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Domain Decomposition Methods
and Scientific Computing Applications.

LUCA F. PAVARINO (*)

Sunto. – Questo lavoro illustra le idee principali relative ai metodi di decomposizione
dei domini e alla loro analisi di convergenza. Questi algoritmi sono dei metodi pa-
ralleli e scalabili per la risoluzione numerica efficiente di equazioni alle derivate
parziali. Sono inoltre illustrati due esempi di applicazioni di metodi di decompo-
sizione dei domini a simulazioni numeriche di grande scala in meccanica ed elet-
trocardiologia computazionale.

Summary. – This paper reviews the basic mathematical ideas and convergence analy-
sis of domain decomposition methods. These are parallel and scalable iterative
methods for the efficient numerical solution of partial differential equations. Two
examples are then presented showing the application of domain decomposition
methods to large-scale numerical simulations in computational mechanics and
electrocardiology.

1. – Introduction.

Domain decomposition methods are among the most popular and efficient
methods for the numerical solution of large-scale problems based on partial
differential equations. The main idea of these methods is to divide the original
problem or its approximation into smaller subproblems, devising an iterative
procedure that converges rapidly to the original solution. This idea can be ap-
plied directly to the continuous problem, to the discrete problem or to the re-
sulting algebraic system. In the first two cases, domain decomposition
methods are know as iteration-by-subdomain methods (see Quarteroni and
Valli [36]), while in the latter they take the form of preconditioners accelera-
ted by Krylov space methods (see Smith, Bjørstad and Gropp [38]). The recur-
sive application of these techniques leads to multilevel domain decomposition

(*) Conferenza tenuta a Milano il 13 settebre 2004 in occasione del XVII Congresso
U.M.I.

This work was supported in part by the National Science Foundation under Grant
NSF-CCR-9732208 and in part by MIUR (PRIN 2001).
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methods, including the older family of multigrid methods. The main motiva-
tions for domain decomposition methods have been the need to compute with
parallel and distributed architectures, to subdivide domains with complicated
geometries into simpler ones, and to consider different mathematical models
and/or numerical methods on different parts of the domain. While the original
motivations of the earlier works in this field were mainly theoretical (see
Schwarz [37], Sobolev [39], Babuška [6], Lions [26]), much of the current inte-
rest and activity in domain decomposition methods has been driven by parallel
computing for large-scale applications, particularly in the structural mecha-
nics and fluid dynamics communities. Integrated in modular software libraries
based on finite elements or finite differences, domain decomposition precondi-
tioners have allowed iterative solvers to become competitive and in some cases
dominant in large-scale simulations; see e.g. Keyes [23], Tufo and Fischer [41],
Bhardway et al. [10], Akcelik et al. [4], and the references therein. The main
goal of this paper is to present a brief review of the main domain decomposi-
tion techniques and to show some advanced applications where mathematical
theory and parallel scientific computing merge into efficient large-scale
solvers.

For a more complete treatment of domain decomposition methods, we re-
fer to the books by Smith, Bjørstad and Gropp [38], Quarteroni and Valli [36],
Toselli and Widlund [40], to the review papers by Chan and Mathew [13], Le
Tallec [25], Farhat and Roux [18] and to the proceedings of the international
conferences and workshops in the field, the last ones being [24, 21, 32]. There
is also an official website at http://www.ddm.org. For a general introduction to
numerical methods for partial differential equations, we refer to Quarteroni
and Valli [35].

This paper starts with a brief review of the basic mathematical ideas of do-
main decomposition methods in Section 2. The abstract mathematical frame-
work employed for the convergence analysis of these methods is briefly pre-
sented in Section 3. The paper then continues with two scientific computing
applications. The first, presented in Section 4, extends the class of domain de-
composition methods known as Balancing Neumann-Neumann methods to the
linear elasticity and Stokes systems. The second application, presented in Sec-
tion 5, concerns block Jacobi methods for reation-diffusion systems arising in
computational electrocardiology.

2. – Basic ideas.

The basic domain decomposition ideas are best described in the simplest
case involving only two subdomains, a second-order, self-adjoint, linear, ellip-
tic operator (for simplicity the Laplacian) and homogeneous Dirichlet bounda-
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ry conditions:

.
/
´

2Du

u

4 f

40

in V ,

on ¯V ,
(1)

where e.g. f�L 2 (V) and ¯V is Lipschitz continuous. Using a standard Galer-
kin procedure based on a variational formulation of (1) and a discrete space V
spanned by finite or spectral element functions, this continuous problem is ap-
proximated by a linear system

Au4 f ,

where we used the same notation for functions and the vectors of coefficients
of their discrete approximations. Aij 4 s

V
˜f i Q˜f j dx is the stiffness matrix,

fj 4 s
V

ff j dx the load vector and ]f i (i41
dim (V) is a basis for the discrete space V.

We will briefly illustrate the two main families of domain decomposition
methods, based on nonoverlapping or overlapping decompositions of V; for
more details see Toselli and Widlund [40, Ch. 1].

2.1. Nonoverlapping methods.

Let V be decomposed into two nonoverlapping subdomains V 1 NV 2 4 V,
V 1 OV 2 4¯ , and let G4¯V 1 O¯V 2 be their common interface. The original
elliptic problem is then equivalent to the coupled problems (see Quarteroni
and Valli [36])
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where ni is the outward normal on ¯V i . The last two equations on G are known
as transmission or interface conditions. We can obtain an analogous decompo-
sition in the discrete case by partitioning the degrees of freedom into those in-
ternal to V 1 , internal to V 2 , and interior to G
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A and f are obtained by subassembling their local contributions

AGG4AGG
1 1AGG

2 , fG4 fG
1 1 fG

2 ,

where

f i 4gfI
i

fG
i
h , A i 4gAII

i

AGI
i

AIG
i

AGG
i
h , i41, 2

are local load vectors and stiffness matrices for local problems on each V i with
Dirichlet data on V i 0G and Neumann data on G. Using Green’s formula to re-

present the functional s
G

¯ui

¯ni

f j ds associated with the normal derivative on G ,

we can see that its discrete approximation is

l i 4AGI
i uI

i 1AGG
i uG

i 2 fG
i .

With these notations, the discrete problem can be decomposed as

.
/
´

AII
i uI

i 1AIG
i uG

i 4 f I
i i41, 2

uG
1 4uG

2 4uG

AGI
1 uI

1 1AGG
1 uG

1 2 fG
1 42(AGI

2 uI
2 1AGG

2 uG
2 2 fG

2 ) 4l G

(i)

(D)

(N)

(i) 1 (D) are local problems with zero Dirichlet data on ¯V i 0G e uG su G , while
(i) 1 (N) are local problems with zero Dirichlet data on ¯V i 0G and Neumann
data l G on G. It is possible to reduce the discrete problem to a problem for uG

only, known as the Schur complement system, or to a problem for the discrete
flux l G only, known as the flux or FETI system. The first one is obtained by
eliminating the interior unknowns uI

i in the Dirichlet problems (i) 1 (D) and
substituting the resulting expression into (N). The reduced system is
then

SuG4gG , where

S4AGG2AGI
1 AII

121
AIG

1 2AGI
2 AII

221
AIG

2 4S 1 1S 2

is the Schur complement of A and

gG4gG
1 1gG

2 , gG
i 4 fG

i 2AGI
i AII

i 21
f I

i , i41, 2 .

Once uG is found, the internal unknowns are determined by solving the decou-
pled Dirichlet problems

uI
i 4AII

i 21
( fI

i 2AIG
i uG ) .

Alternatively, a system for the discrete flux is obtained by eliminating the in-
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terior unknowns uI
i in the local Neumann problems (i) 1 (N)

gAII
i
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i
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i

uG
i
h4g fI

i

fG
i 1l G

i
h , i41, 2 .

We find uG
i 4S i 21

(gG
i 1l G

i ) and substituting into (D) we obtain the flux
system

(S 121
1S 221

) l G4dG ,

with dG42S 121
gG

1 1S 221
gG

2 . While either the Schur complement or discrete
flux systems could be solved directly by explicitly assembling the relative ma-
trices, a more efficient strategy consists in solving these systems iteratively,
starting with an initial guess and using a Krylov space method where only ma-
trix-vector products are required. We illustrate this strategy with the Neu-
mann-Neumann method for the Schur complement system. Many other choi-
ces are possible, among which are the Dirichlet-Neumann and FETI Diri-
chlet-Dirichlet methods; see [40].

2.1.1. N e u m a n n - N e u m a n n m e t h o d . – At the continuous level, the Neu-
mann-Neumann iteration starts from an initial guess uG

0 , solves on each V i a
Dirichlet problem with data uG

0 on G and then on each V i a Neumann problem
with data on G equal to the sum of the normal derivatives of the previous Diri-
chlet solutions. The new iterate uG

1 is then built from the values on G of the
Neumann solutions. More precisely
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We then update uG
n11 4uG

n 2u(u1
n11 1u2

n11 ) on G , where u� (0 , u MAX ) is a
suitable constant. At the discrete level, this method can be written
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where

rG4 (AGI
1 uI

1, n11/2 1AGG
1 uG

n 2 fG
1 )1 (AGI

2 uI
2, n11/2 1AGG

2 uG
n 2 fG

2 ).

Eliminating the interior unknowns uI
i , n11/2 in the Dirichlet problems (Di ) we

obtain rG42(gG2SuG
n ), while eliminating uI

i , n11 in the Neumann problems
(Ni ) we obtain uG

i , n11 4S i 21
rG . Therefore

uG
n11 2uG

n 4u(S 121
1S 221

)(gG2SuG
n ),

which is a Richardson iteration for the Schur complement SuG4gG with pre-
conditioner S 121

1S 221
. In the computational practice, it is best to substitute

the slower Richardson iteration with a faster Krylov space method such as the
preconditioned conjugate gradient method. It is also possible to scale the ri-
ght-hand sides of the Neumann problems and the update equation with positi-
ve weights d 1

† , d 2
† that sum to 1, obtaining the preconditioner

D 1 S 121
D 1 1D 2 S 221

D 2 ,

where D i are diagonal scaling matrices with diagonal elements equal to
d i

†.

2.2. Overlapping methods

The other main family of domain decomposition methods is based on de-
composing V into overlapping subdomains V 18 , V 28 . The classical alternating
(or multiplicative) Schwarz algorithm al the continuous level consists in alter-
natively solving Dirichlet problems on each overlapping subdomain using as
boundary data the trace of the previous Dirichlet solution in the other
subdomain

(1)
.
/
´

2Du n11/2

u n11/2

4 f

4u n

in V 18 ,

on ¯V 18 and outside V 18

(2)
.
/
´

2Du n11

u n11

4 f

4u n11/2

in V 28 ,

on ¯V 28 and outside V 28 .

Using the variation formulation of the algorithm based on the associated bili-
near form a(u , v) 4 s

V
˜u Q˜vdx , one finds the error equation

u n11 2u4 (I2P2 )(I2P1 )(u n 2u),

where Pi : H0
1 (V) KH0

1 (V i8 ) are orthogonal projections defined by

a(Pi u , v) 4a(u , v) (v�H0
1 (V i8 ).
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Hence the error propagation operator is

(I2P2 )(I2P1 ) 4I2 (P1 1P2 2P2 P1 )

and the multiplicative Schwarz algorithm consists in solving iteratively

Pms u4 (P1 1P2 2P2 P1 ) u4g ,

where g�V is chosen so that u is the solution of the original discrete problem.
Since the two local solutions in the algorithm are sequential, we can define the
more parallel additive Schwarz algorithm

Pas u4 (P1 1P2 ) u4g ,

with g again properly chosen. A Richardson iteration for this additive Schwarz
system in general does not converge, so a Krylov space acceleration is here
essential.

2.3. Many subdomains and coarse solvers.

In practice, many more than two subdomains are often required. All the
domain decomposition methods we have mentioned can be extended to decom-

positions with N (overlapping or nonoverlapping) subdomains, V4 0
i41

N

V i .
For example, the Neumann-Neumann preconditioned operator becomes

SNN
21 S4 !

i41

N

Di
T S i †

Di S ,

(the pseudoinverses S i †
are required for Neumann solves on interior subdo-

mains that do not have any Dirichlet boundary), the multiplicative Schwarz
operator

Pms 4I2 (I2PN ) R (I2P1 ) ,

and the additive Schwarz operator

Pas 4 !
i41

N

Pi .

It is possible to prove that for elliptic problems, these one-level methods are
not scalable, i.e. the number of iterations required to converge to a desired ac-
curacy is proportional to the number of subdomains N. Therefore, two-level or
multilevel extensions must be considered. In the computational practice, two-
level methods have so far offered the best compromise between simplicity and
performance, but things could have to be reconsidered as the number of pro-
cessors in current parallel architectures keeps increasing. In two-level
methods, a coarse solver is usually associated with a global problem with a few
unknowns per subdomain. Its design can be quite complex in nonoverlapping
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methods such as the Neumann-Neumann method, where one of the most po-
pular two-level versions, known as the Balancing Neumann-Neumann method
(see Mandel and Brezina [28]), employs a coarse solver S0 in multiplicative
form and local solvers in additive form

SNN
21 4S0 1 (I2S0 S)g!

i41

N

Di
T S i †

Dih (I2SS0 ) .

In overlapping methods, a more standard coarse solver P0 can be employed,
yielding the two-level multiplicative Schwarz operator

Pms 4I2 (I2PN )R(I2P1 )(I2P0 )

and the two-level additive Schwarz operator

Pas 4 !
i40

N

Pi .

3. – Classical Schwarz theory.

The convergence properties of domain decomposition methods can be stu-
died using an abstract framework known as abstract Schwarz theory. We re-
call here the main features of this theory and we refer, e.g, to Toselli and Wi-
dlund [40] or Smith, Bjørstad and Gropp [38] for a more complete treat-
ment.

Let V be a finite dimensional Hilbert space, a(Q , Q) : V3VKR a symmetric,
positive definite bilinear form and f a linear functional over V. We want to sol-
ve the discrete problem: find u�V such that

a(u , v) 4 f (v) ( v�V .(2)

Given a basis in V and using the same notation for functions (or functionals)
and the associated vectors of degrees of freedom, this problem is equivalent to
the linear system

Au4 f ,

where A is the symmetric, positive definite stiffness matrix associated with
a(Q , Q). Given a family of spaces ]Vi , i40, R , N( and interpolation (or exten-
sion) operators Ri

T : Vi KV , we assume that V can be decomposed into N11
subspaces:

V4R0
T V0 1R1

T V1 1R1RN
T VN .

Even if the spaces Vi need not be subspaces of V , the usual terminology in do-
main decomposition theory refers to them as subspaces; usually V0 is a global
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subspace related to a coarse problems associated with a coarse mesh, while Vi ,
i41, R , N are local subspaces associated with local meshes. For each sub-
space, we assume that there is a symmetric, positive definite bilinear form

ai (Q , Q) : Vi 3Vi KR

with associated local stiffness matrix Ai : Vi KVi . If we use the original bili-
near form (i.e. we use local exact solvers)

ai (ui , vi ) 4a(Ri
T ui , Ri

T vi ), ui , vi �Vi ,

then Ai 4Ri ARi
T . We define projection-like operators

Pi 4Ri
T PAi : VKRi

T Vi , i40, R , N

where PAi : VKVi is defined by

ai (P
A

i u , vi ) 4a(u , Ri
T vi ), vi �Vi .

It is easy to prove (see [40, Lemma 2.2.1]) that

Pi 4Ri
T Ai

21 Ri A , i40, R , N ,

and that the operators Pi are self-adjoint in the inner product defined by a(Q , Q)
and positive semi-definite. In case of exact local solvers, they are actually
projections.

With these operators, defined by the choice of subspaces and local bilinear
forms, we can build domain decomposition methods by considering Schwarz
operators defined in terms of polynomials in Pi without zero order terms. We
have the additive Schwarz operator

PA 4P0 1P1 1R1PN ,

the multiplicative Schwarz operator

PM 4I2 (I2PN )(I2PN21 )R(I2P0 ) ,

and many hybrid operators combining additive and multiplicative terms, such
as the balancing Neumann-Neumann operator

PNN 4I2 (I2P0 )gI2 !
i41

N

Pih (I2P0 ) .

In case of exact coarse solver on V0 , this last operator can be written as

PNN 4P0 1 (I2P0 ) !
i41

N

Pi (I2P0 ) .

All these Schwarz operators define preconditioned operators for the original
operator A , i.e. they can be written as the product of a suitable preconditioner
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and A. For example, in the easier additive case,

PA 4BA
21 A , where BA

21 4 !
i40

N

Ri
T Ai

21 Ri

and analogous formulae hold for multiplicative and hybrid operators. The con-
vergence theory of Schwarz methods is based on the following three
hypotheses.

ASSUMPTION 1 (Stable decomposition). – There exists a constant C0 such

that every v�V admits a decomposition v4 !
i40

N

Ri
T vi , vi �Vi , that sati-

sfies

!
i40

N

ai (vi , vi ) GC0
2 a(v , v) .

ASSUMPTION 2 (Strengthened Cauchy-Schwarz inequality). – There exist
constants 0 Ge ij G1, i , j41, R , N such that

a(Ri
T vi , Rj

T vj ) Ge ij a(Ri
T vi , Ri

T vi )1/2 a(Rj
T vj , Rj

T vj )1/2 (vi �Vi , (vj �Vj .

We will denote by r(E) the spectral radius of E 4 ]e ij (.

ASSUMPTION 3 (Local stability). – There exists a constant vD0 such that
for i40, 1 , R , N ,

a(Ri
T vi , Ri

T vi ) Gvai (vi , vi ) (vi �Range (PAi ) %Vi .

The main convergence result for the additive operator PA provides a bound for
its condition number k(PA ) 4l max (PA ) /l min (PA )

THEOREM 1. – If Assumptions 1,2,3 are satisfied, then

k(PA ) GC0
2 v(r(E)11) .

The main convergence result for the multiplicative operator provides a bound
for the a-norm of its associated error propagation operator I2PM .

THEOREM 2. – If Assumptions 1,2,3 are satisfied and v� (0 , 2 ), then

VI2PM V

2
a G12

22v

C0
2 (2 vA2 r(E)2 11)

E1 ,

where vA 4 max ]1, v(.

In order to obtain a convergence result for the hybrid operator PNN , it is
convenient to modify Assumption 1 as follows.
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ASSUMPTION 1bis (Stable decomposition). – There exists a constant C0 such

that every v�Range (I2P0 ) admits a decomposition v4 !
i41

N

Ri
T vi , vi �Vi ,

that satisfies

!
i41

N

ai (vi , vi ) GC0
2 a(v , v) .

Then we have:

THEOREM 3. – If Assumptions 1bis,2,3 are satisfied, then

max ]1, C0
2 (21 a(v , v) Ga(PNN v , v) G max ]1, vr(E)( a(v , v) .

By estimating the constants C0 , r(E), v for specific choices of subspaces and
local bilinear forms, associated with specific domain decomposition algorithms,
it is then possible to get concrete convergence rate estimates; see [40, 38, 16, 17].

4. – Application 1: Balancing Neumann-Neumann methods for elasticity
and Stokes problems.

The balancing Neumann-Neumann algorithm can be extended to the linear
elasticity and Stokes systems; see Pavarino and Widlund [34] and Goldfeld,
Pavarino and Widlund [20] for a complete treatment with full proofs. Other
nonoverlapping methods for elliptic systems can be found in [33], which exten-
ds previous works [30, 31] on scalar problems. Let V%R 3 be a polyhedral do-
main, G 0 a nonempty subset of its boundary and VA 4 ]v�H 1 (V)3 : vNG 0

40(.
The linear elasticity problem, with constant Lamé parameters, consists in fin-
ding the displacement u� VA of the domain V , fixed along G 0 , subject to a sur-
face force of density g , along G 1 4¯V0G 0 , and a body force f:

2ms
V

e(u) : e(v) dx1ls
V

div u div v dx4 aF , vb (v� VA .(3)

Here l and m are the Lamé constants, e ij (u) 4
1

2
u ¯ui

¯xj

1
¯uj

¯xi

v the linearized

strain tensor, and the bilinear forms are defined as

e(u) : e(v) 4 !
i41

3

!
j41

3

e ij (u) e ij (v), aF , vb 4s
V

!
i41

3

fi vi dx1s
G 1

!
i41

3

gi vi ds .

In Sections 4.5 and 4.6, we will consider the case of variable Lamé parameters
and show that our algorithms are quite robust. The Lamé parameters can
alternatively be expressed in terms of the Poisson ratio n and Young’s modu-
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lus E:

l4
En

(11n)(122n)
, m4

E

2(11n)
.

When the material is almost incompressible, the Poisson ratio n approaches
the value 1/2 , i.e., l/m approaches infinity. In such cases, finite or spectral ele-
ment discretizations of this pure displacement formulation suffer increasingly
from locking phenomena and the resulting stiffness matrices become increa-
singly ill-conditioned. A possible remedy is based on introducing the new va-
riable p42l div u�L 2 (V) 4 UA that we will call pressure and replacing the
pure displacement problem with a mixed formulation: find (u , p) � VA3UA such
that

(4)

.
/
´

2ms
V

e(u) : e(v) dx

2s
V

div uq dx

2

2

s
V

div vp dx

1/ls
V

pq dx

4

4

aF , vb

0

(v� VA

(q� UA ;

see Brezzi and Fortin [11]. In the case of homogeneous Dirichlet boundary
conditions for u , we choose UA 4L 2

0 (V) 4 ]q�L 2 (V) : s
V

qdx40(, since it can

be shown that the pressure will have zero mean value. We can also consider
more general saddle point problems with a penalty term: find (u , p) � VA3UA

such that

.
/
´

a(u , v)

b(u , q)

1

2

b(v , p)

1 /l c(p , q)

4

4

aF , vb

0

(v� VA

(q� UA ;
(5)

see Brezzi and Fortin [11]. In our specific case, we have

a(u , v) 42ms
V

e(u) : e(v) dx , b(v , q) 42s
V

div vq dx , c(p , q) 4s
V

pq dx .

By letting l/mKQ , we obtain the limiting problem for incompressible linear
elasticity or the classical Stokes system for an incompressible fluid. A penalty
term as in the compressible case can also originate from stabilization techni-
ques or penalty formulations for Stokes problems.

4.1. Discrete problem.

We will consider conforming discretizations of Stokes and mixed elasticity
equations using finite as well as spectral finite elements, all with disconti-
nuous pressures. We assume that the domain V can be decomposed into N no-
noverlapping subdomains V i of characteristic size H forming a hexahedral
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(quadrilateral) finite element mesh t H , which is assumed to be shape regular
but not necessarily quasi uniform. This coarse triangulation is further refined
into a fine quadrilateral finite element triangulation t h of characteristic size h.
Among the many choices of mixed finite elements available for Stokes and mi-
xed elasticity equations, we consider the following.

a) Q2 (h)2Q0 (h) mixed finite elements. The displacement space VA is di-
scretized by continuous, piecewise bi-quadratic displacements:

Vh 4 ]v� VA : vk NT �Q2 (T) (T�t h , k41, 2 , R , d( ,

while the pressure space is discretized by discontinuous piecewise constant
functions

U h 4 ]q� UA : qNT �Q0 (T) (T�t h ( .

These elements satisfy the uniform inf-sup condition

sup
v�V h

( div v , q)

VvVH 1

Fb h VqVL 2 (q�U h ,(6)

with b h FcD0 independent of h , but they lead to nonoptimal error estimates;
see Brezzi and Fortin [11, Ch. VI.4, p. 221].

b) Q2 (h)2P1 (h) mixed finite elements. The displacement space is as befo-
re, while the pressure space consists of piecewise linear discontinuous
pressures:

U h 4 ]q� UA : qNT �P1 (T) (T�t h ( .

These elements satisfy a uniform inf-sup condition (6) as well; there are also
optimal O(h 2 ) error estimates for both displacements and pressures; see Brez-
zi and Fortin [11, chap. VI, p. 216].

c) Qn 2Qn22 mixed spectral elements. We assume that the domain V can
be decomposed into N nonoverlapping finite elements V i , each of which is an
affine image of the reference element Qn (V ref ) 4 (21, 1 )d. VA is discretized,
component by component, by continuous, piecewise tensor product polyno-
mials of degree n:

Vn 4 ]v� VA : vk NV i
i f i �Qn (V ref ), i41, 2 , R , N , k41, 2 , R , d( .

The pressure space is discretized by piecewise tensor product polynomials of
degree n22, which are discontinuous across the boundaries of the elements
V i :

U n 4 ]q� UA : qNV i
i f i �Qn22 (V ref ), i41, 2 , R , N( .

We use Gauss-Lobatto-Legendre (GLL(n)) quadrature in the implementation,
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which also allows for the construction of a very convenient nodal tensor-pro-
duct basis for Vn. The Qn 2Qn22 method satisfies an inf-sup condition which is
nonuniform in n but still satisfactory for practical values of nG16. For an in-
troduction to spectral methods and spectral elements, we refer to Canuto et al.
[12] and Bernardi and Maday [9].

Let V and U be the discrete displacement and pressure spaces. In the fini-
te element case, we write V3U4Vh 3U h , while in the spectral element case
we have V3U4Vn 3U n. The discrete system obtained from (5) using finite
or spectral elements is: find u�V and p�U such that

.
/
´

a(u , v)

b(u , q)

1

2

b(v , p)

1 /l c(p , q)

4

4

F(v)

0

(v�V

(q�U ,
(7)

where we denote with the same letters the bilinear forms obtained using the
appropriate quadrature rule described above. In matrix form, we have

Kyu

p
z4 yA

B

B T

21/l C
z yu

p
z4 yb

0
z .

4.2. Substructuring for Saddle Point Problems

The domain V4 0
i41

N

V i NG is decomposed into open, nonoverlapping he-

xahedral (quadrilateral) subdomains V i and the interface G4u 0
i41

N

¯V iv0¯V .

Each V i typically consists of one, or a few, spectral elements of degree n or of
many finite elements. We denote by G h and ¯V h the set of nodes belonging to
the interface G and ¯V , respectively. The starting point of our algorithm is the
implicit elimination (static condensation) of the interior degrees of freedom
(displacements supported in the open subdomains and interior pressures with
zero average over the individual subdomains), by solving decoupled local sad-
dle point problems on each V i with Dirichlet boundary conditions for the di-
splacements on ¯V i . We then obtain a saddle point Schur complement pro-
blem for the interface displacements and a constant pressure in each subdo-
main. This reduced problem will be solved by a preconditioned Krylov space
iteration, normally the preconditioned conjugate gradient method. We reor-
der the vector of unknowns as

yuI

pI

uG

p0

z interior displacements
interior pressures with zero average
interface displacements
constant pressures in each V i .
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Using the same permutation, the discrete system matrix can be written as

yKII

KGI

KGI
T

KGG

z4yAII

BII

AGI

0

BII
T

21/l CII

BIG
T

0

AGI
T

BIG

AGG

B0

0
0

B0
T

1/l C0

z .N
Eliminating the interior unknowns uI and pI by static condensation, we obtain
the saddle point Schur complement system

SlkuG

p0
l4 kbA

0
l ,(8)

where Sl4KGG2KGI KII
21 KGI

T 4 kSG , l

B0

B0
T

21/l C0
l ,

4 kAGG

B0

B0
T

21/l C0
l2 kAGI

0
BIG

T

0
l kAII

BII

BII
T

21/l CII
l21kAGI

T

BIG

0
0
l ,

kbA

0
l4 kbG

0
l2 kAGI

0
BIG

T

0
l kAII

BII

BII
T

21/l CII
l21kbI

0
l .

KII
21 represents the solution of N decoupled saddle point problems, one for ea-

ch subdomain and all uniquely solvable, with Dirichlet data given on ¯V i . The
Schur complement Sl does not need to be explicitly assembled since only its
action Sl v on a vector v is needed in a Krylov iteration. This operation essen-
tially only requires the action of KII

21 on a vector, i.e., the solution of N decou-
pled saddle point problems. In other words, Sl v is computed by subassembling
the actions of the local Schur complements S (i)

l 4K (i)
GG 2K (i)

GI (K (i)
II )21 KGI

(i)T
. This

substructuring procedure is associated with the space decomposition

V3U4 5
i41

N
Vi 3Ui 5VG3U0 ,

where the interior spaces are defined as Vi 4VOH 1
0 (V i ), Ui 4UOL 2

0 (V i ),
and the spaces of interface displacements and coarse pressures, constant in
each subdomain, are defined as

VG4 S Hl (VNG
) 4 ]v�V : vNV i

4 S Hl (vN¯V i
), i41, R , N( ,

U0 4 ]q�U : qNV i
4constant , i41, R , N( .

Here S Hl : VNG
KV , is the displacement component of the discrete saddle

point harmonic extension operator that maps an interface displacement uG�
VNG

onto the solution (uA, pA)T of the following homogeneous saddle point pro-
blem, defined on each subdomain separately: find uA �V and pA �U such that on
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each V i ,

.
/
´

a(uA, v)

b(uA, q)

uA 4uG

1

2

on

b(v , pA)

1 /l c(pA, q)

¯V i .

4

4

0

0

(v�Vi

(q�Ui(9)

If we define the interface inner product by

sl (uG , vG ) 4a(S Hl (uG ), S Hl (vG ) ) 4uG
T SG , l vG ,

and by b0 (uG , p0 ) and c0 (p0 , q0 ) the restrictions of the other bilinear forms to
the saddle point harmonic extensions and the coarse piecewise constant pres-
sures, then the variational formulation of the saddle point Schur complement
problem (8) can be given by: find uG�VG and p0 �U0 such that,

{sl (uG , vG )

b0 (uG , q0 )

1

2

b0 (vG , p0 )

1 /l c0 (p0 , q0 )

4

4

FA(vG )

0

(vG�VG

(q0 �U0 .
(10)

On the benign subspace (VG3U0 )B defined by

(VG3U0 )B 4 ](uG , p0 ) �VG3U0 : b0 (uG , q0 )21/l c0 (p0 , q0 ) 40( ,

problem (10) is equivalent to the positive definite problem: find (uG , p0 ) �
(VG3U0 )B such that

sl (uG , vG )11/lc0 (p0 , q0 ) 4 FA(vG ) ((vG , q0 ) � (VG3U0 )B .(11)

4.3. Neumann-Neumann Preconditioners.

We will solve the saddle point Schur complement problem

SlyuG

p0

z4ySG , l

B0

B0
T

21/l C0

z yuG

p0

z4ybA

0
z(12)

by a preconditioned Krylov space method such as GMRES or PCG. The matrix
form of the preconditioner is

Ql4QH 1 (I2QH Sl ) !
i41

N

Qi (I2Sl QH ) ,(13)

where the coarse operator QH and local operators Qi are defined below. The
preconditioned operator is then

Tl4Ql Sl4T0 1 (I2T0 ) !
i41

N

Ti (I2T0 ) ,(14)

where T0 4QH Sl and Ti 4Qi Sl . The balancing Neumann-Neumann precondi-
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tioner Tl is associated with further decomposing the interface space VG3U0

as

VG3U0 4V0 3U0 1 !
i41

N

VG i
3U0, i .

Here, the coarse displacement space V0 is defined in terms of special functions
d i

† introduced below and is given by either one of the three following
choices:

V 0
0 4 ]v�VG : v�span ]d i

† ( times the functions spanning ker (a)(,

V 0
1 4V 0

0 Nspan ]normal direction quadratic edge/face bubble functions( ,

V 0
2 4V 0

0 Nspan ]bi- or tri-linear coarse piecewise Q1 functions(,

while the local spaces are defined by:

VG , i 4 ]v�VG : v(x) 40 (x�G h 0¯V i , h (, U0, i 4span ]1(.

We could also consider richer coarse spaces obtained, e.g., by adding to V 0
0

functions of VG that are piecewise tri- or bi-quadratic polynomials on G , as we
did in our study [34] of the Stokes case.

4.3.1. C o a r s e p r o b l e m . – Given a residual vector r , the coarse term QH r is
the solution of a coarse, global saddle point problem with a few displacement
degrees of freedom and one constant pressure per subdomain V i :

QH 4RH
T S0, l

21 RH ,

where

RH 4 yL0
T

0

0

I
z , S0, l4RH Sl RH

T 4yL0
T SG , l L0

B0 L0

L0
T B0

T

21/l C0

z .(15)

The columns of the matrix L0 span the coarse space V0 and in order to define
them, we need to define the Neumann-Neumann counting functions d i �VG

and their pseudo inverses d i
† associated with each subdomain V i : d i is zero at

the interface nodes outside ¯V i , h while its value at any node on ¯V i , h equals
the number of subdomains shared by that node; the pseudo inverse d i

† is the
function 1 /d i (x) for all nodes where d i (x) c0, and it vanishes at all other
points of G h N¯V h . Then, the columns of L0 are defined by one of the follo-
wing three choices: (V 0

0) the inverse counting functions d i
† multiplied by the

functions of ker (a); (V 0
1) as in V 0

0 with the addition of the quadratic coarse ed-
ge/face bubble functions for the normal direction; (V 0

2) as in V 0
0 with the addi-

tion of the continuous piecewise bi- or tri-linear functions on the coarse mesh
t H . V 0

0 corresponds to the standard choice for second order scalar elliptic pro-
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blems and it provides a quite minimal coarse displacement space. It turns out
to be far from uniformly inf-sup stable and therefore it leads to a nonscalable
algorithm in the incompressible case. However, in the compressible case
where l/m is bounded, it still leads to a scalable algorithm; see our main theo-
rem and the numerical results. V 0

1 and V 0
2 are enrichments of V 0

0 that turn out
to be inf-sup stable uniformly in N and l/m.

4.3.2. L o c a l p r o b l e m s . – Given a residual vector r with a first component rG

and a zero second component, Qi r is the weighted solution of a local saddle
point problem on subdomain V i with a natural boundary condition on
¯V i 0G 0 :

Qi r4 yRi
T Di

21

0

0

0
z yS (i)

G , e , l

B0
(i)

B0
(i)T

21/l C0
(i)
z21

yDi
21 Ri

0

0

0
z yrG

0
z .(16)

Here Ri are 0 , 1 restriction matrices mapping rG into rG i
and Di are diagonal

matrices representing multiplication by the counting functions d i . Moreover,

S (i)
e 4yS (i)

G , e , l

B0
(i)

B0
(i)T

21/l C0
(i)
z

is the local saddle point Schur complement, associated with the subdomain V i ,
of the regularized local stiffness matrix

K (i)
e 4yA (i)

II , e

B (i)
II

A (i)
GI , e

0

B (i)T

II

21/l CII
(i)

B (i)T

IG

0

A (i)T

GI , e

B (i)
IG

A (i)
GG , e

B (i)
0

0

0

B (i)T

0

21/l C0
(i)

z ,

where A (i)
e 4A (i)1eM (i) . Here M (i) is the local displacement mass matrix.

4.4. Convergence rate analysis.

The following result has been proven in [34] for the Stokes case and in [20]
for the elasticity case.

THEOREM 4. – On the benign subspace (VG3U0 )B the balancing Neu-
mann-Neumann operator Tl is symmetric, positive definite with respect to
the l-inner product

»y
uG

p0

z , yvG

q0

z«
l

4sl (uG , vG )11/l c0 (p0 , q0 ) ,



DOMAIN DECOMPOSITION METHODS AND SCIENTIFIC COMPUTING APPLICATIONS 39

and its condition number is bounded by

cond (Tl ) GCu21
kd/2

kb 0
2 1m/l

vu11
kd

kb 2 1m/l
v2

a ,

where

a4{(11 log (H/h) )2

(11 log n)2

for finite elements

for spectral elements ,

and b 0 and b are the inf-sup constants of the coarse problem and the original
discrete saddle point problem, respectively. The constant C in the bound is
uniform in the parameter e used in the regularization of the local Neumann
problems.

4.5. Variable Coefficient and Composite Materials.

Our algorithm can be extended to composite materials with different Lamé
constants l i , m i in each subdomain V i :

{2 !
i41

N

s
V i

m i e(u) : e(v) dx

2s
V

div u q dx

2

2

s
V

div v p dx

!
i41

N

s
V i

1/l i pq dx

4

4

aF , vb

0

(v� VA

(q� U
A

;

(17)

Using the convention of padding local vectors by zeros, when they are needed
as global vectors, the discrete problem can now be written as

K yu

p
z4 !

i41

N yA (i)

B (i)

B (i)T

21/l i C (i)
z yu(i)

p (i)
z ,

and the saddle point Schur complement obtained by static condensation as

S yuG

p0

z4 !
i41

N yS (i)
G

B (i)
0

B0
(i)T

21/l i C0
(i)
z yuG

(i)

p0
(i)
z .

The balancing Neumann-Neumann preconditioner Q for S has the same ma-
trix form as before, but with modified local and coarse spaces. As in the scalar
elliptic case, the jumps in the coefficients m i are taken care of by appropriately
scaling the special counting functions d i and their pseudo inverses d i

† . At any
node x on ¯V i , we use the definition:

d i
† (x) 4

m i
g (x)

!
j�Nx

m j
g (x)

,
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where g� [1 /2 , Q) and Nx is the set of indices of all the subdomains that have
x on their boundaries. Both functions d i and d i

† vanish at each interface node
outside ¯V i , h and are extended inside each subdomain as discrete saddle
point harmonic extensions; they still form a partition of unity. The local and
coarse problems are then defined formally as before but using these modified
functions d i and d i

† .

4.6. Numerical experiments.

In this section, we report on numerical results for the Stokes and almost
incompressible elasticity systems. We show first some results of parallel nu-
merical experiments on the Beowulf cluster Chiba City at Argonne National
Laboratory (with 256 Dual Pentium III processors). The algorithm has been
implemented by Paulo Goldfeld in C, using the PETSc library; see [7, 8]. The
problem is discretized with Q2 2Q0 finite elements and the domain V is the
unit square divided into kN3kN square subdomains. The saddle point
Schur complement (12) is solved iteratively by PCG with our balancing Neu-
mann-Neumann preconditioner and the third choice of coarse space V 0

2 4 ]sca-
led rigid body motions(1Q1

H . The initial guess is a random vector modified so
that the initial error is in the range of (I2T0 ), the right hand side is a random,
uniformly distributed vector projected onto the range of S , and the stopping
criterion is Vrk V2 /Vr0 V2 G1026 , where rk is the residual at the k-th iterate.

4.6.1. S t o k e s p r o b l e m o n a ho m o g e n e o u s m e d i u m . – We consider first
the incompressible Stokes problem with constant coefficients and in the upper
half of Table 1, we show the results for increasing mesh sizes, always partitio-

TABLE 1. – Parallel results for Stokes system (homogeneous medium) and Q22Q0 fini-
te elements: PCG iteration counts and extremal eigenvalues of Tl for the balancing
Neumann-Neumann preconditioner with coarse space V 0

2 .

Fixed number of subdomains N4838
mesh size local size J unknowns iterations eig min eig max

160 3 160 20 3 20 231,683 18 1.06 8.31
320 3 320 40 3 40 924,163 21 1.07 11.08
480 3 480 60 3 60 2,077,443 22 1.07 12.89

Fixed local size 60360 elements (32,883 unknowns)
mesh size J subdomains J unknowns iterations eig min eig max

240 3 240 4 3 4 520,323 20 1.07 11.36
360 3 360 6 3 6 1,169,283 22 1.07 12.43
480 3 480 8 3 8 2,077,443 22 1.07 12.89
720 3 720 12 3 12 4,671,363 23 1.07 13.32
840 3 840 14 3 14 6,357,123 23 1.07 13.44
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ned into 64 subdomains. The lower part of Table 1 shows results for an increa-
sing number of subdomains of a fixed size. These results agree with the the-
ory, since in the finite element case we have inf-sup stability of both the origi-
nal and coarse problems and therefore both inf-sup constants b and b 0 are
bounded away from zero independently of h and H.

4.6.2. E l a s t i c i t y p r o b l e m o n a he t e r o g e n e o u s m e d i u m . – Here we con-
sider an elasticity problem defined in a heterogeneous medium, which is com-
posed of an arrangement of three different materials in the following pattern,
where s 4 steel-like (m s 48.20, l s 410.00, n s 40.275), a 4 aluminium-
like (m a 42.60, l a 45.60, n a 40.341), r = rubber-like (m r 40.01, l r 40.99,
n r 40.495):

s r s r . . . s r

r a r a . . . r a

s r s r . . . s r

r a r a . . . r a ,

QQ
Q QQ

Q QQ
Q QQ

Q Q Q
Q QQ

Q QQ
Q

s r s r . . . s r

r a r a . . . r a

Note that the material r is almost incompressible, with a Poisson ratio close
to 0.5. As in the previous example, we show, in the upper half of Table 2, the re-
sults for meshes of increasing sizes partitioned into 64 subdomains. Again, the
condition number and the iteration count grow slowly with the size of the local
problem, as in the homogeneous case. The last two columns of this table di-
splay CPU-time for these runs. The last column gives the total time for the co-
de to run, while the column labeled «fact.» gives the time spent on LU factori-
zations (a Dirichlet and a Neumann problem on each subdomain and one glo-
bal coarse problem). The lower part of Table 2 shows results for an increasing
number of subdomains of fixed size (about 58 thousand dofs). Again, we obser-
ve no influence of the number of subdomains on the condition number or itera-
tion count. This shows that our main result on Section 4 remains valid in the
case of discontinuous coefficients.

4.6.3. S e r i a l r e s u l t s f o r Qn 2Qn22 S p e c t r a l E l e m e n t s . – We next consi-
der the case of a heterogeneous material occupying a cubic domain V. The pro-
blem is discretized with Qn 2Qn22 spectral elements and the algorithm was
implemented in Matlab on a Unix workstation. Figure 1 shows the distribution
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TABLE 2. – Parallel results for linear elasticity system (heterogeneous medium) and
Q22Q0 finite elements: PCG iteration counts and extremal eigenvalues of Tl for the
balancing Neumann-Neumann preconditioner with coarse space V 0

2 .

Fixed number of subdomains N4838

CPU time (sec.)

mesh size local size J unkn. iter. eig max fact. total

160 3 160 20 3 20 230,000 12 4.06 1.4 18.0
320 3 320 40 3 40 920,000 13 4.65 18.2 40.9
480 3 480 60 3 60 2,080,000 14 4.99 84.2 126.3
640 3 640 80 3 80 3,690,000 14 5.22 260.8 345.3

Fixed local size 80380 elements (58,242 unknowns)

CPU time (sec.)

mesh size J subdom. J unkn. iter. eig max fact. total

320 3 320 4 3 4 920,000 12 5,18 258.0 321.4
480 3 480 6 3 6 2,080,000 13 5.21 253.7 317.4
640 3 640 8 3 8 3,690,000 14 5.22 260.8 345.3
800 3 800 10 3 10 5,770,000 14 5.14 262.8 356.7

1040 3 1040 13 3 13 9,740,000 14 4.93 261.2 363.9

Fig. 1. – 3D results: Distribution of the Lamé coefficients l (left) and m (right) on hori-
zontal sections of a cubic domain.
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TABLE 3. – Serial results in 3D for elasticity system (heterogeneous medium) and spec-
tral elements: PCG iteration counts and maximum eigenvalue of Tl for the balancing
Neumann-Neumann preconditioner. Fixed number of subdomains N4333 and
spectral degree n44.

V 0
0 coarse space

exponent t in m J iterations eig max eig min

2 3 18 6.68 1.0003
2 1 16 6.43 1.0039

0 15 5.16 1.0049
1 17 6.39 1.0048
3 19 7.52 1.0029
6 19 7.59 1.0030

of the Lamé coefficients l (left) and m (right) on a cubic domain; the exponent t
ranges from t423 to t46 and there are incompressible subdomains. The re-
sults reported in Table 3 show that also in three dimensions the performance
of our algorithm and the spectrum of the preconditioned operator are inde-
pendent of the jumps in the Lamé coefficients.

5. – Application 2: Block Jacobi preconditioners for reaction-diffusion
systems in electrocardiology.

We now present a second application of domain decomposition methods to
reaction-diffusion systems arising in computational electrocardiology; more
details can be found in Colli Franzone and Pavarino [14]. These models descri-
be the electrical potentials involved in the excitation of the cardiac muscle and
in recent years have been subject to intense interdisciplinary studies bridging
medicine, bioengineering and scientific computing; see e.g. [1, 2, 3, 19, 42].

5.1. The cardiac Bidomain and Monodomain models.

Cardiac tissue is traditionally modeled as an arrangement of cardiac fibers
that rotate counterclockwise from the epicardium to the endocardium, (the ou-
ter and inner boundaries of the cardiac muscle). Moreover, the cardiac tissue
has a laminar organization that can be modeled as a set of muscle sheets run-
ning radially from epi to endocardium. Therefore, at any point x , it is possible
to identify a triplet of orthonormal principal axes al (x), at (x), an (x), with al (x)
parallel to the local fiber direction, at (x) and an (x) tangent and orthogonal to
the radial laminae respectively and both being transversal to the fiber axis.
The macroscopic Bidomain model represents the cardiac tissue as the super-
position of two anisotropic continuous media, the intra (i) and extra (e) cellular
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media, coexisting at every point of the tissue and connected by a distributed
continuous cellular membrane; see Keener and Sneyd [22]. The anisotropic
conductivity properties of the tissue are described by the conductivity coeffi-
cients in the intra and extracellular media s i , e

l , s i , e
t , s i , e

n , measured along the
corresponding directions al , at , an , and by the conductivity tensors Di (x) and
De (x)

Di , e 4s i , e
l al al

T 1s i , e
t at at

T 1s i , e
n an an

T .

When the media are axially isotropic, i.e. when s i , e
n 4s i , e

t , we have Di , e 4

s t
i , e I1 (s l

i , e 2s t
i , e ) al al

T . The intra and extracellular electric potentials ui , ue

in an insulated cardiac domain H are described in the Bidomain model by a
reaction-diffusion system coupled with a system of ODEs for the ionic gating
variables w. Given the applied currents per unit volume Iapp

i , e , satisfying the
compatibility condition s

H
Iapp

i dx4 s
H

Iapp
e dx, the initial conditions v0 , w0 , then

ui , ue , w satisfy the system:

.
`
`
/
`
`
´

cm
¯v

¯t
2div (Di ˜ui )1Iion (v , w) 4Iapp

i

2cm
¯v

¯t
2div(De ˜ue )2Iion (v , w) 42Iapp

e

¯w

¯t
2R(v , w) 40, v(t) 4ui(t)2ue (t)

nT Di ˜ui 40, nT De ˜ue 40,

v(x , 0 ) 4v0 (x), w(x , 0 ) 4w0 (x),

(18)

where cm 4x * Cm , Iion 4x * iion , with x the ratio of membrane surface area per
tissue volume, Cm the membrane capacitance and iion the ionic current of the
membrane per unit area. Existence and regularity results for this degenerate
system can be found in Colli Franzone and Savarè [15]. The system uniquely
determines v , while the potentials ui and ue are defined only up to a same addi-
tive time-dependent constant related to the reference potential, chosen to be
the average extracellular potential in the cardiac volume by imposing
s

H
ue dx40.

If the two media have equal anisotropy ratio, i.e. Di 4lDe with l constant,
then the Bidomain system reduces to the Monodomain model consisting in a
parabolic reaction-diffusion equation for the transmembrane potential v cou-
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pled with a system of ODEs for the gating variables:

.
`
/
`
´

cm
¯v

¯t
2div(Dm (x) ˜v)1Iion (v , w) 4I m

app ,

¯w

¯t
2R(v , w) 40, w(x , 0 ) 4w0 (x),

nT Dm ˜v40, v(x , 0 ) 4v0 (x),

(19)

where Dm 4s l al al
T 1s t at at

T 1s n an an
T , with s l , t , n 4ls l , t , n

i /(11l) and I m
app 4

(lIapp
i 1Iapp

e ) /(11l).
The dynamics of S gating variables are described by a so-called membrane

model, consisting of ordinary differential equations of the form

¯wj

¯t
4Rj (v , wj ) 4 (wjQ (v)2wj ) /t j (v), j41, R , S .(20)

In this paper, we consider one of the most used detailed membrane models in
the literature, the Luo-Rudy phase I (LR1) model (see Luo and Rudy [27]),
based on six gating variables and one variable for the calcium ionic concentra-
tion.

5.2. Finite element space discretization.

The Monodomain (19) and Bidomain models (18) are discretized by me-
shing the cardiac tissue volume V with a structured grid of hexahedral isopa-
rametric Q1 elements and by introducing the associated finite element space
Vh . A semidiscrete problem is obtained by applying a standard Galerkin proce-
dure and choosing a finite element basis ]f i ( for Vh . We denote by M 4

]mrs 4 s
V

W r W s dx( the symmetric mass matrix, by Am , i , e 4 ]ars
m , i , e 4

s
V

(˜W r )T Dm , i , e ˜W s dx( the symmetric stiffness matrices and by Ih
ion , I(m , i , e), h

app

the finite element interpolants of Iion and I m , i , e
app , respectively. Integrals are

computed with a 3D trapezoidal quadrature rule, so the mass matrix M is lum-
ped to diagonal form; see Quarteroni and Valli [35] for an introduction to finite
element methods. For adaptive discretization methods see Moore [29] and Yu
[43]. In our implementation, we have actually reordered the unknowns writing
for every node the ui and ue components consecutively, so as to minimize ban-
dwidth of the stiffness matrix.

5.3. Semi-implicit time discretization.

The time discretization is performed by a semi-implicit method using for
the diffusion term the implicit Euler method, while the nonlinear reaction
term Iion is treated explicitly; see Ascher et al. [5]. The use of an implicit treat-
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ment of the diffusion terms appearing in the Mono or Bidomain models is es-
sential to allow an adaptive change of the time step according to the stiffness
of the various phases of the heartbeat. The ODE system for the gating varia-
bles is discretized by the semi-implicit Euler method; in this way we decouple
the gating variables by solving the gating system first (given the potential vn

at the previous time-step)

(wn11 2wn ) /Dt4R(vn , wn11 )

and then solving for ui
n11 , ue

n11 in the Bidomain case

(21) g cm

Dt
y M

2M

2M

M
z1 yAi

0

0

Ae

zh .
`
´

ui
n11

ue
n11

ˆ
`
˜

4

cm

Dt

.
`
´

M( ui
n 2ue

n )

M[2ui
n 1ue

n ]

ˆ
`
˜

1
.
`
´

M[2Ih
ion (vn , wn11 )1Ii , h

app ]

M[ Ih
ion (vn , wn11 )2Ie , h

app ]

ˆ
`
˜

,

where vn 4un
i 2un

e . As in the continuous model, vn is uniquely determined,
while un

i and un
e are determined only up to the same additive time-dependent

constant chosen by imposing the condition 1T Mun
e 40.

In the Monodomain case, we have to solve for vn11

g cm

Dt
M1Amh vn11 4

cm

Dt
Mvn 2MIh

ion (vn , wn11 )1MIm , h
app .(22)

We employed an adaptive time-stepping strategy based on controlling the
transmembrane potential variation Dv4max(vn11 2vn ) at each time-step,
see Luo and Rudy [27]. If DvEDvmin 40.05 then we select Dt4 (Dvmax /Dv)Dt
(if smaller than Dtmax 46 msec), if DvDDvmax 40.5 then we select dt4

(Dvmin /Dv) dt (if greater than Dtmin 40.005 msec). In order to guarantee a con-
trol on the variation of the gating variables of the LR1 membrane model as
well, each gating equation of the system (20) is integrated exactly, while the
calcium ionic concentration is updated using the explicit Euler method.

5.4. A parallel solver with block Jacobi preconditioner.

The linear system at each time step in the discrete problems is solved ite-
ratively by the preconditioned conjugate gradient (PCG) method, using as in-
itial guess the solution at the previous time step. The preconditioner used is a
one-level block Jacobi preconditioner, where the blocks are associated with a
partition of the degrees of freedom (domain) into disjoint blocks (subdomains).
Using the notation of the abstract Schwarz theory of Section 3, this is a one-le-
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TABLE 4. – Parameters calibration for numerical tests.

ellipsoidal a14b141.5 cm, a24b242.7 cm, c144.4, c245 cm
geometry f min40, f max42p , u min423p/8 , u max4p/8

x4103 cm 21 , Cm41023 mF/cm 2

Monodomain s l41.2 Q1023 V21 cm 21 , s t42.5562 Q1024 V21 cm 21

parameters G41.5 V21 cm 22 , vth413 mV , vp4100 mV
h 144.4 V21 cm 22 , h 240.012, h 341

s e
l 42 Q1023 V21 cm 21 , s i

l43 Q1023 V21 cm 21

Bidomain s e
t 41.3514 Q1023 V21 cm 21 , s i

t43.1525 Q1024 V21 cm 21

parameters s e
n4s e

t /m 1 , s i
n4s i

t /m 2
m 14m 241 axial isotropic case, m 142, m 2410 orthotropic case

vel additive Schwarz preconditioner (without coarse term)

BA
21 4 !

i41

N

Ri
T Ai

21 Ri

defined by a decomposition of the finite element space V4Vh into a direct sum
of local subspaces

V4R1
T V1 1R1RN

T VN .

Each subspace is spanned by the degrees of freedom of the associated block.
As before, the local solvers are defined by Ai 4Ri ARi

T , where now

A4
cm

Dt
M1Am or A4

cm

Dt
y M

2M

2M

M
z1 yAi

0

0

Ae

z
is the iteration matrix of the Monodomain or Bidomain model, respectively.
Parallelization and portability are realized using the PETSc parallel library [7,
8], assigning each subdomain and the relative block to a different processor.
We use ILU(0) solver on each block, the default choice in the PETSc library.
The numerical experiments reported in the next section show that this block
Jacobi preconditioner performs well in the Monodomain case, but not in the
Bidomain case. Therefore, more research is needed in order to build better
preconditioners, particularly with two or more levels; see Smith, Bjo.024rstad
and Gropp [38].

5.5. Numerical results.

We have conducted several numerical experiments in three dimensions on
distributed memory parallel architectures, with both the Monodomain and the
Bidomain model coupled with the LR1 membrane model. The parallel machi-
nes employed are an IBM SP RS/6000 with 512 processors Power 4 of the Ci-
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neca Consortium (www.cineca.it), an HP SuperDome 64000 with 64 processors
PA8700 of the Cilea Consortium (www.cilea.it) and an IBM Linux Cluster with
52 Xeon processors at our Department (www.mat.unimi.it). We refer to [14]
for more detailed numerical results.

5.5.1. S c a l e d s p e e d u p f o r M o n o d o m a i n a n d B i d o m a i n - LR 1 m o -
d e l s . – We consider first the Monodomain equation with LR1 ionic model, si-
mulating on the IBM SP4 machine the initial depolarization of some ellipsoidal
blocks after one stimulus of 250 mA/cm3 has been applied for 1 msec on a small
area (5 mesh points in each direction) of the epicardium. The blocks are chosen
in increasing sizes so as to keep constant the number of mesh points per sub-
domain (processor). As shown in Figure 2, the domain varies from the smaller
block with 8 subdomains to half ventricle with 128 subdomains. We fixed the
local mesh in each subdomain to be of 75375350 nodes (281,750 unknowns),
hence varying the global number of unknowns of the linear system from 2.25 Q
106 in the smaller case with 8 subdomains on a global mesh of 15031503100
nodes to 3.6 Q107 in the larger case with 128 subdomains on a global mesh of
60036003100 nodes. The model is run for 30 time steps of 0.05 msec each. At
each time step, we compute the potential v , the gating and concentration va-
riables w1 , R , w7 and the depolarization time. The results are reported in the
upper part of Table 5. The assembling time, average number of PCG iterations
per time step and the average time per time step (last three columns) are rea-
sonably small. Up to 64 processors, the algorithm seems practically scalable,
and even for 128 processors, the number of PCG iterations grows to just 8. We
then consider the Bidomain system with LR1 ionic model, in the same setting
(initial stimulus and domain decomposition) of the previous case. At each time
step, we now compute the potentials ui , ue , the gating and concentration va-
riables and the depolarization time. Due to the larger memory requirements of
the Bidomain model, we used a smaller mesh of 50350335 nodes in each
subdomain (processor), hence varying the global number of unknowns of the
linear system from 1.4 Q106 in the smaller case with 8 subdomains on a global

Fig. 2. – Scaled speedup test: ellipsoidal domains of increasing sizes decomposed into 8,
16, 32, 64 and 128 subdomains of fixed size.
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TABLE 5. – Scaled speedup tests for Monodomain - LR1 and Bidomain - LR1 models.
Initial depolarization of an ellipsoidal block: 1 stimulus on epicardial surface, 30 time
steps of 0.05 msec each, computation of v , w1 , R , w7 and isochrones. tA = assembly ti-
ming, it = average number of PCG iterations at each time step, time = average CPU ti-
ming of each time step.

Monodomain - LR1

J proc. mesh unknowns
(nodes)

tA it. time

8 4 2 Q 2 Q 2 150 Q150 Q100 2,250,000 7.7 s 4 2.7 s
16 4 4 Q 2 Q 2 300 Q150 Q100 4,500,000 8.5 s 4 3 s
32 4 4 Q 4 Q 2 300 Q300 Q100 9,000,000 9.1 s 5 3.6 s
64 4 8 Q 4 Q 2 600 Q300 Q100 18,000,000 9.2 s 5 3.6 s

128 4 8 Q 8 Q 2 600 Q600 Q100 36,000,000 10.6 s 8 5.1 s

Bidomain - LR1

J proc. mesh unknowns
(23 nodes)

tA it. time

8 4 2 Q 2 Q 2 100 Q100 Q70 1,400,000 12.9 s 98 40.2 s
16 4 4 Q 2 Q 2 200 Q100 Q70 12,800,000 13.3 s 127 55.5 s
32 4 4 Q 4 Q 2 200 Q200 Q70 5,600,600 15.7 s 148 72 s
64 4 8 Q 4 Q 2 400 Q200 Q70 11,200,000 16.2 s 176 91.9 s

128 4 8 Q 8 Q 2 400 Q400 Q70 22,400,000 18.4 s 244 129.7 s

mesh of 1003100370 to 2.24 Q107 unknowns in the larger case with 128 sub-
domains on a global mesh of 4003400370 nodes. The results are reported in
the lower part of Table 5. While the assembling time remains reasonable (un-
der 20 sec.), the average number of PCG iterations per time step and the ave-
rage time per time step are now much larger, clearly showing the limits of the
one-level preconditioner and the effects of the severe ill-conditioning of the
Bidomain iteration matrix.

5.5.2. S i m u l a t i o n o f a fu l l c a r d i a c c y c l e . – We simulated a complete car-
diac cycle (excitation-recovery) with the Monodomain - LR1 model in a slab of
cardiac tissue of size 53531 cm 3 , with fibers that rotate linearly of 120o in-
tramurally and with initial stimulus at the center of the epicardium. The mesh
was 50135013101, for a total of 25,351,101 nodes, while the simulated time
was 550 msec., using about 3300 time steps of variable size. This simulation
used 52 processors of our Linux Cluster for about 8.3 hours, averaging about 9
sec per time step. Figure 3 shows the isochrone lines of the activation time
(ACTI), repolarization time (REPO) and their difference known as action po-
tential duration (APD 4 REPO - ACTI) on the entire slab (lower row) and
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Fig. 3. – Simulation of full cardiac cycle. Isochrone lines of the activation time (ACTI),
repolarization time (REPO) and action potential duration (APD = REPO - ACTI) on a
slab 53531 cm 3 (lower row) and three horizontal sections corresponding to the epi-
cardium (first row), midwall (second row) and endocardium (third row). Under each pa-
nel are reported the minimum and maximum value plotted and the step size between
contour lines.

Fig. 4. – Stable spiral reentry with Bidomain - LR1 model on a domain 23230.5 cm 3.
Plots show the potential v at times T 4 150 and 190 msec. Colors range from blue (re-
sting potential 4 284 mV) to red (excitation wavefront).
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Fig. 5. – Stable double spiral reentry with Monodomain - LR1 model on an ellipsoidal
domain discretized with a mesh 5013501381. Plots show the potential v at time
T 4 500 msec on the epicardium (left) and the endocardium together with transmural
sections (right). Colors range from blue (resting potential 4 284 mV) to red (excitation
wavefront).

three horizontal sections corresponding to the epicardium (first row), midwall
(second row) and endocardium (third row). The three numbers under each pa-
nel are the minimum and maximum value plotted and the step size between
contour lines. We also simulated a full cardiac cycle with the Bidomain - LR1
model on a smaller slab of 23230.5 cm 3, discretized with a mesh 2013

201351. The simulation took about 6.4 days on 25 processors of the HP Super-
Dome machine.

5.5.3. S i m u l a t i o n o f r e e n t r y p h e n o m e n a . – In addition to normal hear-
tbeats, our parallel code is able to reproduce reentry phenomena usually asso-

Fig. 6. – Unstable spiral reentry with Monodomain - LR1 model on a domain 6363
0. 6 cm 3. Plots show the potential v at times T = 1250 and 1300 msec. Colors range from
blue (resting potential = -84 mV) to red (excitation wavefront)
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ciated to cardiac arrhythmias such as ventricular tachycardia and fibrillation.
Figure 4 shows a stable spiral reentry with the Bidomain - LR1 model on a do-
main 23230.5 cm 3, mesh 201 Q 201 Q 51, run on 25 processors of the HP Super-
Dome machine. The two panels show the transmembrane potential v at times
T 4 150 and 190 msec; the colors range from blue (resting potential =
2 84 mV) to red (excitation wavefront). Figure 5 shows a pair of stable coun-
ter-rotating spirals with the Monodomain - LR1 model on an ellipsoidal do-
main modeling half ventricle (same geometry as in the last case of Table 5) at
time T4500 msec after initiation. The mesh employed consists of 50135013

81 nodes for a total of 20,331,081 unknowns and the model was run on 50 pro-
cessors of our Linux Cluster, taking about 7.7 sec at each time step. The two
plots show the transmembrane potential v on the epicardium (left) and the en-
docardium together with transmural sections (right), with the same color ran-
ge as before.
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