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Circumcenters in Real Normed Spaces (*).

M. S. ToMAS

Sunto. — Lo studio dei circocentri in tipi diferenti di triangoli appartenenti a spazi
normati reali ci da nuove carratterizzazioni degli spazi con prodotto scalare.

Summary. — The study of the circumcenters in different types of triangles in real normed
spaces give us new characterizations of inner product spaces.

1. — Introduction.

Our aim in this paper is to study circumcenters in real normed spaces and to
derive from this some new characterizations of inner product spaces (i.p.s.) in the
same line of [2] and [8]. Precisely, let (&, ]| ||) be a real normed space with dim
E > 2 and consider the triangle of vertices x, y, 2, 4xyz, where x, y, z belong to E,
x, Y linearly independent and z in the plane determined by « and y. Then, in ([1]
p. 236-237), jointly with C. Alsina and P. Guijarro we defined the perpendicular
bisectors

Mie,y) = {5 + hute, )i € Rty = (ol = p o, g+ o =y, 0)

where p/, : E x E — R are the functionals defined by

2 2
o) = i 12 0 Il
The mappings p/, generalize (see [3 p. 16-17]) the concept of inner product due to
the fact that, when the norm is derivable from an inner product, then p/, is
precisely that inner product.
The basic properties of p/, that will be used frequently are the following
(@) ple (@) = [l and |/, (e, )| < |||l [yl
(i) p' (x,y) < pl, (x,y)

(*) Mathematics Subject Classification (2000): 39B05, 46C99.
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(i) pf, (aw,y) = p/, (x,ay) = ap’ (x,y),a > 0
Giv) o, (ax,y) = p/, (x, ay)2= ap’_(x,y),a <0
W) p (@, ax +y) = alx||” +p (@,9),a>0
i) p, (x,y) = p/.(y,x) for all x,y in K if and only if &' is an i.p.s.

In ani.p.s., the perpendicular bisectors of the three sides of a triangle all pass
through the circumeenter, which is the center of the circumscribed circle (see [4]
p- 12-13 and [7] p. 92). Then, in a natural way we have the following

DEFINITION 1.1. — The triangle Axyz has a circumcenter C if and only if
M(x,y), M(x,z) and M(y,z) meet in the point C.

Our aim in this paper will be to study first some properties of perpendicular
bisector that characterize i.p.s. We will show also that, for some types of trian-
gles, just the existence of the point C characterizes i.p.s. Moreover we will see
how the study of circumcenter’s properties in a real normed space may char-
acterize the norm as derivable from an inner product.

2. — On some properties of perpendicular bisectors.

In [5], jointly with P. Guijarro we have studied some properties of the per-
pendicular bisectors and we have obtained some new characterizations of i.p.s.

If £ is an ip.s. and x,y are two vectors in E linearly independent, if we
r+y
2

consider the perpendicular bisector + ulx, y), ulx,y) is always orthogonal

to x — y. Now we will show how this property characterizes i.p.s. whenever we
consider in a real normed space (&, || ||) the following orthogonality relations
(see [3]):

e x L,y if and only if p/ (x,y) =0

e x 1, y (Pythagoras orthogonality) if and only if ||z||* + ||y]|* = ||z + y|*
o x #y (James orthogonality) if and only if |« — y|| = ||x + y||

o x Ly (Birkhoff orthogonality) if and only if ||x|| < ||x + ty|| for all £in R.

PROPOSITION 2.1. — Let (E, || ||) be a strictly convex real normed space with
dim E > 2. Then the following conditions are equivalent
(I) E is an inner product space
dD x—y L, ulx,y) forall x,y n E
(1D «—y L, ule,y) for all x,y in B
aV) x—y#ulx,y) forall x,y in £
V) x—y Lpule,y) forall x,y in £

PRrOOF. — To prove this theorem, it is only necessary to check that properties
(II), (1I), (IV) and (V) imply (I).
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If we assume condition (II) i.e. for all &,y in £

(1) P —y,ue,y) =0,
changing ¥ by « — z and using (iv) and (v) we obtain for all x,z in £
2) Pz, () (x — 2,2) — |[2|P)z + Az, 2)2) = 0
where A(z,x) = ||z — 2| + p_(x,2) — P —z ).
But
3) lim Az, 7) = 2] > 0.

So, for 1 > 0 in a zero neighborhood, A(z, Ax) > 0 and changing x by Ax and
using (iv) in (2), we have

(0, G —z,2) — Alze|P)|z])? + Alz, )y, (z,2) = 0.
Taking limit when Z tends to zero in last equation, using [6,(11)] and (3) we obtain
pl=p_.
On the other hand by the substitution z = ¢ — ¥, ¥ = y in (1) by (v) and using
p, =p_ we have for all z,y in £

0= (lyl* — 7.+, ll2l* + (e + I = ' e +5.9) =, (g, 2D (2.
and for all u = 2z, v = y unitary vectors linearly independent
@ Pt v,0)A +p, w,0) =1+ Ju+ |, w,v) — o @), (u,v).
Interchanging « and » and using (i) and (v) in
P +v,u) = p (w4 v+ v —v) = |lu+o|* = p (w4 v,0)
and p/, = p/ we obtain
(5) P+ 0,00+, w,u) = =1+ |Ju+0|* + p, (0, w)p, (u,v)

and equalizing p' (u+v,v) in (4) and (5), getting out common factor
1- ,o’+ (u, v)p’+ (v, u) (that it is different from zero because £ is strictly convex and
u, v are linearly independent) and dividing by the common factor we obtain

[+ ))? =2+ pl, (0, ) + o, (u, ),

and changing v by —v and adding, we have ||u + v||* + [|[u — v||* = 4 and, (see [3]
p. 47 (6.1) E is an i.p.s.
If condition (IIT) holds, then for all &,y in £

e, I + llo = y|* = |[ule,y) +2 -y,
and changing x by tx and y by ty for all t > 0, using wu(tx, ty) = t>u(x, y) we have

tlute, I+l - yl* = [Fute,y) + 2 -y
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Then for all y > 0, 12||u(x, )|* = [lyulz,y) + x — y|® — ||& — y||*, and dividing
by 2y and taking limit when y tends to zero using the definition of p’, we obtain
condition (IT) and £ is an i.p.s.

If we assume condition (IV) i.e. for all ¢,y in £

[, y) — =+ yll = [[ule, y) +2 —yl|,

changing 2 by te and y by ty for all t>0, |ule,y) —x+y|*
= |[Pux, y) + = — y|* and, forall y > 0 [|yu(x, y) — @ + y|* = [yule,y) + 2 — y|,
and subtracting ||z — y||2 in the two members of last equality, dividing by 2y and
taking limit when y tends to zero using the definition p/, we obtain

(6) Pl —y,ule,y) +p (@ —y,ulx,y) =0.
By the substitution « — y = 2z, « = « in (6), using (v)
200, (x — z,2) — ||x|P)2]” + P, (2, Alz, 2)x) + o (2, Alz, 2)2) = 0,

where A(z, x) is defined in (2). Changing x by Jx, A > 0, dividing by 4, taking limit

when / tends to zero, and using (3) and [6, (11)] we have p/, = p_. Then by (6)

P (@ —y,ulx,y)) = 0 and therefore we have condition (II) and E is an i.p.s.
Finally, if condition (V) holds, then (see [3] p. 33 (iii)) for all ,y in £

(7) Pl —y,ue,y) <0< pl (@ —y,ule,y).

If we make the substitution z = « — y, ® = « and after this z = —ty, ¢ > 0 using
i), o, (e 4 ty, x) = [jo + ty||* — tp’_(x + ty,y) and dividing by 2 we obtain

(8) Py, A, ) < (el = o, @+ ty, )|y 1* < oy, A, o)

where A;(x,y) = p/, (@,y) — p'_(x + ty,y).
Now, we consider two cases: p/, (x,y) = p’_(x,y) or p/_(x,y) > p' (x,y). In this
last case using [6, (11)], 1tlir(1)r1+ A(x,y) > 0 and for £ > 0 in a neighborhood of zero

Ai(x,y) > 0 and by (8) and (iii)
Ay, y)p(y,x) < (lal® — o (e + ty, @)y < A, y)p!, (g, ),

so taking limit when ¢ tends to zero, p (y,2) <0< p, (y,).
Then for all x,y in B p/ (x,y) = p' (x,y) or p' (y,2) <0 < p/, (y,2).
Now, for all ¢ > 0 if we consider x and « + ty we have, using (iii) and (v)

pl(,y) = pl(2,y) or pl(x+ty,x) <0< p, (x+ty, ).

If o/, (@, ) > p'_(,y), for allt > 0 p" (x +ty,x) <0 < p/, (¢ + ty, ) and taking
limit when ¢ tends to zero we obtain the contradiction ||| = 0. Then p’, = p’ andby
(7) we have p/, (x — y,u(x,y)) = 0, i.e. condition (II) holds and £ is an i.p.s. O

Now we generalize other perpendicular bisector’s property.
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COROLLARY 2.2. — Let (E, || ||) be a strictly convex real normed space with
dim E>2. Then E is an i.p.s. if and only if for all z,y in E linearly
ndependents and for all z in M(x,y) it is |z — 2| = ||y — 2]|.

Proor. — By hypothesis for all 1 > 0

x+y+/lu(x,y) -

Hx—&—y
2

cate ] -|

ie., x —y#2iu(x,y) and if 2 =1 by our last proposition £ is an i.p.s. O

3. — Circumcenters in real normed spaces.

First we will consider the class of triangles Axy(x + y) where we can show the
following result:

THEOREM 3.1. — Let (K, || |) be a strictly convex real normed space with dim
E > 2 Then E is an i.p.s. if and only if there exists the circumcenter of Axy(x + y)
for all x,y linearly independent vectors in E.

Proor. — If we consider Axy(x + y), using the linearly independence of x and
y it is a straightforward computation to prove that the three straight lines M (x, y),
M(x,x +y) and M(y,x + y) meet in a point if and only if the following equation
holds

@) (yl® = o ,))(fle|® = @+ g, )y + 2l = [yl® - 7y, 2))
= (lyll* — ¢, (x + 5. )|y + al® — [J2l* — o, Ce, ) ([lel* — o, (g, 2))+
+2(|z[* — p! @ + g, ) (]® — o, () — [yl + oL@, y)].

If we change x by Zx (A > 0), using (iii), simplifying 4, dividing by 24 the term
ly + A|* = [|y|* — A/ " (y, @) in the left part of last equality and dividing also by
2] the term ||y\| —p Gx+y, y) in the right part of last equality, using the
equality o/, (2 +y,9) = ||z + y||* — 2p_(Jx + y, ), and finally taking limit when
A tends to zero, by [6, (11)] and the definition of p, we obtain p/, (y, ) = p’_(y,x) or
P, (y,x) = 0. Changing x by —x we have p/, (y,x) = p' (y,x) or p' (y,x) = 0, and
combining the four possibles cases we obtain p/, = p’ .

Moreover by the substitution ¥ = u, ¥y = v —u in (9), using (v), p/. = p’, op-
erating and grouping in a suitable way we have

2 2 2
—llell” = ol + [l = oII° + 20, (0,0) = 0
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or
(10) 9, 0 —w,w)([ful]® + [[0]]* = ', (a0, 0) = (0, 0))
= llw = vlPC= full® + ', @,20) + [l P [o]* = o, (0, 0, (0,0

By symmetry and using p/, = p" and p/, (u — v,v) = —[jv — u||2 —p (v —u,u)
we have
2 2 2
—llull® = loll” + llw — vl + 2 (w,v) = 0

or

(11 o — ([ + [[o]* — p () — o, (v, %))
=l = vl (= lfaall® + o, 0, 0) = [l 0 + (0,000, ()

If (10) and (11) hold then p' _(u,v)p!, (v,u) = [[||?[|v|[%, but by hypothesis E is
strictly convex and we obtain a contradiction.

2 2 2

[[2ef|” + ([0l = [le — v
2

2 2 2

[ + ol " = [luel|” — [l
2

Then, for all u,v in E € {p.(u,v),p, (v,u)} and, chan-

/

ging v by —v and using p/, = p’,

€ {p (u,v),p (v, u)}.

_ Nl to]” — JJul® - &l
2t
is continuous in (0,+o0), f(t) € {p' (u,v),p/ (v,u)} for all ¢ >0 and tllr(])a+ [

Then for all ¢ > 0 the function defined by f(¢)

= p/,(u,v). Then p' (u,v) = p/ (v,u) for all u,v in £ and E is an inner product
space (see [3], p. 17 (2.2)). O

Note that Theorem 3.1 covers a general case because Axy(x + y) is equivalent
to the triangle determined by « and ¥ (i.e. sides x,y and x — ¥).
Following Precupanu [6 p. 161] a norm || || is smooth if & — [|#||* is Gateaux
/

differentiable, i.e. p/, = p' .
Then, with a similar proof of last theorem we have the following

COROLLARY 3.2. - Let (E,|| ||) be a strictly convex real mormed space
with dim E > 2 such that there exist the circumcenter of Axy(ax +1y) for
all x,y i E linearly independent and a in R fixed. Then the norm || || is
smooth.

By a straightforward computation, we can prove that the intersection of the
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three perpendicular bisectors of Axyz give us the three points

x4z A(zg — 1) — Bz
O =5t 3B DBay — ADzy) DA
x+y E(l—2z)+Fz
12 _
12 C =% " aBF, —AF -~ AFzy) ATV
Ytz D(z1 +22) +C
Cs = Y 5B CFey — DBz PY TP

where x and y are linearly independent vectors in E, z = z1& + 22y (21,22 in R),
A=yl =@, y), B = [@|” = g y,0) C = ||z]* = p/, (@,2) D = ||z|* - pl, (=, ),
E = |2 -0 (y,2), F = ]| — P, (z,y) and, by Theorem 3.1, in a real normed
space, the three points are, in general, differents.

DEFINITION 3.3. — The points Cy, Ce, C3 are called the circumcenter points of
Axyz.

4. — New characterization of inner product spaces.

We consider some classical properties concerning the circumcenter of a tri-
angle and we translate these properties into a real normed space considering the
circumcenter C; (we have the same results for Cy and Cs), and we will obtain new
characterizations of inner product spaces.

THEOREM 4.1. — Let (K, || ||) be a strictly convex real normed space with dim
E > 2. Then E is an inner product space if and only if the circumcenter Cy of Axyz
1s the origin, if x,y,z are vectors in K with ||x|| = |ly|| = |2

ProoF. — The direct part is a well-known result. Reciprocally if the cir-
cumeenter C; of Axyz for all ¢, 7,z in £ such that ||x|| = ||y|| = ||#]| is the origin, in
particular for x and y unitary linearly independent vectors in E, z = 212 + 2oy
21,22in IR, z2 # 0 and z unitary vector in £, we have, using the expression (12) and
the linearly independence of x and y, the system

A(Zz — 1) — le .
L2 4 g DBay — ADs, C TP =0
A(Zg — 1) — le

29 + — Dz =0

CB + DBz, — ADzs

where A, B,C and D are defined in the previous page and it is very easy to see
that C = D and therefore ', (x,2) = p/, (z,2) for all x,z in E with ||z| = ||z|| =1
and then (see [3], p. 18 (2.5)] £ is an inner product space. O
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THEOREM 4.2. — Let (K, || |) be a strictly convex real normed space with dim
E > 2. Then E is an inner product space if and only if the circumcenter Cy of

)22+ p, (e, ) + p/, (g, )

2[||[® + oy () + o, (y, %)
linearly independents with ||x|| = ||y|| and 1 belongs to R.

Axy(Qxe +y) is (x +y) whenever x,y are vectors in E

PrOOF. — The direct part of the statement is just a verification. Reciprocally,
consider Axy(ix +y), where x and y are unitary vectors and assume

[el|*2 + p', (e, y) + p/ (g, @)

2l|[|* + ply (@, ) + pl (y, )
z1 = A and 22 = 1) and the linear independence of x and y we have:

01:(96+?/)

. Then, using expression (12) of C; (where

1+2 BJ. A4 pl e, y) +p (y, x)
_ C+DJ = +

2 2B+ DBi-AD) C PP e iy Ay
1 BA

D.

"2 2(CB+ DB/ —AD)
And, using last equations, with a long computation we can prove that

Py =p (y,®) or (p (e,y)+p (y,x) =201 —7) and 1 = p/, G +y,x))

Now, we claim that |p/, (x,%)| = |p/,(y,2)| for all x,y unitary vectors in E.

Let « and y be two unitary linearly independent vectors in £.
If A =1 the result is evident, then for A # 1 we have:

If
(18) P, y) +p(y,x) =201 — 1) and 1 = p/, Az +y, ),
. x4y
we consider the vectors x and m, then we have two cases:

Pl (e +y,x) = pl (@, de +y) or p', (@, Ae +y) + p, (A +y,2) = 21 — || 2z + ||

rc+y
d1=/p A — v
an p*(“nz Tl )

In the first case by (v) and (18), 1 =14/ (x,y) and p (x,y) =1—-1

= (y, ). I 4 2

In the second case we consider the vectors x and —— [l and repeat the
process. HM - H%Z\IH

Summarizing, if we consider the sequence defined by b; = iz +y and

by
b, = Ax +
' ”bn 1

H for all » > 2 we have to bear in mind two possibilities.
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Possibility 1. There exist » in N such that p/, (@, %) + p/, (y, ) = 2(1 — A),
1=p/ (by,),p/ (@,br) +1 =201 — D||bx||, 1=p (bgs1,2)forl1 <k <n—1and
P (b, ) = p (2, by).

We will prove, by induction, that we can infer p/, (x,y) = p/, (y,x) =1 — 4.

For n = 1 we have proved that it is true. If it is true for » — 1 we want to prove
that it is true for n.

Using (), 1=l (@, b,) =, (=0, v+ ity ) = A+ 22 and 1, | =

1]

.76 bn 1)

So p, (@, by—1) + 1 =2p (@,b,-1) and p/ (x,by—1) =1 = p/ (b1, %) and by in-
duction hypothesis p’ (x,y) = p/ (y,x) =1 — A.

Possibility 2. For all n in N

(14) P (@, by) +1 =21 — )byl
and
(15) Pl y)+p (y,0) =20 —1), 1=p Qr+y,wx

Now, if we consider Ayx(ly + «), and we apply the hypothesis to this triangle,
in a similar way to the results obtained before, we have |/, (x,y)| = |0/, (y, )| or

Possibility 2’. For all n in N
(16) Py, cn) +1 =201 — A)||c,]|

and
Pl y) +p (y,0) =20 = 2), 1=p, Gy+ay
where ¢; = ly +x and ¢, = 2y + \|¢l L for all n > 2.

In this case, using (14) and (16) for n = 1 we obtain
P, y) =20 = A|[dw + y| — 2 — 1 and o (y, ) = 2(1 — D2y + || -
Substituting in (15)
200 =2) =2 = D([[2x +yll + 12y +2[)) —24 -2
and

. 2
[[2 + yll + |4y + || = 11—
Then, using 0 < ||Ax + y|| + |4y + || < 2]4| + 2, and by (15), using (i) and the
fact that «,y are unitary vectors 2(1 — 1) <2and 2 > Owe have 0 < =, <21 +2
and 1-1>0,then 2<2(1+1)1-1),1< 1—/12 A =0 and we obtaln a con-
tradiction. So, this case it is impossible. Then |’ (x, )| = |p/.(y,®)| for allx,y in £
unitary vectors and by ([3] (2.5) p. 18) £ is an i.p.s.
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