-Marcinckiewicz lemma on continuity of Fourier multi-
pliers, [16], 1963;

2) the characterization of weighted Sobolev and Besov spaces by means
of non-homogeneous partitions of unity, given in Triebel [25]-[29], 1977-
1979;

3) the decomposition of a(x, £) in expansions of elementary symbols
obtained by following a technique of Coifman and Meyer [6], 1978.

The paper is planned as follows: in § 2 we introduce the weight functions
A(E) together with their main properties.

In § 3, 4, 5 the weighted Sobolev spaces are defined and their basic proper-
ties are studied in the more general outlook of Besov and Triebel function
spaces, introduced by means of the non-homogeneous partitions of unity above
quoted.

In the next § 6 we define the symbols with limited smoothness and at the
same time we consider their expansions in elementary symbols.

Finally in § 7 we prove the main result of continuity which we have already
summed up in (2).
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As trivial corollary we can then say that the weighted Sobolev spaces
H}?, for 1 <p< « and suitably large s, are function algebras.

In the last § 8 a result of local regularity in Hj}'? for semilinear equations
whose linear part is multi-quasi-elliptic is given.

2. — Weight functions.

DEFINITION 2.1. — Let us say that a positive function A(E) e C*(R") is a
weight function if it fulfills the following assumptions:

1) there exist two constants uo=1 and C >1 such that

1
@) A(§)26(1+ |E[y°,  &eR™Y

2) for every multi-index yeZ”. there exists a suitable positive con-
stant C, such that

4) [1(1+872 19740 | <C,A@®), &<k
e
3) for some C>1 we have
(5) A@E) < CAE), t,EeR”, max [ti|<1,
1<j<n

where t€:= (4, &4, ..., t,&,).

For similar definitions of weight function the reader can see [27] and [11].

Examples

1) The standard elliptic weight function of order m e N

n 1/2
P& =(1+ 28
i=
It is asymptotically equivalent to the homogeneous weight ()", where here
and in the following we set (&) := (1 + |&|®)'A
2) The quasi-elliptic weight function defined by

1

PM(§)=(1+ 252%) M= (my,coom,) €N, minm, > 1.

Py (&) is asymptotically equivalent to the quasi- homogeneous weight &1y,

which is the unique positive number satisfying the condition Z i~ 2/’”/52 =1,
[0]y=0. -
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3) The following examples are provided by Triebel [27]:

n
H(1+§?)qj/2y S:(Sla""sn)ERﬁa m,in S]B]-a
j=1 1<jsn

(EYllog (2 + (ENT, s,t=1.

A more significant example of weight function will be moreover described in
details in §8.

REMARK 1. — For any weight function A(£) we can always find two con-
stants C, u; both greater than 1 such that:

(6) A <O+ [y, EeR”

(see [27] Lemma 2.1/2 (ii)).
As a straightforward consequence of (6) and (4) it follows that for any yeZ’;
there is a positive C, such that:

|67 A(E)| <C,(1+ |E|])1, EeR".

Notice that, using the Faa di Bruno formula, we also obtain from (4)
L1 +837 |57(A@" | <C A", EeR", yeZt,
=

for every m e R and then, for »:= max (mu,, mu,) we have:

[97(AE)") | <Cy(1+ |&E]), EeR", yeZl.

3. — Weighted Sobolev spaces.

Hereafter we will write J,_,:u(§) = u(§) for the Fourier transform of a
rapidly decreasing function wu(x) e S(R") (or a tempered distribution ue
S"(R")) and F g_{xu(x) for its inverse Fourier transform.

For a given function a(§) we set a(D)u(x):= :T”giw(a(&) w(&))(x) =
(ffg_l)xa x)(ax), for any u(x) e S(R™) (or u e S’ (R")), provided that all the ex-
pressions involved make sense.

For any weight function A(&) we can define a scale of weighted Sobolev
spaces as follows.

DEFINITION 38.1. — Forse Rand 1 <p < o, H}? is the space of all the tem-
pered distributions we S'(R") such that A(D) we L?(R").

REMARK 2. - For any se R and 1 <p < o, H}'? is a Banach space with re-
spect to the norm ||u||s’p, 4= |lAWDYy u||p; when p = 2 it is in particular a Hilbert
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space if equipped with inner product (u, v)s 4 = (AD)Y u, AD) v)s, u,
veHj2

Hereafter we write H for H}?2, seR.

The spaces H | are particular cases of the Bony-Chemin Sobolev spaces in-
troduced in [4]; see also [11].

In order to study the relations between the weighted Sobolev spaces H 7,
H%? for different s and ¢, we use the following result due to Lizorkin and
Marcinkiewicz (see [16] and [20]).

LEMMA 3.1. — Let m(&) be a continuous function together with its deriva-
tives 9" m(&) for any y in the set K := {0, 1}" of the multi-indices with all the
components equal to either 0 or 1. If there exists a constant B >0 such
that

) |E70"m(&)| <B, &eR", yekK,

then for every 1 <p < o we can find a constant A, >0, only depending on p,
B and the dimension n, such that:

®) (D) ull, < A, llul,.
for any ue S(R).

REMARK 3. — The estimate (8) can immediately be extended by density ar-
guments to any function fe L?(R"), 1 <p < o,

ProposiTION 3.1. — For s,teR, s<t, and 1 <p< o the inclusions
SR cHYPcHyPc S'(R™) hold with continuous embedding. Moreover S(R™)
is dense tn H .

ProOF. — The inclusions S(R")c H}'?c S'(R") are trivial consequences of
Definition 3.1, Remark 1 and the well-known continuous inclusions S(R")c
LP(R")c 8" (R").

For the remaining embedding, it suffices to write for ue ' (R")

ADYu=ADY "(AD)Yu) =ADY) v,

where v:= A(D)'w and then to observe that A(£)* ~* fulfills estimate (7), since
it satisfies (4) and s —t is negative.
Thus by Lemma 3.1 for any ue H? we obtain e Hj? and moreover

lell p, 4 < Cllell, , 4

with some constant C > 0 independent of u, as v =A(D) ueL?(R").
In order to prove the last statement, let % be any distribution in H ' ?. Since
S(R™) is dense in L?(R"), we can find a sequence of functions v, € S(R") con-
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verging to v:= A(D)’*u in L?(R"). Let us define u, := A(D) *v,,v=1, 2, ...;
it follows that u, e S(R") for any v and the sequence {u,} converges to u in
H;p?. =

REMARK 4. — All definitions and results of this section could be stated for a
weight function A(&) = ¢ > 0 which satisfies only the assumption 2) of Defini-
tion 2.1.

4. - Partition of unity.

For more details on the partition of unity described below, the reader can
see Triebel [27].

For the sake of brevity, hereafter we write I := { —1, 1}" for the set of the
n-ples 1= (44, ..., 4,) whose components are all equal to either —1 or 1. Let
H >1 be a fixed constant; for any heZ", and 1€ we define:

1
P = {EGR”: =2, A E<HZ j=1,2, n}

with Np= —1if =0 and ﬂhzl if > 0.
We will call non-homogeneous decomposition of R" the family of n-cubes:
[P = (P e
ek

PROPOSITION 4.1. — Let {P{)} be a non-homogeneous decomposition of R".
Then for a suitable integer No(H) >0, only dependmg on H, we have P{¥) N
P{™ = ¢ when |hj—k;| > Ny(H) for some j=1,2,...,n and 1, e €E.

PROOF. — Let us recall that two n-cubes P{%) and P{") are disjoint when at
least for one direction the corresponding s1des do not overlap.

For a fixed 1 <j < the corresponding sides L, and L, j of P} and
P{") are described as it follows

1., .
Lljvhszff)hj = {gER; EzhjﬂhjsljgjsthﬂJrl}
) )
sz‘kj:Ls(jI:I) = {EER FZ 7’]k sEJE]<H2k+1}

where 7, and 7, are defined as before.
Assumlng that h; and k; are both strictly positive the inequalities which
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characterize (9) reduce to
1 h'< < hi+ 1 1 k’< < ki + 1
—2v< |&; | S H2Y —2Vs |§;| SH2Y

respectively. ) )

So Ly, j, and L, ;, are disjoint when H2"*" < E2hﬂ' or H2l ™1 < EZ’%‘ , that
is when |h; — k;| > No(H) with No(H) :=1 + 2logy (H).

We can also check that the same condition |h; —k;|> N(H) assures
L;; 0N Ly; , =0 when h;=0. This ends the proof. =

DEFINITION 4.1. — For a fized H>1, @ is the set of all the sequences

{91,2©} ={@n1(E}nez: of functions ¢, ;(8) e Cy* (R") which satisfy the
Sfollowing: Aek

1) For any heZ" and AeE, supp ¢, ,c P{h;
2) For every multi-index oeZ” there exists a constant C,>0 such
that:

(10) 0¢gu ()] <C27", &R, heZl, iek;

3) For any £eR", > @n (8 =1

he?Z" , ek

We also set ®:= U o,
H>1

REMARK 5. — From Proposition 4.1 it follows that the sum in 3) reduces to a
finite number of terms, say N;(H), independent of &.

In order to see that @ is not empty, see Triebel [27], let us consider a func-
tion 9(§) e Cy"(R") such that 0 <y(§) <1, Y& =1 for £eQ, := {£eR":

1. N K .
1&;] SE,3=1,...,n} and supp pc@, := {£eR": |.§j|$?,j=l,...,n},

for some 1 <K <3.
For any heZ” and A€l we define:

wh,l(g) = w(zihliehl(gl - /llchl)7 tet 27}%70;[”(“;:11 - inchn))’
where

_ 1 ifh=0
(11) 0 =Jl it h=0 and ¢, =4 2
"loifth>0 " S2 i h>0.

It is easy to see that the system {y, ;(&)} satisfies (10); moreover it holds that
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supp w;b,,lcp%{{} = {EERHZ ljgje‘]K,hj?j:lv ceey 'n/} Wlth

[1-K,1+K] if h;=0

Jg 4 1= —
Koty [32K2hf,3zK2hf“ if 1> 0.

Furthermore it holds that 1 < X v, ,(§) S N;(H)C, £eR"
h, A

Thus setting ¢ (&) := ;”i for any he 7’ and Ae€lE, it turns out
k .s
that {qzh 2(5)} belongs to @ if we choose a constant H > 1 so that <
H < —; this is always possible provided that 1 < K < §

5. — Besov and Triebel spaces.

Using the above defined non-homogeneous partition of unity, we can now
define two scales of non-homogeneous spaces of Besov and Triebel type relat-
ed to a weight function A(&).

For any 1 < ¢ < « we denote as usual by ["’ the space of the sequences of

complex numbers {c }700 1= {C } such that 2 |C |‘1< © (Sup |C | < o0 fOI'
g = »); ('?is a Banach space with respect to the norm ||{¢; }||ﬁ ( lo; 1 )
(e}l = sup |¢;] for g = ).

For any 1]$p, q < o, we define /9(LP(R")) = £9(LP?) as the space of the
sequences { f;}72,={f;} of functions fje L”(R") such that {|f;|,} belongs to /.

(9(L?) realizes to be a Banach space with respect to the norm
I{ £t Loy == {11 £ ]I, } | Lastly, we denote by L?(R"; £7) = L?(£?) the space
of the L? functions taking values in the space £?; namely the general element
of LP(£7) is a sequence { f;} of measurable functions f; = f;(x) in R" such that
the real valued function x> [[{ f;()} |~ belongs to L”(R").

When equipped with the norm |[{ £} ooy == | [{ £}, L?(€9) is a Ba-
nach space. For more details the reader can see Triebel [27].

DEFINITION 5.1. — Let A(E) be a weight function, 1 <p< o, seR and
{918} e @™, for some H > 1. We define:

() By i={ue S R Ay u, } e (L)}, 1<q< »;
Qi) Fy it o= {ue S (R :{ACD)w,,} e LP(ND}, 1<q< o,

where w, ;(x) 1= @, ,(D)u(x), x e R", and ¢ is the center of the n-cube Pi%),
for any heZ". and 1ek.
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B¢ and F;> /' are Banach spaces with respect to the norms
. H)\s _ H)\s /g
12 ol g 1= AGHD 0,3 = ( Z 1A w1 8)
n,

for 1 < ¢ < o (modification for ¢ = ) and

1/q
13) ||u||F;;qA = [{ A w1 H ey = H (% | At w5 |q)

At a first glance the norms (12), (13) obviously depend on the system
{@,:(&)}; anyway it may be shown that for different choices of {¢, (&)} e @
they are equivalent, see Triebel [27]. Therefore the spaces B;’;;‘, F;;‘ them-
selves do not depend on the system {¢, ;(&)}.

We have now all the tools to characterize the weighted Sobolev spaces
H}'?, introduced in § 3, in terms of a non-homogeneous decomposition of R";
namely

ProposITION 5.1. — Let A(E) be a weight function, 1 <p < o and seR.
Then

S, P s, A
Hy?=F34.

More precisely there are two constants c;, c;>0 such that for all ue
S (R™):

ey < el < ol
For the proof the reader can see Triebel [27], where the weighted Sobolev,
Besov and Triebel spaces are defined in the context of a wider class of weight
functions which only satisfy (4).

In what follows we give a number of properties of weighted Sobolev, Besov
and Triebel spaces that will be used in the next sections.

PrOPOSITION 5.2. — Let A(E) be a weight function, 1 <p < o and seR.
Then the following inclusions hold with continuous embeddings

D Ifl1<q< >, then

(14) By i, 0 € Fp. § € By inaxiy, o)+

2)
(15) SR CBACBIACS (RY) if 1< <qy<
(16) SRYCFSACFSAcS (R if 1<qy<qy< .
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3) For any >0, then:

an ByieBra, i 1<q, ¢S »;
(18) FytedcFrd if1<q, gy< .

ProoF. — The inclusions (14)-(16) are proved in Triebel [27].
To prove inclusions (17) and (18) it suffices to observe that for any
sequence {b; ;} of positive numbers the following estimates hold for all

1/g:
W, A

1/q2
(19) (%A(c,gffg)sqz b,;{zi) <A, gshu]lp/l(c,%) yreb, <

1/q1
H n
A(h,£Cq1(}%/1(0;§’/1))(8+£)m b,‘f}l) ,

since |. ||~ < (. || and 4, , < « (obvious modifications for g, = ). In order

to show the convergence of the above expansion, notice that the center c,f}ﬁ) of
the cube Pi™) has coordinates ¢\ = (2,¢; y2"; ...5 4,,¢, z2") and the num-
. . 1 1

bers ¢; y, 1 <j<mn are equal to either H+ — or H — —.

’ 2H 2H

From (3) it follows that there exists a number Cy > 0 such that:
n “o
A(Céﬂ))BCH(l‘F EZhl) , heZ', Aek.
=1

Thus we have

1
2 A S Cp )y 20 2 TTE e
X (1 X
=1

o 1 e 1
’ " _—
CH,e,qz2 hlE:O (2h1)yoeq2 "'h;() (2]171)/4081]2

1
and ’ZEOW < .

We immediately get inclusion (17) by setting ), , = ||uh 1 ||p, while inclusion
(18) follows by setting b;, ; = |y, ;(x) | and taking the L” norm of the first and

last sides of (19). m

REMARK 6. — The characterization of Sobolev spaces given by Proposition
5.1, jointly with the continuous embeddings in (14), gives

B it 2y CH) 4CB iy, 2y, With continuous embeddings.
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PropoSITION 5.3. — Let A(E) be a weight function, se R, 1 <p; <p, < ©
and 1 <q< . Then

n 1 1
N
B’ uo(m 7)2) cBs4
b1, q

P2, 9>

holds with continuous embedding.

To prove this proposition, we have to slightly modify the Nikol’skij inequa-
lities, given in Triebel [24].

LEMMA 5.1. — Let a be a multi-index, 1 <p <q< © and H > 1. Then there
exists a constant C, >0, only depending on o, p, q, n and H such that

h-a+(%

(20) Ipesl, < .2t M,
for every function fe L?(R™) such that supp f CP;E{_Q, heZ’ and Ael.

ProoF. — For sake of simplicity, suppose that &; >0 for all j.
Let us define the function g, (x) by:

gh(x) ::f(z_hlxh et z_hnxn)7 xr= ('%.1’ e .')Cn) ER”-

From well-known properties of the Fourier transform, it follows that

g@) =2Mf(@ng,, ., 2hE,), &=, .., &) R

so that supp g,c P :=[—-2H,2H]".
From the Nikol’skij inequalities we know there exists a constant C,, only
depending on «, p, q, n and the compact P such that:

(21) HDathquath,”p-

But D%gy(x) =2 " “(Df)2 My, ..., 27" x,), whence [lg;ll, =2"'7 [|£l], and
a h a
ID%gll, =225 Dy,
Thus inequality (20) follows from (21) by replacing the previous expres-
sions for ||D"‘gh||q and ||gh||p. ]

Proor. — (of Proposition 53) w1
Let u be a distribution in B uo(m 7E)’A; then

ol 22 2o = S Al 5 W <

B uo\pt  p2
P14

In view of Lemma 5.1 there exists a constant C > 0, independent of u, 7 and 4,
such that:

(L - L
@2) a2, < €216 =52 gy
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On the other hand (3) yields that 2°t< (1+ |¢{®])" <CyA(c{Y)) and
then

23) ol < Cy A, heZl, AcE.

The above estimate, jointly with (22), implies that

3 A 1, < € B 4G E it K1 I

COROLLARY 5.1. — Let A(&) be a weight function, se R, 1 <p;<p<py< @
and 01, 05>0. Then the following inclusions hold with continuous embed-
ding

SR R S o (11,
(24) B;:p140(111 1>)+61’ACHj’pCB;2‘p/AO(p pz) 02,4

ProOF. — By the propositions 5.3 (with p instead of both p, and ¢, s + d;
instead of s), 51 and 5.2 we obtain the continuous embeddings

s+ —(—

n 1 1
B, 0 it _Z)ﬂ)"AcB;,;él CB) i 2yCF st =H3P; this proves the left
inclusion. Do
Similarly we have vaPcB,f;,gaxw)cB;,;ﬁZvACB;;];TO(:*E)*"“ which
shows the right inclusion. =

PROPOSITION 5.4. — Let us consider 1 <p< o, seR and H > 1. Then we
can find a constant M =M, , s g>0 such that for every ue S'(R"):

(25) e, 21l < Ml

1]
e Al 2%, heZt, el

where w, ;(x) := @, (D) w(x) and {@,.;} is any system in @,

PrOOF. — From Proposition 5.2 it follows that Hj ”C B} fxp, 2)C By 4 with
continuous embeddings; this just means that, given a system {¢@, ;} e @@,
any ue H} P fulfills the following estimates:

len, 21l < 2" [

H}T’A(C}EZ))785 hEZﬁ, AEEU

with some positive M’ depending on p, H, s, the dimension 7 and independent
of u. To get estimates (25), it suffices now to apply Lemma 5.1 with ¢= o, a=0
and f(x) =y, ; ().

These estimates are clearly trivial when the distribution % does not belong
o Hy?. =
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REMARK 7. — In view of inequality (23) we easily obtain from estimate (25)
the following:

26) sup/l(ChH)) 7 g, 21| < Ml o,

for every ue S'(R").
Notice also that the inequality

1

e (Zhaceity 5565 i 11) " < Ml

Hy Py

arising from the right inclusion in (24), can be extended from p, < o to p, = o
as a consequence of (26) and the arguments used in the proof of point 3) of
Proposition 5.2.

More precisely, it suffices to argue on the first inequality in (19), with

s—— —62 instead of s, e=08,, g2=p, by, ,1—||uh i, jointly with estimate (26).
Hop

The following is essentially the Hilbert space version of Lemma 3.1 (see
Triebel [27], Stein [20] and Lizorkin [16] for a proof in the context of a generic
Hilbert space J0).

THEOREM b5.1. — Let m; (&) (j, 1=1, 2, ...) be some n times continuously

differentiable functions defined in R"\A, where A := {{eR": H £;=0}. As-
sume that there exists a constant B >0 such that:

- B
28) &1 S DT ma@F) <B, ger\4,
0=
for all the multi-indices y e ', with y;e{0,1} (j=1,..., n).
If 1 <p < o then there exists a positive number c, only depending on p

and the dimension n, such that for all the sequences {f;};_1 of functions
fi(w) e S(R"), satisfying fi(x) =0 with exception of a finite number of j,

@ |{FL(Em@io)o] | <BlE e

holds.

6. — Elementary symbols.

Through this Section X is a Banach space with norm | .| and A(&) is a
weight function according to Definition 2.1.
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DEFINITION 6.1. — We say that a measurable function a(x, &) on R X R
belongs to the symbol class XM)', where meR, if for any multi-index

y € 7! there exists a positive constant C, such that the following estimates
hold

Ta+8)7 [stat, | <C,A@", =, &R
L

(30) .
Hl(l +EH7 otal, HI<C, A",  EeR"
=

REMARK 8. — Since A(&) satisfies (3) and (6), setting y =0 in (30) we see
that a(x, &) has at most a polynomial growth in (x, &§) and so it belongs to
S (R x RY).

From (30) we also obtain that, for any £eR", dta(., §) e L *(R")NX.

DEFINITION 6.2. — We say that a measurable function a(x, &) is an elemen-
tary symbol on X if it may be represented as follows

(31) ale, &) = X dy, 1 (%) Y 1,2(8),

heZ",lek

where {dy, ;} = {dy, () }yczn 1cn 15 a sequence of functions in L ™ N X, such
that for some M >0

\dy ()| <M, weR", |d <M, heZ:, icE.

{Vu2} ={vun 1 nezn 1cr is a sequence of smooth functions satisfying the fol-
lowing conditions:

1) supp ., P, for any heZ", e E and some H > 1;

2) for any aeZ’ there exists a positive constant C, such that

|0%y, (&) | <C, 27", for any EeR", heZ",Lek.

REMARK 9. — Definition 6.2 is well-posed, since for a fixed £ € R" all but a fi-
nite humber of terms in (31) are zero.

Moreover thanks to the assumptions 1) and 2) it is easy to see that an ele-
mentary symbol belongs to the symbol class XM .
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PROPOSITION 6.1. — Let a(x, &) be a symbol in XM Y. Then there exists a se-
quence of elementary symbols a,,(x, §), meZ", such that

1 n
alw, &) = gmam@c , @ ke,

with absolute convergence in L~ (R} X Rg).
LEMMA 6.1. — For {@, ,;} e @™, H>1, a(x, &) e XM let us set

ah,/‘[(xr g) = goh,/l(g) a/(x7 g)’ hEZVir rek.

Then the following statements hold, for any a, heZ’., AelE and some
C,>0:

a, (2, &) =0, for xeR" and ¢ P7);
(32) |0¢ay, i (x, )| <C,27*", x, EeR"

Hagah,l(w S)Hscuzia'}x SERn
PROOF. — Since supp ¢, ,C P, the first statement is obviously true. By
Leibnitz formula we get for any a e Z"

310w, 1< 3 (7] 10fatw, 1880 guu@)], w, seR

From (30) it follows that for any xeR" and §esupp ¢y, ;

n Bi 1
|a/§a(x’§)| gCﬁ(H(l-FEJZ)Tj) < HIBlo-B,
j=1

On the other hand [8¢ g, (&) <C, 427"« P EeR", then (32) is
proved.

The last assertion follows as a repetition of the above argument, where the
absolute value |. | is replaced by the norm [|.| in X. m

PROOF (of Proposition 6.1). - For {¢, ;} € 2% and @, ;(x, &) as in Lemma
6.1 we have:

(33) a(.%', 5) = hzlah,ﬂ(xv 5)7 x, EERn'
For every heZ’. and A€ & let us set

(34) bh,/l(wy 5) = a’h,l(x9 2h1+0hl§1 + /11(3]11, (AN 2h’ﬂ+6h”§n + j‘ﬂchn)’

where 6, and ¢, are defined by (11).
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For any a, he 7", , A € E and some constants C, >0, K = K(H) > 1, we can
easily deduce from Lemma 6.1 the following properties of b, ;(x, &):

K K n
by (¢, £) =0, when xeR"” and £¢Q, := [_E’ E] :
(35) |92by, (2, &) | <C,, x, EeRY;
(36) 6¢0,..C, O sC,, EeR™

Arguing now as in Coifman-Meyer [6], we can choose the constant K >1 so
that Q,c[—m, n]" and set for any heZ” and AeE

(37 By, (x, &) = E by, (¢, §—2mm), wx, EeR".

meZ"
The above function is well-defined since for every (x, £) e R} X R%, all terms
but one in the right-hand side of (37) are equal to zero.
B, ;(x, §) is nothing else but the 27-periodic function in the & variable ob-
tained by extension of b, ;(x, §) on each n-cube of R with sides of length 2.
Moreover if ¢p(&) e Cy* (R") vanishes outside [ —x, z]" and is equal to 1 on
Q;, we have

(38) by, (w, &) = p(8) By (x, &),  x, EeR"

For any fixed xeR", we can write B ;(x, &) in terms of its Fourier
expansion:

By, (%, &) = > e f B, ;(x, n) e "y

meZ" )
[—m, 7]

= Znemf f by, (e, m) e " "dy,
me 7, = a]"

with convergence in L*([—s, #]") with respect to & where dn=(27) "dn.
Integrating by parts we can write B, ;(x, &) as

m-& —(1 + |lm 2)277, f bL /1('%'7 17) e —zm-’?d‘n —
me?Z" 1+ |m|2)2" | | R h,
= E ezm-é f ([_Ai)an (90, ﬂ)eim‘ﬂdﬂ,
— (1+ |7,n|2)2n[_:r o i hy A

n
where 4, := X 92
i=1 "
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For any meZ", heZ and A€E let us define

B9 dn@i= [ A=A, @, e " dy,  zeR".

[—a, 7]

From (35) we obtain for any he 7", meZ", A e and C, > 0 depending only
on the dimension n:

|d}:’?,‘t(%)| s f |(I_A77)2nbh,l(x7 77)|d77scnr OCER”;

[—m, 7]"

so we have that {d;";(x)}; ; is a bounded sequence in L *(R").

If we look at the right-hand side in (39) as an integral of a measurable
function taking its values in a Banach space X, arguing on (36) as before we
have d;"; € X and ||d;"; || < C, for all heZ", meZ" and A€k

At this point, we may represent B, ;(x, &) as follows

1 )
B, (90, ) — E —elm-fdm (90)
hn E meZ" (]. + |m|2)2” 2

Let us remark that the above expansion is convergent in L%([ —x, ]") with
respect to & for any x € R* and actually converges to B, ;(x, &) uniformly in
R}’l X R?’L
x £
In fact for every meZ":

1 . 1
—_e™igr(x)| € ——C,, x, EeR".
(1+ |m|2)2n b 2 (1+ |m|2)2n g

Setting for any meZ" ¢,,(&) :=e™ (&), from (38) we obtain:

1 n
(40) by, (x, &) = anzynmﬁbm(g) dy ,1(90) x, §eR",

with uniform convergence on R} x R%.
With the change of variables {; = 2h +9h,§ +4; i Ciys j=1,..., n, where 01,
and ¢); are defined by (11), we get from (40) the followmg representatlon for

ah,/l(x &):

1
@) @@ )= 2 el (@) Y02 (), ¥, GERY,
mez (1 + |7’}Z| "

Wlth wm,h,/l(é) ¢m(2 - Ghl(él /llchl AR zihliehl(gl _llchl))' The con-
vergence in (41) is uniform on R} X Rf.

It is easy to check that for every m e Z" the function sequence {v,, ,.,(0)}
satisfies conditions 1) and 2) of Definition 6.2. More precisely the following
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statements hold, for every heZ", A€ and some C, ,, > 0:

SUPP Y, 5,2 C PIY,  meZ’;

1089 1,0,2(8) | SCpu27,  EeRY;
Deeply arguing on the functions ., ,, (&) we get for some M, > 0:
(42) > [ om0 2(&) | <M,, for every £eR" and meZ".

heZ' , el

Replacing now in (33) the expression of a;, ;(x, &) given in (41) we obtain for
x, EeR"

1
(43) aw, &= D 2 d (@) Y1 ().
heZ' ,AelE meZ" (1 + |m| ) "
The expansion is absolutely convergent in R} X RE, since using (42)

1

heZ’ ,AeE meZ" (1 + |m|2)2”

|d’:'}l(x) | |1/)m,h,},(§) | =

1
C,My > ——— <CC,M,.
S (1+ [m|2R ’

So we may change the order of the two sums in (43) and conclude

m W, = D — 4@, 8, @ EeR,
mezr (1 + |m| )=
where the functions a,,(x, &) := Zd,%(ac) Yo, n2(E), meZ" are elementary
symbols. I
Since |a,,(x, &) | <M,C,, for all meZ", the series in (44) is absolutely
convergent to a(x, §) in L™ (R} x RE). =

7. — Action on Sobolev spaces.

For any symbol a(x, &) in the class XM ', m € R, we can define as usual the
pseudodifferential operator:

(45) a(x, D) u(x) := (Zn)‘”fei’”fa(ac, & WE)dE, ueS(RY).

REMARK 10. — In view of Remark 8, the integral on the right-hand side of
(45) is well-defined in classical sense and moreover a(x, D): S(R") — L *(R")
continuously.

This section will be devoted to prove the following mapping property of
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pseudodifferential operators whose symbol belongs to the classes Hy? M},
A(&) weight function, reR, 1 <p < oo,

THEOREM 7.1. — Let A(&) be a weight function and assume moreover that
there exists a number 0 <6 <1 such that for some C >0

(46) AE +n) SCUAE) + A + AE° A()®), & neR™

Let a(x, &) be a symbol in H P M " with r > " 1 <p< o andmelR.
Then: (1=0)uop

47 e, D): Hi*™P—H5P,

continuously for every 0 <s<r.

Before starting the proof of Theorem 7.1, let us make some useful
remarks.

1) The proof of Theorem 7.1 may be restricted to the case m = 0. It suf-
fices to observe that, for any me R, AD)": Hi"™?— H};? continuously for
all seR, 1<p< o (cf [11]) and a(x, D)A(D)™™ has symbol a(x, &)
A& "eHPM).

So a(x, D) = (a(x, D)AD) ™) A(D)™) maps continuously Hj;*™? into
H}? when 0 <s<n7.

2) In view of Proposition 6.1 and the dominated convergence theorem it
comes that a pseudodifferential operator a(x, D) with symbol a(x, &) e
H? MY can be written for any u(x) e S(R"):

1
(48) ate, Dyute) = 2, AT @ D)

where a,,(x, &), m e Z" are elementary symbols and the convergence is given
in &' (R}).
At first we prove Theorem 7.1 for a(x, &) = 2, dy, () . 1(E), elementary
%)
symbol. ’

3) For every u(x) e S(R"), we can show that for any elementary symbol
al(x, &) we have:

(49) a(x, D) u(x) = thdh,z(x) wy, 1 (),

with absolute convergence in L * (R").
In fact since X |d (@) ||y, 1(§)| S MCN,(H) for any x, Ee R" (here
h,A

N, (H) is the number of terms in the sum which do not vanish), it follows that
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for u(x) e S(R™)

a@, D) ul@) = 2m) " [ 3 d), @) ),4(8) UE) dE =

@m) " 3 dy, 1 @) [ 5,18 TE) dE = X (@) 1y, 1),
Moreover for any heZ%, LeE and T >0 we also have

| u(8) |

||uh1||wscf|wh (&) u(§)|d§<cf(1+ HRAY (§)|W

(H)
Ph A

de <

C

1 < ’
(1 i ?y‘;“"zm})

- f(l + &P |u@) |dE < Cray, ...,

with a suitable C > 0, where Cp := [(1+ |&|®)” |u(&) |dE and

1, h=0,
50 [0 =0 _ 1
T wse, T om0

S

Thus 2 |dp 21l i)l < M2"Cp 2 ay, .. E ah < oo, which shows that (49)
i hy=0

oy =

is absolutely convergent in L * (R").

4) By a similar argument, for {¢, ;(§)} e ®* and ve &' (R") it holds:

(51) V= Eqa,,,,,l(D) V= Evh,,,l, with convergence in &' (R").
iy A i

5) For {¢; (5} .e X, K>1, we may apply the decomposition (51) to
each term d,, ;(x) e H}? in (49). Then, by setting ol,f;f(x) =@y, (D) dy, (),
we get

(52) a(x, D) u(x) = hZA kZd;i‘,’f(-%‘) wy, ().

For > " the expansion (52) is absolutely convergent in L *(R”). Since

{dy..} isﬂlggunded in H}p?, we can in fact find, in view of Proposition 5.4, a
number M >0 such that for any h,keZ" and AeE: [Jdff|. <
MA(c® ey "5,

Thus for a, defined by (60), j =1, ..., n, and provided r —

> (0 we can
HoP
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show that >, ZHd;f“,me 4, 1 ]| is bounded by:
b2k

M2 S A T Y . S, <®.
=0 =0 "

n

6) The absolute convergence of the series in the right hand-side of (52)
makes possible to change its terms according to a useful order.

For this purpose, let us introduce some preliminary notations.

Let Nye N be given and he”Z . arbitrary; we set

, h<Ng
(53) ENY = 0 0
Z+ﬂ[0,h—N0[, h>N0;
(54) ENY := 7., 0 [h— N, h+ Ny[;
(55) E'(No) =7, N0[h+ N, .

Moreover, we denote by B# the set of all functions 0:A—B with A:=
{1,2,...,n} and B:={1, 2, 3}.
For any h= (hy, h, ..., h,) € Z" and oceB* we set:

(56) EMN = EQW, X E{ ), x ... X EQWY, .
According to notations (53)-(56), we can write (52) as follows

(57) a(x, D)u(x) = > > X dff@) u, (2.

oeBA h,4 kEE;{\;?), cell

7) For every h, ke 7" and 4, ¢ € i supp (df§ w;, ) ¢ PR + Pi%), for some
K H>1.

Given r, seZ, and 0, 0e { —1, 1}, according to the notations introduced
in (9) we can say that the n-cubes P{) and P{¥) are obtained as superposition
of n intervals of the type L) and L<K) Therefore we may restrict to argue on
the sum LD + L.

Let us then prove the following technical lemma.

LEMMA 7.1. - Let us consider r, seZ,,0,0e{—1,1}, H, K greater than
1. For any N, positive integer, Ny > log,(2HK), we can always find two posi-
tive constants T, M such that T> H + K, 1o min{l — g, 1 g} d
T K 28 H 270
M >2N YK + 2H | which fulfill the following statements:

(@) if se E{NY and r> N, then

2'n,
T

59) LI 1 L) {9ER; <o < TzM} LD,

r,o
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(b) if se EsNY then
(59) LE+ LB {0eR: |0]< M2} =[ - M2, M2'];
(©) if se BNV then

28
(60) L;{{,)+L;fg>c{oeR: isaasms“} — L.

Here n,=—-11 h=0and n,=1 i h>0.
ProoF. — At a first glance, we have to distinguish four cases:
(1) : (0, 0) = (1, 1); (1) :(0,0) =(—-1, 1);
(117) :(0,0) =(—1, —1); (w) :(0,0) =(1, —1).
It is easy see that 6 e L) + LX) for (o, 6) = (1, 1) [or (—1, 1)] if and only if
—-0eL"™) + L% for (o,8)=(-1, —1) [or (1, —1)]. So we are actually re-

duced to argue on the cases (¢) and (7).
For the sub-case (a-i) suppose firstly that s = 0. It easily follows:

1 1

LM+ L{Ec {GER: A Ez"<0s2K+H2"“}.

From r > N, it comes that
1 1 1 1 1 1
E o
K H K2 H K2M  H

on the other hand, 2K + H2" "' < (K + H)2"+1.
The inclusion (58) then follows by choosing a constant 7' with the required

properties; let us notice in particular that Ny>log,(2HK) yields — j—ﬁ + % >0

1 2K 1 1 1
and then we can always find 7 such that — < - -+ — < ——— + —,
T 2No H K2No H

We get L,Ef{>+L;ﬁ>c{eeR: %25+%2"s0sK25+1+H2"“} when 5> 0;

then (58) easily follows with the same 7' before considered, since s<r—N,.
Let us assume now s >0 in the sub-case (a-i7), then we have

1 1
LI, 4 L®c {eeR; Lo priico<keti- _27}.
K H

Inclusion (58) follows by observing that for s<r— Ng: K2S+1—%2"<

(5%~ 5 )2 < — g2 and 22— H2™' > —(H + K)27 > T2, with the
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same T of case (a-i). By means of similar computations the statement
follows also for s =0.
In the case (b-7) we can see that for s =0:

1 1
L+ LK [—(_ " —)2’”,(H+K)2”“],
’ ’ H K

while for s >0 from r — Ny<s<r+ N, we get:

1 1
H & - 2 =
L:1 +Ls,1c[ (H K

)2’”, (2Y K + H) 2“"“] .

In the case (b-12), for s =0 we obtain

1 1
L+ LK c [—(H+ —)27‘“, (2K+ —)27'];
’ ’ K H

for s > 0 it follows

Lo yrwel —(m- 1t 2"“,(2N0“K+ i)z“’;
’ ’ 2N0+1K H

let us notice that ot and H —

log, (2 HK). Ho20K 2K

Thus inclusion (59) holds in both cases (b-i) and (b-i4), for M >2No" 1K +2H.

Finally, inclusion (60) easily follows by observing that s =+ N, if and
only if » < s — N, and then arguing as in (a) with » and s, 0 and 6, H and K
interchanged.

Let us remark, at the end, that we may always find M = T satisfying the in-
clusions (58)-(60). =

are positive as N,>

Coming back to (57), it follows from Lemma 7.1 that the support of d,{‘; S
is contained in the product of n real intervals of type (58)-(60).
This suggests to split B4 in the following way:
C, :={oeB*: 0(A) = {1}};
Cy:={oeB4: 0(A) = {2}};
Cy:={oeB4: 0(A) = {3}};
C,:={oeB4 a(4)=1{1,2}};
Cs :={oeB4: 0(4)={1,3}};
Co:={oeB4: 0(4)=1{2,3}};
Cr:={oeB*: 0(4)={1,2,3}}.
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The sets C;, C; and C; reduce to a single constant function o, while C4-C; con-
tain several functions, for any dimension n = 2.
For any elementary symbol in H;"? M) we can write:

7
a(x, D) u(x) = 21 Tu(x),
i

where for j=1,2,..., T
Tiw(w):= 2 2 2 dff@w,,(®), wueSR").

0eCj h,2 kEE;{V;?),EEE

In the following Propositions 7.1-7.3 we assume a(x, £) to be an elementary

symbol in Hy? M, with 1 <p < «, A(E) weight function and » >
HUoP

ProposITION 7.1.
T.: Hpy?—H}?,  continuously for every seR.

In order to show the previous result, we will use a consequence of the
Nikol’skij type representation for Besov and Triebel spaces (see Triebel [28]
Theorem 2.1/1); namely

LEMMA 7.2. — Let us consider u = Z uy,, 1, With convergence m ' (R") and

assuwme that supp w, ;c P, for every heZ", AeE and some constant
H>1

Then for any se R and 1 <p < % there exists a constant C = Cs ,> 0 such
that:

(61) [

1
2z
i < H (}%A(chfffg)zs w5 |2)

p

ProOF (of Proposition 7.1.). — Assuming N, > log, (2 HK), from Lemma 7.1

it follows that for some constant 7'>1 we have supp dffw, , c P}, for any
h, ke7", with k;<h;—N, (j=1,...,n), and any 4, e L.
In view of Lemma 7.2 for every seR and 1 <p < « we get:

|7 ]

> d;ff(x)
keEl h
celf

P

gy <C H EA(C(T))ZS |y, 2 () |?

where BN := HEWO).

Since the sequence {dy.; }1,, 1s bounded in Hy? and r > , from Proposi-

Uop
tion 5.4 and Remark 7 there exists a positive constant M, depending only on
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r, P, Uo, K, n, such that for any xeR",

2 dif (@)
keEMY

ekl
On the other hand, it could be shown (see Triebel [27]) that for two arbitrary
numbers H, T'> 1 there exists a constant C > 0 independent of  and 1 such
that:

sM( 2A<c,g{<g>*(’”*#)) sup|ld;, |l -
k,e h, A

1
(63) EA(C(H)) </1(c,§Tj) <CA(c(H)) heZ®,leli,
By the estimates (62), (63) and Proposition 5.1, we get for any u e S(R")

7]

1

3
o < M suplidy, ||z (ZA(C(H))%WW(%)F) ” =
h, A !

H/rl’ P |u| H/sl’ Py

M"sup|d,, ;|
hy 2
M', M" depending only on 7, s, p, uq, n, H and K.
Since S(R") is dense in H;? for any real s and 1 <p < o, the prof is
concluded. =

A (H)
REMARK 11. — Similarly to (63), it may be also proved that —_< A(C H))
when |k — k| <A (see [27]), for some positive constants C and A, independent
of h,keZ" and A, ecE.

PROPOSITION 7.2.

n

— -0

s+r— s
Ty: HyP—H, " 77,

and 0 <O <s+r— .
HoD HoD

continuously for every s> —r+

In order to prove Proposition 7.2 and moreover the continuity of the terms
T;, 3<j<T7, we need the following
LEMMA 7.3. — Let us consider u = Z uy,, 1, With convergence in S'(R"). We

assume moreover that there exists a const(mt H > 1 such that for any heZ",
and AelE:

~ I I
supp ;€I x Lo x T

where J{) is either L") defined in (9) or [ —H2"*1, H2M 1],
Then for every s=0, y>0 and 1 <p < « there exists a constant C =
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C

5V, P

>0 such that:

1
(64) [l s, < C H (Z/l(c,ﬁﬁ))%gmah)»h ), 5 |2) 2 H ’
B, 4 )

where y(h) = (y(hy), ..., x(h,)) and

[1, lsz(H) =[- H2h7+1 H2h7+1]
(h;) :=
X 0, otherwise .

PROOF. — For any {¢, .} e ®®, K> 1, arguing similarly to the proof of
Proposition 4.1, we see that for N, := log,(2HK) the supports of u;, ; and ¢ .
are disjoint when at least one index 1 <j <n satisfies one of the following
assumptions,

h7<k7—N0 or h7>k7+N0, if J(H) = (H}vj
or

hj<kj— Ny, if J{H) =[—H2\"! H2M+1],

AR

whatever are 4, ¢ e E.

Hereafter we suppose that J{”; =[—H2""!, H2"*'] for j=1, 2,
and Ji") = L{"; for the remaining indices j=m+1,...,n(1<n < n), Wlth—
out any 1oss of generahty

From the above arguments it follows that:

@, (D) u= 2 @, (D)uy, 1,
heENO-m
AEE

where, for sake of simplicity, for any ke Z" , we set:

j 2 i ] = .o

EéN@),nl — }'LEZZ . h k No, ] 1, , My .
kj—No<h;<kj+ Ny, j=n+1,.

By the characterization of Hj'? given by Proposition 5.1 there exists a positive
C=C;,, such that

2

(65) fullgsr < C ||| ZACE* | 2 @ (D) w,,
k, e heENOM

el

C kE/l(C;E,Ks))ZS > @k,s(D) U+,

tEE(No), n1
Aek




LP-BOUNDEDNESS FOR PSEUDODIFFERENTIAL OPERATORS ETC. 487

where t=h —k and

EWNom = {tEZ,“ t;= —N,, j=1,...,m },

—N0$tj$N0,j=’n1+1,...,n

agreeing that w; ., , =0, when k; +t; <0 for some 1 <j<mn.
By the triangular inequality in L”([’ ) we obtain

2
2
(66) H SACEP | S ge D, <
k,e te EWN0,m P
leli
> {@k (D) (ZA(C(K))S@%H 1)} b
te EWN0), m kye || LP(0%)

On the other hand the system {¢ .} satisfies the hypothesis of Theorem 5.1,
assuming that m; ;=0 when j = [.
Then in view of (29) we may find a constant C' =C, ,, > 0 such that:

<
LP(r?)

(67) H (o0 (Saeru...)]

y €

=
P

E%ku i

)%

C’ H {;A(Cé,}?)sukn,a}

” EA(C(K))Ze

ke || LP@? )

1

2z
(EA(C(K))ZS; |uk+t,/1|2) H )
»

for any te E™o»™ and a suitable ¢, > 0.
Thanks to the inequalities (65), (66) and (67) we obtain then

(68) )

S CC'c, >

te E N0k

1

2
(2/1(015,[?)282 |uk+t,/1 |2) H .
k,e A »

Since we have considered s = 0, using now the estimates (63), the assumption

3 in Definition 2.1 and Remark 11, we may find a constant C"=Cy,, y x>0

such that: A(¢f8)** < C" A, ;) )*, for all ke Z, te BN ™ ]} eeE.
Thus from (68) it follows:

(69) [

Hél)\CCC E

te EW0»m

1

2
(EA(C}EIi)t,A)26|uk+t,l|2) H .
i, 4 P

Let us multiply any term of the sum in ¢, in the right-hand side of (69), by 2%
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and 277 as j=1,..., ny; for t'=(t, ..., t,) and k'=(k,, ..., k,,) we have

(70) 2

te EWN0,m

1
K]
(%A(Cﬂ)t,z)zs | %k 44, 2 |2) Hp S

1
2
— ’ s ’ k!
< > 2777 H (%A(Cﬁ)t,z)%zzylt TR |uk+t,/1|2)

te EWN0,m

K
By observing that Z > 27MWi< ey as y>0, we get the

—Np< NO ;= Ny
statement. u j= nl+1 Snoj=1..,m

REMARK 12. — Under the same assumptions of Lemma 7.3, by means of the
inequalities (23), we immediately deduce from estimate (64) the following:

e

)

p

1
yn1 2
HH’\CH 2/1( H))2(S+W)|“h,i|2)

where 7; has the same meaning as in the proof of Lemma 7.3.

PrOOF (of Proposition 7.2). — For E5N := H E(NO) let us set U, ;(x) :=

2 dh (@) wy,, (). It follows from Lemma 1. 1 that Tou(x) = 2 Uy, 1 (x) ful-
keESY v, 2

celi
fills the assumption of Lemma 7.3.

E—)
Since s+ 17— L —-60>0, we may estimate the H wrP-norm of

T>u(x) by means of (64) with y =
for C'= C(T’,S’p’//‘o,n)>0

(71) (175l

e 0n S C H 2/1( (T))(5+77"°”)|Uhi| ) H .
P

But from Proposition 5.4, estimates (26) and the boundedness of the sequence
{dy.;} in Hy?, we may estimate U, ;(x) as follows:

(72) Uy, @) | < w (@) 2 |dife)] <
keESY
cel
M supy, ; |[dy, A|H/’I” E A(C(K)) (- 5%) |y, () | <

eeE

M suplds sl A7) a0

where we also used estimates (63) and Remark 11 about the weight function
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A(&) to get the last inequality and the constants M and M’ depend only on H,
Ky r, S, ]0, Ho, 0, n.
Now the statement readily follows from (71) and (72). =

s+r— = -0, . . .
-0>0,H, wr""c H%? with continuous

REMARK 13. — For r —

HoP
embedding. Thus for 0 <6 < min {fr - str— L}, Proposition 7.2
Hop Uop
yields that T, continuously maps H}'? into itself.

PROPOSITION 7.3. —

s—r+0+—,p s,p

(73) Ty: H, o P S HP,
continuously for every s <r and 6 > 0.
Proor. — Thanks to the absolute convergence of the expansion (52), we may
write:
Tou(x) =2 2 dif@) w, (@), wueSR"),
ke nem (b

Aell

For any k and ¢ the support of V}, .(x) := E dh £ (@) wy, () is included in
hEE' 0_

the n-cube P") (see Lemma 7.1), then by use Yo Proposition 5.1 for any s <7
and 1 <p < « there exists a constant C=C; ,> 0 such that:

(1) ||Tsul

1
yr<C H 2A(c<">>2* |Vk,g|2)2 H <CZA(c<K>)*||Vk,£||p,

where the second inequality is given by the continuous inclusion B;{'c
Fy

Let us assume now s <7 and take a number 1 <p; < o such that 1.1, i

p
with 0 <# < 1. Using Proposition 5.3 (with p instead of p, and q= 1) we

obtain

ZAC WVl < €' Z A Vil
k,e

On the other hand, from the triangular and Holder’s inequalities we
have:

(75) Vi, el < Z [l ||p w2l keZl, ecE.
heEMNO~D I
LlelE

Since H*cB,; 4 with continuous embedding and the sequence {d;, ;};.; is
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bounded in H?, it follows from (74) and (75) that for any # > 0, setting A, :=
A(ef®)), we have

c ey
(76) ||T3u|Hj'PSCSUP||dh,/1||B,"42 A, BRI g, 2112 | <
R, A D%k, heEM-D ”
IeE
Csupldy, i lsga A5 A S gl
h, 2 ke heEMN™D n
el

Since k; = h; + N, for all 1 <j<mn, from (5), jointly with (63), we deduce
that:

Aty = TA(et),

with a constant 7 =Ty x>0 independent of &, k, A and e. Then for any
keZ’ , e, AcE:

s—r+—n+n' —r+Zp+n'
(77) AW ST A(e®Y T W he BN,

with a suitable 7' >0 depending on H, K, », s, g, 7, 7', n, provided we

choose 7 and 7' small enough such that s —r + in +75' <0.
Ho

From (76), (77) jointly with Proposition 5.2, statement 3), we obtain
then

T8 ||ITsul

e+ '
i <T'S S}u£)||dh,/1||31§‘;g 2 A T ]l <
L, Uy n

T A
B;;fc(}%/l(clﬁi))p(é sy )”uh,l”pl)p _

n

TS "suplld;,
Ry A

CT’S’supHth
h,A

n
r/1||/l,{,|| g =t —n+tn +n"’, A
By Bl,p “o )
n

where 7" >0 is arbitrary, S=S8y , = 2 A(c{X))™"" < » and the constant
k,e

S’ >0 only depends on H, ', " and p.
Let us consider now an arbitrary positive 6; in all the above arguments we

can pick #, ' and " so that ' + 5" <6 and L > p.
"

" _ instead of s, L instead of P, and

Uop n

By Corollary 5.1, with s —»r+ 6 +
60— (' +n") instead of 65, we have

s—r+0+L,p s
H/l wr’ " C B

)
n

—r+ Lty g, A
“o

with continuous embedding. This proves (73) for s <.
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For the case s = r let us come back to the first inequality in (74); using also
the Cauchy-Schwarz inequality and setting for some t>0 I',(u):=

2 A" w2 || we can estimate ||T5ullyr» using
i h
El
@ rwl||Saeer S e e |
k,e }ILEEIUY\;CO*U P
Aell

By changing the order of the sums in k, ¢ and /, 1 we have now

2
H S AR S A |dl ) | H <
ke heEMp~D P

Ael

> Alet™) !
h, A

H)p?»

1

3
(ZAwrriaks?) | <cssuld,|
k,e P h, A

where S =38, := X A(c/) ' < .
hy, A

Let 0 <60’ < 60" < 0 be arbitrary, set £ = 6’ and then use estimate (19) with
¢G1=p,q=1,5=0",e=0"-0",b, ;= ”%h/le and estimate (27) with p, =

" 46 and 0,=0— 0", we obtain then
Uop

S:

1

(80) Fo) < Cr( S A i 1) < ol o
h, A A0

with suitable positive constants C;, C,.
Estimates (79) for t =6’ and (80) complete the proof. m

n

REMARK 14. — Let us notice that, under the assumption » > , We may al-
—y _n N Uop
ways find 6 >0 such that H j”’ch Ot continuously, then it follows

from Proposition 7.3:
Ts: HyP—H;?

continuously for every s <.
Let us remark that any the operators T}, j =4, ..., 7, may be expressed as
a finite sum of operators with the following form

(81) Ru(x) = X, > dPf@w, (@), weSRM).
b, 4 keE;NO), n1,mg, T
AeE

Here n,, n, are integers such that 0 < n; < n, < n and two at least of these in-

equalities must be strict; r is any permutation of the set {1, 2, ..., n}, Eff‘}gj(j),
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ESN) ., BNy are defined by (53)-(55) and

N Ng n
(No), 1, ng, @ « _ (No) (Ny) (No)
Eh 0T T = HEl,hlix(j)x H EZJ{)n(y')X H E3,hl/)n(j)'
j=1 j=n+1 : j=ng+1

At the moment it only needs to study the H P-continuity of an operator taking
the form (81). We need the following
PROPOSITION 7.4. — Let us assume that the weight function A(&) satisfies
(46); let R be defined by (81), 1 <p < o and r>
R:H»—>H}?,

continuously for every 0 <s<r.

n

—  Then
(1=0)uyp

In order to prove the previous statement we need a result of Caldéron [5]
about complex interpolation. Following then the notations of Triebel [23] we
write [.,.]o, 0 < ® <1, for the complex interpolation functor.

PROPOSITION 7.5. — Let (B°, BY) and (C°, C') be two interpolation couples.
Let L be a linear mapping from B+ B to C°+ C! such that x e B implies
L(x)eC'’ and

L) |or < My |lelgi,  i=0, 1.
Then x e By :=[B°, B!y implies L(x) e Cy :=[C°, C'lp and
L) [lcy < Mg~ @ M ||l -

REMARK 15. — From Triebel [27], we get also the following complex interpo-
lation formula:

[LP7H}‘1,10]@=HA@7‘,1’)’ 0<@<17 r>0.
So if R is L? and H;? bounded, then its H}; P-continuity follows from Proposi-
tion 7.5, for any 0 <s <7

For an exhaustive introduction to complex interpolation methods we ad-
dress to Caldéron [5] and Triebel [23].

ProOF (of Proposition 7.4). — In order to simplify all the next technical cal-
culus, we assume, without loss of generality, that the permutation 7 in (81) is

the identity of {1, 2, ..., n} and restrict ourselves to the case n; =1, ny, =2
and n = 3.
Then the operator K takes the form
(82) Ru(x) := 2 > dis @) w, (),  we S(R?).
i keBNY, j=1,2,3
dek

Because of the absolute convergence of the expansion in (82), we may write R
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as follows
Ru(x) == > > di i () w, ().
I, he, ks keEmO) j= 1 2,
A1 Ao ea h;eE(VO
£1, €2, /13

From Lemma 7.1, we know there exists a number 7 >1 such that
supp djfwy, 3 C LD, x [—T2", T2"]1 x L, | for any (ky, ks, h3), such that
ki <hy— Ny, ho — Ny<ky,<hy+ Ny and hs < k; — Ny, and all &, 5, 43.

For shortness, later on we set t:=(hy, ho, k3), 0:= (A1, A5, €5) and
EMNY = BN x BN < BN~V moreover  we  will  write  eff), =

(c1,x€2", 0, O) 62(71{,)78 ==(0, ¢y, x2", 0), es) . :=(0,0, ¢35 ge2"), for any inte-
ger v, K>1, ce{—1,1} and ¢; x == K+ %,jzl, 2, 3.

Using now Lemma 7.3 we have that for every s =0, 1 <p< o and y >0
there exists C =C >0 such that

5,0,y
1
2

(83) ||Ru||Hi,p <C H (2/1(@}2)2522%2 | Ut,g |2) ”

t,o
where U, ,(x) := > di £ (@) wy,, ;(x) and
(ky, kg, hg) e BNO
€1, €2, Ag
1
)= (CT,I;lehl’ CT,2/122h2, CT,3532k3), ep,;=T= o7’ Jj=1,2,3.

In order to prove the H ) P-continuity of R, let us notice that ¢.%) = ¢f") +

Tyes’), ., With 73 :=1—2""% that is 0 <73 <1 as hy < k3 — Ny; by using (46)
and (5) we have:

Al < C(AefT) + AlefTy, o) + Ale)’ AeT, (,)°)
for any t, o, k3= hs + Ny, and some C > 0 independent of ¢ and o.

For 7:= (ky, ks, h3) e ENV, e=(eq, €5, A3) and s=1r it follows from (83):

1

v <C (222%(2/1(0,7( D di i) | |, () |) ) Hp+

2\ 2
C (ZZZyIlZA(eé,T‘]{)Zg,SS)ZT(,[Ee |d;ﬁ’f(9€) | |uh,,1(90) |) )

t,o

IR

+
p
1

2\ 2
0 |[(Z27 At (S 1dii @ @ 1) ) || <
t,o !

ClUy+1,+1).
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In order to estimate I;, we use Proposition 5.4, jointly with Remark 7 and the
boundedness of {d; ;} in H}? to get:

ZA(cm Y| dif () | |, 5 () | <

M suplid;, , |
hy, A

PR
H P E A(C;ET(),)Tluh ,1| E A(C(K) (r .uop)’
hg,lg 7 87
ji=1,2

where k3 runs through E{Y,~ and k; takes its values in E} for

j=1,2
Let now 6 > 0 be such that » — — 0 > 0; in view of (5) and Remark 11,

AR (" 57) may be bounded by

n ] ] ]
K “|rm—-0 K -5 K -3 K -3
&) AC® )T ) A )T A, ) A, )7,

for all ke 73, ko — Ny <hy <ks+ Ny, h3<k;— N, and ¢e[E.
From (84) it follows for k;, j =1, 2 running as above:

4
3

S A ) <A@ )T ACSK), L)

kj, &
]=1,2

whence, if 7, e, hy run as before, by the Cauchy-Schwarz inequality we
have:

;@A(Ciﬂ)y |diof () | |, 2 () | <

7ﬁ
MC2K305}1£3||071h,1||H;;v"h§;l AT AlesS), o) 7wy, | <
(2 3,43

1

2
Mchfsuplldh,allH;m( S AT |uh/,l|2) ,
hy A hg, 3

0 0
for K{ := A(esX). ) 7 A(es"), ) 7 and Cs, C3 depending only on 6.
From the previous estimate and Proposition 5.1, we obtain then:

1
3
1= Cosupl,l || ( S A (i 2) || < Cosupl, s ol
Iy iy A P h, A

0 0
as 2 A(es&) ) 7 is finite, 2272 A(es¥), .,) 7 is bounded from above, for y
k3, €3

sufficiently small, and A(c{"))*" < C' A(cfB)*" by (5).

Let ¢, ¢ be two arbltrary positive numbers; by means of multiplication and

division for A(e{%) 81) A(ed"), ..)" and the Cauchy-Schwarz inequality we get,
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for C; =C,(t, q) and 7, e, hs, k;, k, as before:

(85) rze |dif () | |, 2 () | <

ClA(el(yK}Zlyfl)t Z /1(8351[{;23183)2(1 |uh,/1 |2 |d}f f(%) |2 2.
Iy hg ke
j=1,2
. t t
Here we also used the estimate A(e(X) , ) <cA(eX) ), due to ky < hy —
and 2 =17,2" for 0 <7, =2 "M <1,
Since A(ef") . ) Ales"), )12 < C" A(cH)
estimate of I, follows:

tq+

, from (85) the following

1
t+q+-— 2
8 LG SA 5 ) (Sacrdie) || <
y € P

Hy ”EA(C(H) T |uh/1||w

Cosupld, |

We may always assume ¢+ q + RS
(80), we obtain now Ho “op

— 0; arguing as in the proof of

“op _HHMh,/l”oc =

@87) ZA(C(H)

n 71 -
Cr S Ayt 7 Dl ill) < ol

The estimates (86) and (87) imply:

(88) I < Css}u;glldh,z oo ]

HP-

It remains to estimate I3; as we did to obtain (85), using the Cauchy-Schwarz
inequality with (1 — o) 7 instead of q and A(c{X))° w, , instead of u, ;, setting
A; —/1( (K) _), j=1,2,3, we have:

;38/1(0;5{2)"’" |dif (@) | |ug, 2 () | <

1

X 2

Aﬁ(}% AP AT [, 3 |dh/1(90)|2) ,
13543 i

.7'=1,2
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whence, observing that A(es”), ..)** "< C’ A(es), .,)*" =" when hy < ks —
N, and arguing as from (85) to (86), we obtain:

t+or+ L
HP EA(C;E{?) i
Ry, A

13$CzshupHdh,,M [, 11l -
A

Lastly, we obtain for /5 an estimate like (88), by choosing ¢, y and 0 <6 <7 —

" suchthatt+or+ L =r—_" —¢ (this is always possible in view of the
HoP . n Ho HoP . .
assumption 7> —) and then by repeating the arguments which lead

(1=0)uop
us to (87).

This completes the proof of the Hy?-continuity of R.

Concerning the LP-continuity of R, it suffices to repeat step by step the ar-
gument used to estimate I, starting from (83) with s =0 and y > 0 suitably
small.

If we replace the indices %4, &y, ks by the more general systems of indices

{hﬂ(1>7 ceey hn(nl) }’ {hn(nl +1)y c- hn(nz) }7 {kﬂ('nz +1)y c-0 kﬂ(n)} TeSPeCtively, the
same proof runs for a general dimension n. ®

ProOF (of Theorem 7.1). — By using the Propositions 7.1-7.4 we immediate-
ly get the statement for an elementary symbol a(x, ) e H;? MY. More pre-
cisely for any 0 <s<rand 1 <p< o

|u||Hj'”7 ue S(Rn),

(89) llaCz, D)%”H} »<C Shu/rl)”dh’”HW

where the constant C > 0 depends only on 7, s, p and n.
Let us take now an arbitrary symbol a(x, &) in Hy? MY; in view of (48) we
obtain for every 0 <s<7r, 1 <p< o and ue S(R")

1
lat, D) ullgs» < C““”HZWWEW m S;Tufud;fnz g,

C > 0 depending only on 7, s, p and the dimension #.
Since the sequences {d;";}; , are bounded in H? uniformly in meZ",

;H is finite and S(R") is dense in H}'?, it follows that a(x, D) is
mezr (1+ |m|2)zn

H}? bounded.

Lastly when the symbol a(x, &) e Hy? M ' has an arbitrary order m, we
easily reduce to the case of order zero as already noticed in this sec-
tion. m
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COROLLARY 7.1. — Let A(&) be a weight function which fulfills (46). Then

forl<p<ow,r>—"" and 0<s<rthere exists a constant C >0 such
that 1- 6)#079
(90) ool < Clldge el

for all we H;? and ve Hp?
In particular, the space H? is a multiplication algebra.

ProOF. — For any fixed v e H'? the multiplication operator M,(u) := uv is

a special pseudodifferential operator whose symbol a(x, &) =v(x) e Hy? M}

may be written as an elementary symbol: v(x) = > v(x) ¥, (), where
!

{y,2(&)} is any non-homogeneous partition of unity.
Then (90) easily follows by applying (89) to the operator M,. =

COROLLARY 7.2. — Let F': C—C be an entire analytic function such that
F(0)=0

Then for every ue Hy?, 1 <p< o and r>
moreover

n

— Flw)eH}? and
A=0)sup (u) e Hj

)iy < Clldlzryr, — with C=Clr, p, F, |Jul

HAM»).

Proor. - Since F(0) =0, for a suitable sequence of complex numbers {4;}
we have F({) = E Aj CJ“ e C, with absolute convergence.
On the other hand from (90) we obtain for ue H)

||u7+1||H/r1,pSC7||u ;_IZ}U ]:07 ]-7 cre

with a positive C depending only on », p, u, and the dimension n.
Thus it follows that:

< Byl

H};'p)||u| s

(91) IF ) ||z < 20 14,1C
i=
where F() := X |4;|C/¢l, e C, with absolute convergence. ™
j=o0

REMARK 16. — For p = 2 the continuity of H;2S " and the algebra property
of Hy“= H) are known for a more general class of weight functions A(§) in-
dependently of Theorem 7.1; see Garello [9], [10] where more precise esti-
mates are also given.

In Marschall [18] the reader can find results of H * P-continuity for pseu-
dodifferential operators with non regular symbol, where H™"? = H'.



498 GIANLUCA GARELLO - ALESSANDRO MORANDO

8. — Examples and applications.

Let us recall that a convex polyhedron & c R" can be obtained as the convex
hull of a finite subset WP) c R" of convex-linearly independent points, called
vertices of & and univocally determined by & itself. More precisely if & has
non empty interior, it is completely described by

[EeR: v-E20, WweNo(@)IN{CeR v-E<1, WweN (P},

where No(P)c{veR"; |v| =1}, N1(P)cR" are finite sets univocally deter-
N

mined by &, as usual, v-£= >, v;&;.
j=1

We say that a convex polyhedron #c R’ =[0, «)" is a complete polyhe-
dron if:

) WP)c N

i) (0,...,0) e AP), and AP = {(0,...,0)};
i) No(P) = {ey, ..., e,} with ;= (0, ..., Lienpy, -..0) e R ;
iv) every ve N1(&#) has components v;>0 (j=1, ..., n).

The boundary of & is made of faces which are the convex hull of the ver-
tices of & lying on the hyperplane H, orthogonal to ve Ny(P) U N{(P) of
equation:

v e=0if veNy(P), v-i=11if veN (D).

Particularly we define () := U H, N &P, the set of the faces which do not

veN1(P)
lie on the coordinate hyperplanes.
Given a complete polyhedron &, we set

92) A (@) :=( ) «52“)%, EeR",

ae UP)

One easily proves that A ,(&) satisfies the following estimates
1

(93) E(1+IEI)"‘OSA:?(E)SC(IJrIEI)‘“, §eR",

with a suitable C > 1 and

=  min ‘= max .
Ho ae'\‘)(P)\{O}|a| #a ae'\‘)(P)lal
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LEMMA 8.1. — Let & be a complete polyhedron of R". Then for any multi-in-
dices a, yeZ there exists C, ,>0 such that

n vj L
Hl(l +ENT |0 Ag(E) | < Ca,y/lsp(é)l Al gerry,
j=

where u:= max{i: j=1,...,n and veNl(g’)}.

Vi

ProoF. — First of all let us observe that for any y e Z" we have:

94) [Ta+enz<Ila+gy=2 (V)|§"|.
j=1 j=1 o

oSy

Moreover we can show that for any a, 87’ there exists a constant C, 5> 0
such that:

1

(95) |68 P A p(E) | S Cppdo(®) W4, EeR™.

In fact for |a + | =0 the estimate (95) is trivially verified, with C o= 1. For
afixed k e Z ., let us assume that (95) holds for any o, f € Z% with |a + 8| <k
and consider a, feZ" such that |a+p| =k + 1.

From (92) we obtain:

(A HER) = (a+,3)z( 2x )gZxaﬂ.
zxev(fmﬁ a+p
x=o+

So, by Leibnitz formula, we get

0 P Ay = ! { > (a+,8)!( 2x )gzxaﬂ_
a+p

24 5(&) | zewo)
2y=za+p
a\ (B +o Y P
> 31N (&) 3TN L(©)
Ospn<a n o)
(17,0)#(0,0)
(7,0)#(a, B)

whence

1 2y -
96 Baeth A < +/)! Zme
(96) |§ 9(§)| 24 ,(E) { XE%“)) (a+p) (a ﬁ) |§ | +

2y=za+p

2 ((Z) (IB) |§63n+6/15];(§)||§ﬁ_6aa_n+ﬁ_é/lgp(§)|}-
O<pB,n<a fo)

(n,0)=(0,0)
(n,0)#(a, )
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From the inductive assumption, we have

7

97 182070 A y(&) | SCp o Ap(8) v, EeR"
and

_ Ja-n|
©8)  |EF0TT BTN L(E) | S Chp oA F o, EeRN

Let us observe now that

99) g e <AL, EeRn.

In fact, if 2y=a (B=0), £ “=1 and |a|=2|y| <2u;<2u, so that
C
Ap(EP 7w =1 and the inequality (99) is trivially verified.

When 2y > a, for y € W(P) c &, we have y-v <1 and, in view of definition of

u, a-v>%|a|, when v e Ny ().

Since 2u — |a| > 0, the previous inequalities yield > ”| | Cy—a)v=sl,
‘u B a u

for veN;(#), and then — £ 2y—a)e® So [E2*|21a < A4(E)

u—la
whence the estimate (99) follows.
So estimates (97), (98) and (99), jointly with (96), give (95) for |a + | =
k+1.
Now the statement follows from (94) and (95); in fact we have:

n

[Ta+e? jae7 4,0 < E(Z) 127997 4 ()|

j o<y

J

and for every o<y

—Liase -Lla
870 AL (E) | S Cpe o Ap(® F IS CY L Ap®TH,

where ¢ = y — 0, since A 4(&) = ¢ > 0 as a consequence of the left inequality in
93). =

REMARK 17. — It is easy to see that A (&) satisfies (5), then thanks to (93)
and Lemma 8.1 we conclude that, for any complete polyhedron & of R"*, A »(&)
provides a weight function according to Definition 2.1.

It could be also proved that A 4(&) satisfies the estimate (46) with

(100) o= max k(P p)<l,

Be P\F(P)
where k(P, ) = n}vaicp)v-,b’ for every feZ" (see Garello [9], Proposition 3.2).
veN1(I

For any complete polyhedra & of R” let us fix the attention on a semilinear
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partial differential equation of the type
(101) p(%, a)u :F(ﬂ(}, aau, f)aef}’\f)"(P)r

where p(x, 9) := E Ca (x) 93, cu(x) e C*(V,,) and V, cR" is an open neigh-

aed

borhood of x,e R".

About the nonlinear part, we assume that, for M:=1+ 2 1, the func-
aeP\F(P)
tion F maps V,, x C” into C, it is locally smooth with respect to the real vari-

able x and entire analytic in the complex variable ¢ e C¥; namely:

Fl, )= 2 @) &F,  ¢eC(Vy), teCY,

5€7+
where sup|<9 cs() | S ¢, pAg for any compact KcV,, aeZ’ BeZ, and
Fi () := E l/;éﬁ is entire analytic.

ﬁ€7+
For A(&) weight function, 1 <p < » and se R, we write H75,.(2), 2cR"

open set, for the localization of the Sobolev space Hj'? given by ue D' (L)
such that pue H}? for every ¢ e Cy* ().

Applying then Corollary 7.2 we obtain that F(x, g) e H}”,.(V,,) when
all the components of the vector g = (g1, ..., gy) belong to H AP 10e(Vy,) and
— for 6 given in (100
(1‘*5)ﬂ0p g (100).
PROPOSITION 8.1. — For & complete polyhedron of R" and 1 <p < o let us

consider the equation (101) with f(x) e HP 0(V,,), where t > T +0
—O)fop

and 0 s defined by (100). Let us assume moreover that the linear part p(x, 9)
1s multi-quasi-elliptic, that is for some positive constants c, C:

(102) |p1(9€, §)| ZCA(P(S); fO?" erxo’ |§|>C,
where p(x, &) = > c L ()(—18) is the P-principal symbol of p(x, 9).
ae JF(P
Then any solution 0f(101) taken in H3 loc(on)a — +0<s<t,be-

é)qu
longs to the local space HL" NP (V).

PROOF - Let ue Hj3" . (V,,) be a solution of (101). It follows that 9“u e
o —l Y (Vy,), for any ae P\ F(P), see [11].
Usmg (91), we obtain F(x, 0%u, f(x))aey\g(p)EHjT(%ég)(VxO) since

ﬁ + 0. pl, 8) u=F(x, 3“u, f()yc o 7 € Hji, %8 (V,), then un-
- 0

der the assumption (102) we have ue H /1”100" P(V,,) (see again [11]).
We can iterate the above argument N-times provided that s + N(1 —6) —
o<t



502 GIANLUCA GARELLO - ALESSANDRO MORANDO
Let N, be the first integer such that s + Ny(1 — ) — 6 > t; we obtain
Q“ue Hj Wit =202V, ) CHEP 10e(V,,)

which assures p(wx, 8)ueH}1’ﬂ{°¥ 10c(Vy,) and we can conclude u belongs to
H/tlj;,llhé)(vxo)- u
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