BOLLETTINO UNIONE MATEMATICA ITALIANA

M. Alessandra Vaccaro

Unitary groups acting on hyperbolic substructures

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 8-B (2005), n.2, p. 431-436.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2005_8_8B_2_431_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Unitary Groups Acting on Hyperbolic Substructures (*) (**).

M. Alessandra Vaccaro

Sunto. – Data un'estensione quadratica L/K di campi e uno spazio λ -Hermitiano regolare (V,h) di dimensione finita su L, si studiano le orbite del gruppo delle isometrie di (V,h) nell'insieme delle K-sottostrutture iperboliche di V.

Summary. – Given a quadratic extension L/K of fields and a regular λ -Hermitian space (V,h) of finite dimension over L, we study the orbits of the group of isometries of (V,h) in the set of hyperbolic K-substructures of V.

Let K be a field, $L = K(\eta)$ be a quadratic extension of K and σ be the involutory automorphism of L associated with the extension. Also let $\lambda \in L$ with $\lambda \lambda^{\sigma} = 1$ and (V, h) be a regular λ -Hermitian space of finite dimension over L, i.e. a L-vector space V equipped with a non-degenerate σ -sesquilinear form $h: V \times V \longrightarrow L$ such that $h(x, y) = \lambda h(y, x)^{\sigma}$.

A K-substructure W of V is a K-subspace generated by vectors which are linearly independent over L, i.e. the L-linear map $W \otimes_K L \longrightarrow V$ induced by the inclusion $W \subseteq V$ is injective. According to [3] we shall term the K-substructure W hyperbolic if it is the direct sum of two (maximal) totally isotropic K-substructures and there is no nonzero vector in W orthogonal to the whole W. This means that $\dim_K W = 2m$, where, of course, m is not greater than the Witt index of (V,h).

The aim of this paper is to study the natural action of the group $\mathcal{G}(V,h)$ of isometries of (V,h) on the set \mathcal{X}_{2m} of all hyperbolic K-substructures of V of dimension 2m over K.

Let $W \in \mathcal{X}_{2m}$ and let

$$W = W_1 \oplus W_2$$

^(*) Research supported by M.I.U.R.

^{(**) 2000} Mathematics Subject Classification Primary 51N30, 15A21; Secondary 11E39.

be a decomposition of W into the direct sum of two totally isotropic K-substructures. The restriction of h to vectors in W yields a K-bilinear mapping $h_{|W}: W \times W \longrightarrow L$ which can be represented in the usual way through the matrix with entries $h(e_i, e_j)$, if we refer to a fixed basis $\mathcal{B} = \{e_1, \ldots, e_{2m}\}$ of W.

If \mathcal{B} is obtained by putting together a basis \mathcal{B}_1 of W_1 and a basis \mathcal{B}_2 of W_2 , we have for $h_{|W}$ a representation of the shape

$$H = \left(egin{array}{cc} \mathbf{0} & P \ \lambda^{\mathrm{t}} P^{\sigma} & \mathbf{0} \end{array}
ight)$$

with $P \in GL_m(L)$. Let (P_1, P_2) and (λ_1, λ_2) be the components of P and λ over K, then we have

$$H=egin{pmatrix} \mathbf{0} & P_1 \ \lambda_1{}^t\!P_1\!-\!\eta^2\lambda_2{}^t\!P_2 & \mathbf{0} \end{pmatrix} + \etaegin{pmatrix} \mathbf{0} & P_2 \ \lambda_2{}^t\!P_1\!-\!\lambda_1{}^t\!P_2 & \mathbf{0} \end{pmatrix}.$$

Let h_i , i = 1, 2, be the components of h over K, i.e.

$$h(x,y) = h_1(x,y) + \eta h_2(x,y), \quad \forall x,y \in V.$$

Then (h_1, h_2) is a pair of K-bilinear forms on V and we can associate with W the Kronecker module $\Phi_W = [W, W^*; \phi_1, \phi_2]$, consisting of the pair of K-linear mappings

$$\phi_i(x): y \longmapsto h_i(x,y) \quad (x,y \in W, i = 1,2),$$

from W into the dual W^* of W. The pair

(1)
$$\left[\begin{pmatrix} \mathbf{0} & P_1 \\ \lambda_1 {}^t P_1 - \eta^2 \lambda_2 {}^t P_2 & \mathbf{0} \end{pmatrix}, \begin{pmatrix} \mathbf{0} & P_2 \\ \lambda_2 {}^t P_1 - \lambda_1 {}^t P_2 & \mathbf{0} \end{pmatrix} \right]$$

is a representation of Φ_W in terms of matrices, if we give coordinates with respect to \mathcal{B} in W and the dual basis \mathcal{B}^* of \mathcal{B} in W^* .

Looking at (1) we see that the decomposition $W=W_1\oplus W_2$ yields two further Kronecker modules:

$$\Psi_{(W_1,W_2)} = [W_1,W_2^*;\psi_1,\psi_2],$$

where $\psi_i(x) = \phi_i(x), \ \forall x \in W_1 \ (i = 1, 2), \ \text{and}$

$$\Psi^{\dagger}_{(W_1,W_2)} = [W_2,W_1^*;\psi_1^{\dagger},\psi_2^{\dagger}],$$

where $\psi_1^{\dagger} = \lambda_1^{\ t} \psi_1 - \eta^2 \lambda_2^{\ t} \psi_2$ and $\psi_2^{\dagger} = \lambda_2^{\ t} \psi_1 - \lambda_1^{\ t} \psi_2$, with ${}^t \psi_i$ the *K*-linear mapping which is obtained by transposing ψ_i . Of course,

$$\Phi_W = \Psi_{(W_1,W_2)} \oplus \Psi^{\dagger}_{(W_1,W_2)},$$

 $\Psi^{\dagger}_{(W_1,W_2)} = \Psi_{(W_2,W_1)}$ and $\Psi^{\dagger\dagger}_{(W_1,W_2)} = \Psi_{(W_1,W_2)}$ because $\lambda\lambda^{\sigma} = 1$.

The pair $[P_1, P_2]$ of matrices in (1) gives, manifestly, a representation of $\Psi_{(W_1, W_2)}$ (with respect to \mathcal{B}_1 and \mathcal{B}_2^*), while the pair

(2)
$$[P_1^{\dagger} = \lambda_1^{\ t} P_1 - \eta^2 \lambda_2^{\ t} P_2, \ P_2^{\dagger} = \lambda_2^{\ t} P_1 - \lambda_1^{\ t} P_2]$$

gives a representation of $\Psi^{\dagger}_{(W_1,W_2)}$ (with respect to \mathcal{B}_2 and \mathcal{B}_1^*).

Assume now $\Psi_{(W_1,W_2)}$ decomposes into the direct sum $\Psi_{(W_1,W_2)} = \Psi' \oplus \Psi''$ of two nontrivial Kronecker modules $\Psi' = [W_1', W_2'^*; \psi_1, \psi_2]$ and $\Psi'' = [W_1'', W_2''^*; \psi_1, \psi_2]$ with $W_1 = W_1' \oplus W_1''$ and $W_2 = W_2' \oplus W_2''$, (hence $\psi_i(W_1') \subseteq W_2'^*$ and $\psi_i(W_1'') \subseteq W_2''^*$). In terms of matrices this means that $\Psi_{(W_1,W_2)}$ has a representation

$$\begin{bmatrix} \begin{pmatrix} P_1' & \mathbf{0} \\ \mathbf{0} & P_1'' \end{pmatrix}, \begin{pmatrix} P_2' & \mathbf{0} \\ \mathbf{0} & P_2'' \end{pmatrix} \end{bmatrix},$$

with $P_i' \in \mathbf{Mat}_{t \times t}(K)$ and $P_i'' \in \mathbf{Mat}_{(m-t) \times (m-t)}(K), 0 < t < m$. Since $\Psi_{(W_1, W_2)}^{\dagger}$ belongs to the pencil of K-linear mappings generated by ${}^{\mathrm{t}}\psi_1$ and ${}^{\mathrm{t}}\psi_2$ (see [2], Chap. XII), the above decomposition of $\Psi_{(W_1, W_2)}$ yields a decomposition of $\Psi_{(W_1, W_2)}^{\dagger}$

$$\Psi^{\dagger}_{(W_1,W_2)} = {\Psi'}^{\dagger} \oplus {\Psi''}^{\dagger},$$

with corresponding representation

$$\begin{bmatrix} \begin{pmatrix} P_1'^\dagger & \mathbf{0} \\ \mathbf{0} & P_1''^\dagger \end{pmatrix}, \; \begin{pmatrix} P_2'^\dagger & \mathbf{0} \\ \mathbf{0} & P_2''^\dagger \end{pmatrix} \end{bmatrix},$$

where P_i^{\dagger} and $P_i^{\prime\prime\dagger}$ are defined analogously to (2). Assume we obtain (3) and (4) through a basis $\{\varepsilon_1, \ldots, \varepsilon_m\}$ of W_1 and a basis $\{e_1, \ldots, e_m\}$ of W_2 with

$$W_1' = \langle \varepsilon_1, \ldots, \varepsilon_t \rangle, W_1'' = \langle \varepsilon_{t+1}, \ldots, \varepsilon_m \rangle, W_2' = \langle e_1, \ldots, e_t \rangle, W_2'' = \langle e_{t+1}, \ldots, e_m \rangle.$$

Then $U_1 = \langle \varepsilon_1, \dots, \varepsilon_t, e_1, \dots, e_t \rangle$ and $U_2 = \langle \varepsilon_{t+1}, \dots, \varepsilon_m, e_{t+1}, \dots, e_m \rangle$ give an orthogonal decomposition of W. In other words, we have for $h_{|W}$ the representation

$$egin{pmatrix} egin{pmatrix} egi$$

with respect to the basis $\{\varepsilon_1,\ldots,\varepsilon_t,e_1,\ldots,e_t,\varepsilon_{t+1},\ldots,\varepsilon_m,e_{t+1},\ldots,e_m\}$ of W.

Of course, we can conversely go from such an orthogonal decomposition of W back to a decomposition of $\Psi_{(W_1,W_2)}$. So we have

PROPOSITION 1. — Let $W = W_1 \oplus W_2$ be a decomposition of W into two totally isotropic K-substructures. Then W does not split into the orthogonal sum of two non-trivial hyperbolic K-substructures if and only if $\Psi_{(W_1,W_2)}$ does not decompose into the direct sum of two non-trivial Kronecker modules.

The celebrated Krull-Schmidt Theorem applies in this context. Thus, from now on, we may confine our attention to the case where W is indecomposable, i.e. does not split into the orthogonal sum of two proper hyperbolic K-substructures. In view of the above Proposition this is equivalent to assume that the Kronecker module $\Psi_{(W_1,W_2)}$ does not decompose into the direct sum of two non-trivial Kronecker modules, i.e. $\Psi_{(W_1,W_2)}$ and $\Psi^{\dagger}_{(W_1,W_2)}$ are the indecomposable factors of Φ_W . Hence $(\Psi_{(W_1,W_2)},\Psi^{\dagger}_{(W_1,W_2)})$, as an unordered pair of Kronecker modules, is independent (up to isomorphisms of Kronecker modules (1) of the particular decomposition $W_1 \oplus W_2$ of W. This allows one to write Ψ_W instead of $\Psi_{(W_1,W_2)}$. Now we have

THEOREM 2. – Let $W, U \in \mathcal{X}_{2m}$ be indecomposable. Then W and U are in the same orbit under the action of the isometry group $\mathcal{G}(V,h)$ just if $\Psi_W \simeq \Psi_U$ or $\Psi_W \simeq \Psi_U^{\dagger}$.

PROOF. – If W and U are in the same orbit under the action of $\mathcal{G}(V,h)$, we have that there exists an isomorphism $\rho: W \longrightarrow U$ such that $h(\rho(x), \rho(y)) = h(x,y), \forall x,y \in W$. As $u_x^* = \phi_i \rho(x) \in U^*, \forall x \in W$, for all $y \in W$ we have that

$$[{}^{t}\rho\phi_{i}\rho(x)](y) = [{}^{t}\rho(u_{x}^{*})](y) = u_{x}^{*}(\rho(y)) = [\phi_{i}\rho(x)](\rho(y)) = h_{i}(\rho(x), \rho(y)) = h_{i}(x, y) = [\phi_{i}(x)](y).$$

Hence the diagram

$$egin{array}{cccc} W & \stackrel{\phi_i}{\longrightarrow} & W^* \ & & & & & & \downarrow^{\operatorname{t}_
ho} \ U & \stackrel{\phi_i}{\longrightarrow} & U^* \end{array}$$

(¹) An $isomorphism\ \xi: \Gamma \longrightarrow \Delta$ from the Kronecker module $\Gamma = [V', V''; \gamma_1, \gamma_2]$ onto the Kronecker module $\Delta = [W', W''; \delta_1, \delta_2]$ (with $\dim_K V' = \dim_K W'$ and $\dim_K V'' = \dim_K W''$) is a pair of bijective linear mappings $\xi = (\xi': V' \to W'; \xi'': V'' \to W'')$ which make the diagram

$$egin{array}{cccc} V' & \stackrel{\gamma_i}{\longrightarrow} & V'' \\ \downarrow_{\xi'} & & \downarrow_{\xi''} \\ W' & \stackrel{\delta_i}{\longrightarrow} & W'' \end{array}$$

commutative (i = 1, 2).

commutes, i.e. $\Phi_W \simeq \Phi_U$. Since Ψ_W and Ψ_W^{\dagger} , (resp. Ψ_U and Ψ_U^{\dagger}) are the indecomposable factors of Φ_W (resp. Φ_U), by the Krull-Schmidt Theorem we have that $\Psi_W \simeq \Psi_U$ or $\Psi_W \simeq \Psi_U^{\dagger}$.

Conversely, let $\Psi_W \simeq \Psi_U$ (resp. $\Psi_W \simeq \Psi_U^{\dagger}$) and let $[P_1, P_2]$ and $[Q_1, Q_2]$ be pairs of matrices representing Ψ_W and Ψ_U respectively. Then

(5)
$$\begin{pmatrix} \mathbf{0} & P_1 + \eta P_2 \\ P_1^{\dagger} + \eta P_2^{\dagger} & \mathbf{0} \end{pmatrix} \text{ and } \begin{pmatrix} \mathbf{0} & Q_1 + \eta Q_2 \\ Q_1^{\dagger} + \eta Q_2^{\dagger} & \mathbf{0} \end{pmatrix}$$

are representations of $h_{|W}$ and $h_{|U}$ and we have to show that these matrices are congruent via a matrix in $\mathbf{GL}_{2m}(K)$.

The fact that Ψ_W and Ψ_U (resp. Ψ_W and Ψ_U^{\dagger}) are isomorphic Kronecker modules implies that there exist matrices $M,N\in \mathbf{GL}_m(K)$ such that $MP_iN=Q_i$ (resp. $MP_iN=Q_i^{\dagger}$), i=1,2. Then

$$\begin{pmatrix} M & 0 \\ 0 & {}^{\mathrm{t}} N \end{pmatrix} \qquad \begin{pmatrix} \mathrm{resp.} \begin{pmatrix} 0 & {}^{\mathrm{t}} N \\ M & 0 \end{pmatrix} \end{pmatrix}$$

is a matrix in $GL_{2m}(K)$ making the matrices (5) congruent.

The last Theorem reduces matters to classify the indecomposable Kronecker module Ψ_W . Looking at [1], we see that Ψ_W has a representation

$$m{arPsi_W} \equiv \left[egin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & & & \ \vdots & & & \ & & & \ \end{bmatrix}, egin{pmatrix} 0 & \cdots & 0 & -a_m \ & & \ \vdots & & \ & & \ \end{bmatrix}, \begin{bmatrix} 0 & \cdots & 0 & -a_m \ & & \ \end{bmatrix} \right]$$

or

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} & \cdots & 0 & -a_m \ & \vdots & & \vdots \ -a_2 & -a_1 \ \end{pmatrix}, egin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & & & & \ \vdots & & & \ 0 & & & & \ \end{bmatrix} \end{aligned} \end{pmatrix}$$

with $p(x) = \sum_{i=0}^{m-1} a_{m-i} x^i + x^m$ a power of an irreducible polynomial over K. Summing up, we have

Theorem 3. – Let W be an indecomposable hyperbolic K-substructure of V. Then there exists a basis of W with respect to which $h_{|W}$ has the representation

$$egin{pmatrix} \mathbf{0} & \mathbf{I}_m + \eta R \ \lambda (\mathbf{I}_m - \eta\,^{t}\!R) & \mathbf{0} \end{pmatrix} egin{pmatrix} or & egin{pmatrix} \mathbf{0} & R + \eta \mathbf{I}_m \ \lambda (^{t}\!R - \eta \mathbf{I}_m) & \mathbf{0} \end{pmatrix}$$

where

$$R = \begin{pmatrix} 0 & \cdots & 0 & -a_m \\ & & & \vdots \\ & \mathbf{I}_{m-1} & & -a_2 \\ & & -a_1 \end{pmatrix}$$

with $\sum_{i=0}^{m-1} a_{m-i}x^i + x^m$ a power of an irreducible polynomial over K.

REFERENCES

- [1] J. DIEUDONNÉ, Sur la réduction canonique des couples de matrices, Bull. Soc. math. France, 74 (1946), 130-146.
- [2] F. R. GANTMACHER, The theory of matrices, Chelsea Publishing Company New York N. Y., Volume II.
- [3] W. SCHARLAU, Quadratic and Hermitian forms, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo 1985.

Dipartimento di Matematica ed Applicazioni, Universitá di Palermo, Via Archirafi 34, I-90123 Palermo, Italy vaccaro@math.unipa.it

Pervenuta in Redazione il 26 agosto 2002 e in forma rivista il 29 ottobre 2003