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Topological Degree, Jacobian Determinants and Relaxation.

IRENE FONSECA - NICOLA FUSCO - PAOLO MARCELLINI

Sunto. – Si ottiene una caratterizzazione della variazione totale TV(u , V) del determi-
nante Jacobiano det Du per alcune classi di applicazioni u : VKRn che non fanno
parte della tradizionale classe di Sobolev W 1, n (V ; Rn ). In particolare, si fornisco-
no formule esplicite per applicazioni localmente Lipschitziane al di fuori di un
punto isolato x0�V . Si stabiliscono anche alcune relazioni fra TV(u , V) e il deter-
minante distribuzionale Det Du . Inoltre si fornisce una rappresentazione integra-
le per l’energia rilassata di certi integrali policonvessi relativi ad applicazioni
u�W 1, p (V ; Rn )OW 1, Q (V0]x0(; Rn ).

Summary. – A characterization of the total variation TV(u , V) of the Jacobian deter-
minant det Du is obtained for some classes of functions u : VKRn outside the tra-
ditional regularity space W 1, n (V ; Rn ). In particular, explicit formulas are de-
duced for functions that are locally Lipschitz continuous away from a given one
point singularity x0�V . Relations between TV(u , V) and the distributional deter-
minant Det Du are established, and an integral representation is obtained for the
relaxed energy of certain polyconvex functionals at maps u�W 1, p (V ; Rn )O
W 1, Q (V0]x0(; Rn ).

1. – Introduction.

In this paper we address the study of the Jacobian determinant det Du of
fields u : VKRn outside the traditional regularity space W 1, n (V ; Rn ). This
issue surfaces regularly in a wide range of contemporary research in solid
physics and in materials sciences. Indeed, applications of high-temperature
superconducting magnetic materials have had a tremendous impact in the de-
velopment of a whole mathematical theory based on Ginzburg-Landau model,
and where vorticity plays a very important role (see [7], [16]). As pointed out
by Jerrard and Soner in [42], the formation of vortices is accompanied by high-
ly localized defectiveness at points or along rays, and the ability to extend and
interpret the mechanism of change of volume dictated by the Jacobian to the
range p� (n21, n) may shed some light into this theory. Also, the formation
of (radially symmetric) holes in rubber-like (nonlinear) elastic materials is
studied in the theory of cavitation, and its advance is heavily hinged on the
characterization of the distributional Jacobian determinant (see (1); see also
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(31) below) for certain ranges of pEn . This problem has attracted the atten-
tion of several mathematical researchers for the past twenty years, and al-
though some progress has been made, pioneered by Ball [4], [5], and followed
by James and Spector [41], Müller and Spector [55], Sivaloganathan [59], Mar-
cellini [48] (the latter using an alternative, and closer to the point of view of
the present paper, approach), and many others, we believe that we have only
scratched the surface of a very rich field in the Calculus of Variations virtually
unexplored until recently. In addition, the theoretical challenges presented by
the understanding of the behavior of weak notions of the Jacobian determi-
nant are relevant to the study of harmonic mappings with singularities (see
[10]), and in the study of density results of smooth functions in
H 1 (B(0 , 1 ); S 2 ), where B(0 , 1 ) %R3 . Bethuel [6] showed that this density re-
sult holds for u�H 1 (B(0 , 1 ); S 2 ) if det Du40.

To fix the notation, we consider a vector-valued map u : V%Rn KRn , de-
fined on an open set V of Rn , for some nF2. We denote by Du4Du(x) the
gradient of u at xf (x1 , x2 , R , xn ) �V , i.e., the n3n matrix (Jacobian ma-
trix) of the partial derivatives of uf (u 1 , u 2 , R , u n ) and by

det Du(x) »4
¯(u 1 , u 2 , R , u n )

¯(x1 , x2 , R , xn )

its determinant (Jacobian determinant).
If u�W 1, n (V ; Rn ), since Ndet Du(x)NGn 2n/2 NDu(x)Nn , then the Jaco-

bian determinant det Du is a function of class L 1 (V ; Rn ). In this case the set
function

E%VKm(E) »4s
E

det Du(x) dx

is a measure in V , whose total variation NmN in V is given by

NmN(V) »4s
V

Ndet Du(x)Ndx .

When u�W 1, n (V ; Rn ) it may still be possible to consider the distributional
Jacobian determinant

Det Du»4 !
i41

n

(21)i11 ¯

¯xi
gu 1 ¯(u 2 , R , u n )

¯(x1 , R , xi21 , xi11 , R , xn )
h(1)

(or any other permutation in the set ]u 1 , u 2 , R , u n (, with the sign of the
permutation), which coincides almost everywhere with the pointwise Jacobian
determinant det Du if u�W 1, n (V ; Rn ), but which may be different otherwise.
The definition of the distributional Jacobian determinant Det Du is based on
integration by parts of the formal expression in (1), after multiplication by a
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test function. To render the definition mathematically precise it is then
necessary to make some assumptions on u . We may assume that u 1 (or, for
symmetry reasons, also the full vector u) is bounded and the gradient Du is of
class L n21 (or, more generally, the (n21)3n matrix (Du 2 , R , Du n ) is of
class L n21), i.e., u�L Q (V ; Rn )OW 1, n21 (V ; Rn ). Another possibility is to
require that u�W 1, p (V ; Rn ) for some pDn 2 /(n11) (the strict inequality is
useful for compactness reasons); in fact, in this case by the Sobolev Imbedding
Theorem u�L n 2

(V ; Rn ) and the products in (1) are well defined in L 1 be-
cause 1 /n 2 1 (n21) Q (n11) /n 2 41. Local summability assumptions are also
allowed. In this paper we assume that u�Lloc

Q (V ; Rn )OW 1, p (V ; Rn ) for
some pDn21. An extensive study of Det Du defined in (1) was carried out by
Morrey [50], (see also Reshetnyak [58]). Later Ball pointed out in [4] some rele-
vant applications of the Jacobian determinant to nonlinear elasticity, and
sharp weak continuity properties of the Jacobian has been investigated in a
series of papers by Müller, starting with [51]. More detailed description of the
state of the art in this subject may be found in Section 4.

Several attempts have been made to establish relations between the distri-
bution Det Du and the «total variation» of the Jacobian determinant
det Du(x). One possible definition is based on the following limit formula.
Given u�Lloc

Q (V ; Rn )OW 1, p (V ; Rn ) for some pDn21, the total variation
TV(u , V) of the Jacobian determinant is defined by

(2) TV(u , V) 4 infmlim inf
hK1Q

s
V

Ndet Duh (x)Ndx :

uh � u weakly in W 1, p (V ; Rn ), uh �W 1, n (V ; Rn )n .

Although, a priori, definition (2) may depend on p , as it turns out that is not
the case, and, moreover, surprisingly it can be shown that, for certain classes
of functions u , weak convergence in W 1, p (V ; Rn ) may be equivalently re-
placed by strong convergence (see (22)). Similar definitions may be proposed
under other summability assumptions on u .

There is an extensive literature addressing the «relaxed» definition of the
Jacobian determinant via (2). We refer, in particular, to the work by Marcelli-
ni [47], Giaquinta, Modica and Souček [37], [38], Fonseca and Marcellini [29],
Bouchitté, Fonseca and Malý [9]. Marcellini [48] and Fonseca and Marcelli-
ni [29] showed that the total variation of the Jacobian determinant may have a
nonzero singular part, and Bouchitté, Fonseca and Malý [9] proved that this
singular part is a measure. Also, Giaquinta, Modica and Souček [37], [38],
showed that the lower limit in (2) may be different from the total variation of
the measure Det Du . On the same vein, Malý [43] and Giaquinta, Modica and
Souček [37] (see also Jerrard and Soner [42]) proved that, for some maps u�
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L Q (V ; Rn )OW 1, p (V ; Rn ) with p� (n21, n), it may happen that the distri-
bution Det Du is identically equal to zero while the total variation of the Ja-
cobian determinant is different from zero. When Det Du is a measure, it turns
out that, in general, the total variation of the Jacobian determinant det Du(x)
is not the total variation of the measure Det Du . Some precise (from a quanti-
tative point of view) examples illustrating this phenomenon are proposed in
Section 10. More comments and references are given in Section 4.

In Section 9 we compute the total variation of a class of singular maps
u : VKS n21 %Rn , playing a central role in the analysis of Jerrard and Soner
[42], defined by

u(x) »4
w(x)2w(0)

Nw(x)2w(0)N
,(3)

where w : VKRn is a locally Lipschitz-continuous map, classically differen-
tiable at x40 and such that det Dw(0) c0. We find that the total variation of
the Jacobian determinant of u in V (an open set of Rn containing the origin) is
equal to the measure v n of the unit ball.

The aim of this paper is to give an explicit characterization of the total varia-
tion TV(u , V) of the Jacobian determinant det Du(x), defined in (2), for some
classes of functions u�Lloc

Q (V ; Rn )OW 1, p (V ; Rn ) with pDn21, in particu-
lar for those u locally Lipschitz-continuous away from a given point x0 �V
(and thus with the Jacobian determinant det Du possibly singular only at x0).

Statements of the main results are given in the following Section 2. In Sec-
tion 3 we relate the notion of total variation of the Jacobian determinant to the
topological degree. A relevant geometrical interpretation is given by Corol-
lary 15 of Section 3. In particular, denoting by B1 the unit ball of Rn and by
S n21 »4¯B1 its boundary, we prove that, if v : S n21 KS n21 is a map of class
C 1 onto S n21 , locally invertible with local inverse of class C 1 at any point of

S n21 , and if u : B1 0]0( KS n21 is defined by u(x) »4v g x

NxN
h , then the total

variation TV(u , B1 ) of the Jacobian determinant of u may be expressed in
terms of the topological degree of the maps v and vA, where vA : B1 KB1 is any
Lipschitz-continuous extension of v to the unit ball B1 . Precisely,

TV(u , B1 ) 4v n Ndeg vN4v n Ndeg vA N .(4)

Note that formula (4) does not hold, in general, if the map v : S n21 KRn takes
values on a set v(S n21 ) not diffeomorphic to S n21 (see Theorem 4 and the ex-
amples of Section 10). A generalization of this result holds if we assume that u
is in W 1, p (V ; RN ) for some p� (1 , N) and is locally Lypschitz outside a finite
number of points ai �V , i41, R , k , provided that u satisfies in a neighbor-
hood of each ai the hypotheses of Theorem 1 for suitable functions vi . In this
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case the total variation of the Jacobian of u is given by

TV(u , V) 4s
V

Ndet Du(x)Ndx1 !
i41

k

pNdeg viN .

For possible extensions of this formula to more general spaces we refer to
[12], [13].

Section 4 is dedicated to explaining how the study of the total variation
TV(u , V) fits squarely within the framework of relaxation problems with
nonstandard growth conditions. In Section 5 we present a thorough study of
the 2-d case, which plays a very special role. In fact, in two dimensions we are
able to perform a deeper analysis and to find more general assumptions which
allow us to characterize fully the total variation TV(u , V). In particular, it is
possible to identify TV(u , V) of maps u : B1 %R2 KG , with values on a set G
which is the boundary of a simply connected domain D%R2 , starshaped with
respect to a point j in the interior of D (for example, when G4S 1 is the
boundary of the unit ball B1). We emphasize Lemma 22, which we call «the um-
brella lemma», and which plays a crucial role in our argument, as explained in
Section 5. For the sake of completeness, we include the statement, without
proof, of some 2-dimensional results that have been presented in [24].

In Section 7 we move on to the general n-dimensional framework, and in
Section 8 we apply the results thus obtained to the study of relaxation of poly-
convex functionals. Indeed, we provide an explicit representation formula for
the related energy associated to the polyconvex integral functional

F(u , V) »4s
V

g(M(Du) ) dx ,

where g : RN K [0 , 1Q) is a convex function, M(Du) is the map with values

in RN , N4 !
j41

n gn
j
h2

, defined by

M(Du) »4 (Du , adj2 Du , R , adjn21 Du , det Du) ,

and where adjj Du denotes, for every j42, R , n21, the matrix of all minors
j3 j of Du .

Finally, in Section 9 we study in detail TV(u , V) when u is as in (3). Addi-
tional 2-dimensional and 3-dimensional examples are proposed in Section 10.
The special, but representative, case analyzed in Section 10 concerns maps
u : B1 %R2 Kg4g1Ng2 , were g is the «eight» curve, i.e., the union of the
two tangent circles g64 ](x1 , x2 ) �R2 : (x1 Z1)2 1 (x2 )2 41( in R2 . In parti-
cular, we show (see Theorem 4 and Section 10) that in general formula (4),
which relates the total variation TV(u , V) of the Jacobian determinant with
the topological degree, does not hold if the map u : B1 %R2 Kg takes values on
the «eight» curve g .
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2. – Statement of the main results.

In this section we state several representation formulas for the total varia-
tion TV(u , V) of the Jacobian determinant, defined in (2). We consider first
the 2-d case in detail, where the assumptions needed are more general than in
the case nF2, and in the second part of this section we describe the general
n-dimensional case.

In order to fix the notation, here we consider x0 40 and V%R2 is an open
set containing the origin. With an obvious abuse of notation, we write u(x) 4

u(x1 , x2 ) 4u(r , w), where (r , w), rF0, 0 GwG2p , are the polar coordinates
in R2 . We also denote by Dt u the tangential derivative of u (in the t4

(2sin w , cos w) direction), which is related to the (vector-valued) derivative uw

by the formula

uw4:
¯u(r cos w , r sin w)

¯w
4r[2ux1

sin w1ux2
cos w] 4rDt u .

We denote by v : [0 , 2p] KG%R2 a Lipschitz-continuous map, with v(0) 4

v(2p), with components v(w) 4 (v 1 (w), v 2 (w) ), and with values on a curve G*
v( [0 , 2p] ). We assume that G can be parametrized in the following way

G4 ]j1r(w)( cos w , sin w) : w� [0 , 2p]( ,(5)

where r(w) is a piecewise C 1-function such that r(0) 4r(2p), and r(w) Fr0 for
every w� [0 , 2p] and for some r0 D0. Condition (5) reduces to saying that G is
the boundary of a domain

D»4 ]j1r( cos w , sin w) : w� [0 , 2p], 0 GrGr(w)( ,(6)

starshaped with respect to a point j in the interior of D . The following theo-
rem was proved in [24].

THEOREM 1 (General result in 2-d). – Let u be a function of class
W 1, p (V ; R2 )OWloc

1 , Q (V0]0(; R2 ) for some p� (1 , 2 ). Let v : [0 , 2p] KG ,
v(w) 4 (v 1 (w), v 2 (w) ), w� [0 , 2p], be a Lipschitz-continuous map, with
v(0) 4v(2p) and G as in (5), and such that

lim
rK0

Vu(r , Q)2v(Q)VL Q ( (0 , 2p); R2 ) 40 .(7)

If the tangential derivative Dt u of u satisfies the bound

sup
rD0

1

r 22p s
Br

NDt uNp dx4 sup
rD0

1

r 22p s
0

r

r 12p drs
0

2p

Nuw (r , w)Np dwGM0
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for a positive constant M0 , then the total variation of u is given by

TV(u , V) 4s
V

Ndet Du(x)Ndx1
1

2 Ns
0

2p

]v 1 (w) vw
2 (w)2v 2 (w) vw

1 (w)( dwN.

Note that, by (7), there exists rD0 such that Br %V and u�L Q (Br ; R2 ).
Therefore in the statement of Theorem 1 we have in fact u�Lloc

Q (V ; R2 )O
W 1, p (V ; R2 )OWloc

1 , Q (V0]0(; R2 ) for some p� (1 , 2 ). Moreover, the assump-
tion of Lipschitz-continuity of v may be replaced by the weaker assumption
that v�W 1, p ( (0 , 2p); R2 ).

Consider the particular case in which the map u4u(r , w) does not depend
on r , that is u4u(w). Then, as a function of w , u4u(w) : [0 , 2p] KR2 is a Lip-
schitz-continuous map and u(0) 4u(2p). Looked upon as a function of two
variables, i.e., u : V4B1 KR2 constant with respect to r� (0 , 1 ], it turns out
that u�L Q (V ; R2 )OW 1, p (V ; R2 )OWloc

1 , Q (V0]0(; R2 ) for every p� [1 , 2 ),
but u�W 1, 2 (V ; R2 ) unless u(w) is constant.

From the previous result, with u4v , we immediately obtain the following
consequence (see [24]).

COROLLARY 2 (Radially independent maps in 2-d). – Let G be as in (5), and
let u4v : [0 , 2p] KG be a Lipschitz-continuous map such that v(0) 4v(2p).
Then det Du(x) 40 for almost every x�R2 and the total variation of the Jaco-
bian determinant is given by

TV(u , V) 4
1

2 Ns
0

2p

]v 1 (w) vw
2 (w)2v 2 (w) vw

1 (w)( dwN.(8)

We observe that formula (8) has a relevant geometrical meaning because
the right hand side represents the «winding number» of the curve v4

(v 1 , v 2 ). See Section 3 for a further discussion on the geometric interpretation
of (8).

With the aim to compare the previous result with the n-dimensional results
given below, in Section 5 we present the following equivalent formulation of
Corollary 2.

COROLLARY 3 (Analytic interpretation in 2-d). – Let G be as in (5), and let
v : [0 , 2p] KG be a Lipschitz-continuous map such that v(0) 4v(2p). Then
the total variation TV(u , V) is given by

TV(u , V) 4 Ns
B1

det DuA(x) dxN,(9)

where uA : B1 KR2 is any Lipschitz-continuous extension of v to B1 .
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Note the surprising fact that the integral in the right hand side of (9) (and
in (8) as well) appears with the absolute value outside the integral sign, and
not inside!

Another relevant 2-dimensional result is related to the «eight» curve in R2 ,
i.e., to the union g of the two circles g1 , g2 , of radius 1 with centers at (1, 0)
and at (21, 0) respectively. Some explicit examples related to the «eight» curve
are given in Section 10. Below we present two estimates, proven in [24], an upper
bound and a lower bound, which will allow us to study these examples.

THEOREM 4 (The «eight» curve). – Let g4g1Ng2%R2 be the union of the
two circles of radius 1 with centers at (1, 0) and at (21, 0). Let v : [0, 2p] Kg
be a Lipschitz-continuous curve, with parametric representation v(w) 4

(v 1 (w), v 2 (w) ), w� [0 , 2p], such that v(0) 4v(2p). Let (Ij )j�N be a sequence of
disjoint open intervals (possibly empty) of [0 , 2p] such that the image v(Ij ) is
contained either in g1 or in g2 , and v(w) 4 (0 , 0 ) when w�Nj�N Ij . Then,
with u(x) »4v(x/NxN), the following upper estimate holds

TV(u , B1 ) G
1

2
!
j�NNsIj

]v 1 (w) vw
2 (w)2v 2 (w) vw

1 (w)( dwN.

For the lower estimate, we denote by Ij
1 , with the 1 sign, any previous inter-

val Ij such that v(Ij ) %g1 , and by Ik
2 any previous interval Ik such that

v(Ik ) %g2 . Then we also have

TV(u , B1 )F
1

2
{N!

j�N
s

Ij
1

]v 1 vw
22v 2 vw

1( dwN1N !
k�N

s
Ik

2

]v 1 vw
22v 2 vw

1( dwN} .

Moving on to the n-dimensional case, we first establish in Theorem 5 a gen-
eral inequality between the total variation of the distributional determinant
Det Du (see (1)), that we denote by NDet DuN(V), and the total variation
TV(u , V) if the Jacobian, defined in (2). Note that in the first half of the state-
ment of the next theorem we do not assume that u�Wloc

1 , Q (V0]0(; Rn ), while
in the second half we require that u�Wloc

1 , n (V0]0(; Rn ).

THEOREM 5 (Comparison between NDet DuN(V) and TV(u , V) ). – Let pDn21
and assume that u�L Q (V ; Rn )OW 1, p (V ; Rn ). If TV(u , V) E1Q , then
TV(u , Q) and Det Du are finite Radon measures, det Du�L 1 (V), and

TV(u , A) 4s
A

Ndet Du(x)Ndx1l s (A) ,(10)

Det Du(A) 4s
A

det Du(x) dx1m s (A) ,(11)
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for every open set A%V , where l s , m s , are finite Radon measures, singular
with respect to the Lebesgue measure L n , and Nm sNGl s , i.e., for every open
set A%V ,

NDet DuN(A) GTV(u , A) .(12)

If, in addition, u�Wloc
1 , n (V0]0(; Rn ), then l s 4ld 0 , m s 4md 0 , for some con-

stants lF0, m�R , with NmNGl , where d 0 is the Dirac mass at the
origin.

Examples given in Section 10 show that in general the equality between
NDet DuN(A) and TV(u , A) should not be expected. In particular, this equality
fails for maps valued on the «eight» curve. The proof of Theorem 5 is present-
ed at the end of Section 4. We note that one of the main contributions of this
paper is the identification of the defect constants lF0, m�R .

Let us denote by Br the ball in Rn , nF2, with center in 0 and radius rD0.
In particular, B1 is the ball of radius r41 and ¯B14S n21 is its boundary.

We call the attention of the reader to the fact that, in dealing with the gene-
ral n-dimensional case, we denote by v a map from S n21 into Rn , while in 2-d
v4v(w) does not denote a map from S 1 into R2 , but instead a periodic function
from [0 , 2p] into R2 . Therefore, if v is the corresponding map from S 1 into R2 ,
then we have v(w) 4 v( cos w , sin w).

Let v 0 �S n21 be fixed. For every j� ]1, 2 , R , n21( let t j :
S n21 0]v 0( K¯B1 by a vector field of class C 1 such that, for every x�
S n21 0]v 0(, the set of vectors ]t 1 (v), t 2 (v), R , t n21 (v)( is an orthonormal
basis for the tangent plane to the surface ¯B1 at the point v .

The following theorem provides a general representation formula for the
total variation of the distributional determinant NDet DuN(V). Note that, un-
der the assumption u�Wloc

1 , Q (V0]0(; Rn ), by formula (15) we give a represen-
tation of the total variation of the singular measure m s in (10).

THEOREM 6 (Total variation of the distributional determinant). – Let nF2
and let V be an open set containing the origin. Let u�W 1, p (V ; Rn )O
Wloc

1 , Q (V0]0(; Rn ) for some p� (n21, n). Let v : ¯B1 4S n21 KRn , v�
W 1, Q (S n21 ; Rn ), v4 (v 1 , v 2 , R , v n ), be a Lipschitz-continuous map such
that

lim
rK01

max ]Nu(rv)2v(v)N : v�S n21( 40 .(13)

Let us assume that

sup
rD0

1

r n2p s
Br

NDt uNp dxGM0(14)
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for a positive constant M0 . If det Du�L 1 (V) then Det Du is a Radon mea-
sure and its the total variation NDet DuN is given by

(15) NDet DuN(V) 4s
V

Ndet Du(x)Ndx1

1

n N s
¯B1

!
i41

n

(21)i11 v i (v)
¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
(v) dH n21N.

Moreover, if we denote by uA : B1 KRn any Lipschitz-continuous extension of
v to B1 , then

NDet DuN(V) 4s
V

Ndet Du(x)Ndx1Ns
B1

det DuA(x) dxN.(16)

By assumption (13) there exists rD0 such that u�L Q (Br ; R2 ). Thus, in
the statement of Theorem 6 (and in Theorem 9 below), we actually have that u
is a function of class Lloc

Q (V ; Rn )OW 1, p (V ; Rn )OWloc
1 , Q (V0]0(; Rn ) for some

p� (n21, n).

REMARK 7. – A simple calculation shows that in 2-d the last term on the
right hand side of (15) reduces to

1

2 Ns
0

2p

]v 1 (w) vw
2 (w)2v 2 (w) vw

1 (w)( dwN,

where v : [0 , 2p] KR2 is the asymptotic limit map in (7). Indeed, denoting by
v : S 1 KR2 the map related to v through the condition v(w) »4 v( cos w , sin w),
we have

dv i

dw
4

¯vi

¯x1

(2sin w)1
¯vi

¯x2

cos w , i41, 2 ,

and, since the unit tangent vector t : [0 , 2p] K¯B1 can be represented by
t(u) 4 (2sin w , cos w), we obtain

dv i

dw
4

¯vi

¯t
, i41, 2 .

With the notation v4g x1

NxN
, x2

NxN
h4( cos w , sin w) �¯B14S 1 , we finally have

s
0

2p

]v 1 (w) vw
2 (w)2v 2 (w) vw

1 (w)( dw4s
0

2p

mv 1 ¯v 2

¯t
2v 2 ¯v 1

¯t
n dw

4 s
¯B1

!
i41

2

(21)i11 v i (v)
dv i

dt
(v) dH 1 .
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Therefore (15) in 2-d becomes

NDet DuN(V) 4s
V

Ndet Du(x)Ndx1
1

2 Ns
0

2p

]v 1 vw
2 2v 2 vw

1( dwN,

and the conclusion of Theorem 1 now can be restated in the form

TV(u , V) 4NDet DuN(V) .

REMARK 8. – In the case of the «eight» curve studied by Theorem 4, with
v : [0 , 2p] Kg4g1Ng2%R2 and u(x) 4v(x/NxN), we have

(17) TV(u, B1)F
1

2
{N!j�N

s
Ij

1

]v 1vw
22v 2vw

1( dwN1N!k�N
s

Ik
2

]v 1vw
22v 2vw

1( dwN}

F
1

2 Ns
0

2p

]v 1 (w) vw
2 (w)2v 2 (w) vw

1 (w)( dwN4NDet DuN(B1 ) .

Therefore, as in the general case (see Theorem and (12) in particular),
TV(u , B1 ) FNDet DuN(B1 ). Moreover, in view of the inequalities in (17), we
can easily find an example such that the strict inequality TV(u , B1 ) D

NDet DuN(B1 ) holds. See Section 10.

Next we state the main result for the n-d case, analogous to Theorem 1.
The proof of the theorem may be found in Section 7.

THEOREM 9 (General result in n-d). – Let nF2 and let V be an open set
containing the origin. Let u�W 1, p (V ; Rn )OWloc

1 , Q (V0]0(; Rn ) for some p�
(n21, n) and let v�W 1, Q (S n21 ; Rn ) satisfying (13) and (14). If det Du�
L 1 (V) then TV(u , V) 41Q . If det Du�L 1 (V), then the total variation of
the distributional determinant NDet DuN(V) is given by (15) and
TV(u , V) FNDet DuN(V). Moreover, if the quantity

!
i41

n

(21)i11 v i ¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
(18)

has constant sign H n21-almost everywhere on ¯B1 , then

TV(u , V) 4NDet DuN(V) .(19)

In Section 9 we apply Theorem 9 to calculate explicitly the total variation of

the singular map u : V0]0( KRn , u(x) 4
w(x)2w(0)

Nw(x)2w(0)N
, where w is a map dif-

ferentiable at x40, with det Dw(0) c0, to obtain TV(u , V) 4NB1N4v n .
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REMARK 10. – We conjecture that formula (19) holds independently of the
sign condition (18) for a certain of subclass of mappings u with asymptotic
limit v at x40, in particular if v : S n21 KRn takes values on S n21 . Theorem
1 above asserts that this conjecture is true in the 2-dimensional case, and
when v(S 1 ) is the set G in (5), boundary of a starshaped set. With the
Example 42 we propose a 3-d case where the conjecture is also true. However,
if v(S n21 ) is not diffeomorphic to S n21 , as in the case of the «eight» curve
considered in Theorem 4 (see also the examples of Section 10), then the repre-
sentation formula for TV(v , B1 ) should take into account the topology of
v(S n21 ).

As further applications of Theorem 9, now we consider radially indepen-
dent maps u : VKRn , defined through a Lipschitz-continuous map
v : S n21 KRn by the position

u(x) »4vg x

NxN
h , ( x�B1 0]0( .

Clearly u�W 1, p (V ; Rn )OWloc
1 , Q (V0]0(; Rn ) for every p� [1 , n), but u�

W 1, n(V ; Rn) unless v is a constant function. We obtain immediately from Theo-
rem 9 the following result.

COROLLARY 11 (Radially independent maps). – Let v : ¯B1 4S n21 KRn ,
v4 (v 1 , v 2 , R , v n ), be a Lipschitz-continuous map. For every open set V
containing the origin we consider the map u : VKRn , defined by u(x) »4

v(x/NxN) for x�V0]0(. For every p� (n21, n) the total variation of the Jaco-
bian of u is given by

(20) TV(u , V) 4

1

n N s
¯B1

!
i41

n

(21)i11 v i (v)
¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
(v) dH n21N,

provided the quantity (18) has constant sign H n21-almost everywhere on
¯B1 .

The following result is similarly to Corollary 3, valid in the 2-d case.

COROLLARY 12 (Analytic interpretation in n-d). – Let v : S n21 KRn be a
Lipschitz-continuous map, let V be an open set containing the origin, and let
u : VKRn be defined by u(x) »4v(x/NxN) for x�V0]0(. Denote by uA : B1 KRn
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the Lipschitz-continuous extension of v to B1 given by uA(0) 40 and

uA(x) »4NxN Qvg x

NxN
h , ( x�B1 0]0( .

If the Jacobian det DuA(x) has constant sign H n21-almost everywhere on B1 ,
then

TV(u , V) 4 Ns
B1

det DuA(x) dxN.(21)

REMARK 13. – Let us assume that v : S n21 KS n21 is a map of class C 1 on-
to S n21 , locally invertible with C 1 local inverse at any point of S n21 . If uA is
defined as before by uA(x) 4NxN Qv(x/NxN), then also uA : B1 KB1 is a map of
class C 1 and it is locally invertible with C 1 local inverse at any point of
B1 0]0(. Then the assumption of Corollary 12 is satisfied. Indeed,
det DuA(x) c0 for every x�B1 0]0( and, by continuity, det DuA(x) has con-
stant sign in B1 0]0(. We also notice that, by (65) of Lemma 35, when h(t) 4 t
we have

det DuA(x) 4 !
i41

n

(21)i11 v ig x

NxN
h ¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
g x

NxN
h ,

therefore the sign assumption in Corollary 12 is equivalent to the sign as-
sumption of Theorem 9.

A final remark about the definition (2) of the total variation TV(u , V) of
the Jacobian determinant det Du(x): as before, consider u�L Q (V ; Rn )O
W 1, p (V ; Rn ) for some pDn21. The definition in (2) of TV(u , V) is based on
the convergence of a generic sequence ]uh(h�N%W 1, n (V ; Rn ) to u in the
weak topology of W 1, p (V ; Rn ). Instead, we could consider the strong norm
topology and give the following definition of TV s (u , V):

(22) TV s (u , V) 4 infmlim inf
hK1Q

s
V

Ndet Duh (x)Ndx :

uh Ku strongly in W 1, p (V ; Rn ), uh �W 1, n (V ; Rn )n .

Clearly we have

TV(u , V) GTV s (u , V) , ( u�L Q (V ; Rn )OW 1, p (V ; Rn ) .

However it is interesting, and somewhat surprising, to observe that Theorems
1, 4 and 9 (as well as Corollaries 2 and 11) still hold if we replace TV(u , V) by



IRENE FONSECA - NICOLA FUSCO - PAOLO MARCELLINI200

TV s (u , V). In particular, under the assumptions of Theorems 1 and 9 we have
indeed

TV(u , V) 4TV s (u , V) ,

for every open set V%Rn , and for every u�L Q (V ; Rn )OW 1, p (V ; Rn ) with
pDn21.

Using the argument of Lemma 32, for every u�L Q (V ; R2 )O
W 1, p (V ; R2 )OWloc

1 , Q (V0]0(; R2 ) with pD1, it can be shown that admissible
sequences for TV s (u , V) may be required to assume prescribed boundary
values, precisely

TV s (u , V) 4 infmlim inf
hK1Q

s
V

Ndet Duh (x)Ndx :

uh Ku strongly in W 1, p (V ; R2 ), uh �uh 4u on ¯VW0
1, Q (V ; R2 )n .

3. – Geometrical interpretation.

In this section we give a geometrical interpretation of the results stated in
Section 2, by means of the notion of topological degree of maps between
manifolds.

We recall that if w : VKRn is a Lipschitz-continuous map, then the topo-
logical degree of the map w at a point y�Rn is

deg (w , V , y) »4 !
x�w 21 (y)OA(w)

sign (det Dw(x) ) ,

where A(w) 4 ]x�V : w is differentiable at x(. The degree of the map w in the
set V , denoted by deg w , is

deg w»4
1

Nw(V)N
s

w(V)

!
x�w 21 (y)OA(w)

sign (det Dw(x) ) dy ,(23)

4
1

Nw(V)N
s

w(V)

!
x�w 21 (y)

sign (det Dw(x) ) dy

(above we used the fact that, since w is a Lipschitz-continuous map, then the
measure of the sets V0A(w) and of its image w(V0A(w) ) are equal to zero).
See the books by Giaquinta, Modica and Souček [38] and by Fonseca and
Gangbo [26] for more details.
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It is well known that

s
V

det Dw(x) dx4 s
w(V)

deg (w , V , y) dy ,

and thus

deg w4
1

Nw(V)N
s

V

det Dw(x) dx .(24)

Using of the symbol J to denote the cardinality of the set, we have

s
V

Ndet Dw(x)Ndx4 s
w(V)

J]x�V : w(x) 4y( dy .(25)

For our purpose it is also useful to recall the definition of degree of a map
v : S n21 KS n21 , v onto S n21 . To this aim let us denote by Tv the tangential
plane to S n21 at the point v�S n21 . If v is Lipschitz-continuous, then for
H n21-a.e. v�S n21 the differential dvv : TvKTv(v) exists. Similarly to the Eu-
clidean case (23), the degree of v is defined by (see Chapter 5 of the book by
Milnor [49])

deg v»4
1

nv n
s

S n21

!
v�v 21 (s)

sign (det dvv ) dHs
n21 ,

where, with an obvious abuse of notation, we denote by dvv also the (n21)3

(n21) matrix representing the differential with respect to two fixed bases in
Tv and Tv(v) . Using again the area formula for maps between manifolds, as in
(24) we get (see also [12], [13])

deg v4
1

nv n
s

S n21

det dvv dHv
n21 .

Fix v 0 �¯B1 and denote by t j : S n21 0]v 0( KRn , for j� ]1, 2 , R , n21(, a
vector field of class C 1 such that, for every x�S n21 0]v 0 (, the set of vectors
]t 1 (x), t 2 (x), R , t n21 (x)( is an orthonormal basis for the tangent plane to
the surface S n21 at the point x . The following representation formula (26) for
deg v holds.

THEOREM 14. – Let v : S n21 KS n21 be a Lipschitz-continuous map
onto S n21 . Then, for H n21-a.e. v�S n21 , we have

det dvv4 !
i41

n

(21)i11 v i (v)
¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
(v) .(26)
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Theorem 14 is proved below in this section. We deduce from Theorem
14 and Corollary 11 the following consequence.

COROLLARY 15 (Geometric interpretation. – Let v : S n21 KS n21 be a map
of class C 1 and onto, and let u : B1 0]0( KS n21 be defined by u(x) »4v(x/NxN).
If dvv is not singular at any v�S n21 , i.e., if v is locally invertible with C 1 lo-
cal inverse at any point of S n21 , then

TV(u , B1 ) 4v n Ndeg vN4v n Ndeg vA N ,(27)

where vA : B1 KRn is any Lipschitz-continuous extension of v to B1 .

REMARK 16. – In two dimensions the total variation TV(u , B1 ) can be ex-
pressed in terms of the degree as in (27) under the sole assumption that v
maps S 1 into a simple curve enclosing a starshaped domain (see Corollary
2). However, as shown in Section 10, this is not true anymore if v maps S 1

into a non-simple curve, such as the «eight» curve.

PROOF OF THEOREM 14. – Fix v�S n21 and denote by ]t 1 , t 2 , R , t n21 (,
]s 1 , s 2 , R , s n21 (, two orthonormal bases for the tangent planes to Tv and
Tv(v) , respectively. With respect to these two bases the linear map dvv : TvK

Tv(v) is represented by the (n21)3 (n21) matrix with coefficients

(dvv )ij 4 os j ,
¯v

¯t i

(v)p .

Therefore the matrix dvv is the product of A and B , where A is the (n21)3n

matrix whose rows are ¯v

¯t i

and B is the n3 (n21) matrix whose columns are

s j . By (iii) of Lemma 37 we have

det dvv4 !
i41

n

det X, i (A) Qdet Xi , (B) ,

where

det X, i (A) 4
¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
(v) ,

and in view of (78)

det Xi , (B) 4 (21)i11 n i (v(v) ) ,

where n i (v(v) ) is the i-th component of the outward unit normal S n21 at v(v),
i.e., n i (v(v) ) 4v i (v). This concludes the proof of (26). r
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PROOF OF COROLLARY 15. – From the previous theorem we deduce that, if
dvv is not singular at v�S n21 , then det dvvc0. Therefore, the right hand
side of (26) is different from zero and has constant sign, since by assumption
the map v is of class C 1 . The first equality in (27) follows from Theorem 14 and
(20). The second equality is consequence of (21) and of (24). r

We conclude by giving a geometrical interpretation of some of the esti-
mates given in this paper. In the following statement we use again of the sym-
bol J to denote the cardinality of a set.

THEOREM 17. – Let v : S n21 KS n21 be a Lipschitz-continuous map and
let u : B1 0]0( KS n21 be defined by u(x) »4v(x/NxN). The total variation
TV(u , B1 ) of the Jacobian of u can be estimated by

TV(u , B1 ) Fv n Ndeg vN ,(28)

TV(u , B1 ) G
1

n
s

¯B1

J]x�S n21 : v(x) 4v( dHv
n21 .(29)

PROOF. – Inequality (28) follows from inequality TV(u , B1 ) F

NDet DuN(B1 ), equality (15) of Theorem 6 on the representation of
NDet DuN(B1 ), and formula (26) of Theorem 14.

To prove (29), we apply the estimate (72) and formula (25). Precisely, we
denote by vA : B1 KRn the extension of v defined by vA(0) 40 and

vA(x) »4NxN Qvg x

NxN
h , ( x�B1 0]0( .

Let r h K01 and define

uh (x) »4
.
/
´

1

r h

vA(x)

u(x) »4v(x/NxN)

if x�Br h
,

if x�B1 0Br h
.

Clearly uh � u in W 1, p (V ; Rn ) and, by (25),

TV(u , B1 ) G lim inf
hK1Q

s
B1

Ndet Duh (x)Ndx4 lim inf
hK1Q

s
Br h

Ndet D
1

r h

vA(x) Ndx

4s
B1

Ndet DvA(x)N dx4 s
vA(B1 )

J]x�B1 : vA(x) 4y( dy ,
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and, since vA(B1 ) ’B1 ,

TV(u , B1 ) Gs
B1

Jmx�S n21 : v(x) 4
y

NyN
n dy4

s
0

1

r n21 dr s
¯B1

J]x�S n21 : v(x) 4v( dHv
n21 4

1

n
s

¯B1

J]x�S n21 : v(x) 4v( dHv
n21 . r

4. – Det Du versus det Du.

In this section we give a brief overview of relations between Det Du ,
det Du and TV(u , V). We recall that the Jacobian det Du is given by

det Du(x) »4
¯(u 1 , u 2 , R , u n )

¯(x1 , x2 , R , xn )
4 !

i41

n
¯u 1

¯xi

( adj Du)1
i ,(30)

where adj Du stands for the adjugate of Du , i.e., the transpose of the matrix of
cofactors of Du . It is clear that when u�Wloc

1 , n (V ; Rn ) then det Du�Lloc
1 (V).

However, it is well known that, within some ranges of lower regularity for u , it
is still possible to introduce a new concept of determinant which agrees with
det Du when u�Wloc

1 , n (V ; Rn ).
Consider the distributional Jacobian determinant, which, as usual,

is denoted by Det Du capitalized, and is given by

(31) Det Du»4 !
i41

n (21)i11 ¯

¯xi
gu 1 ¯(u 2 , R , u n )

¯(x1 , R , xi21 , xi11 , R , xn
h4

!
i41

n
¯

¯xi

(u 1 ( adj Du)1
i ) .

Note that Det Du is a distribution when u�W 1, p (V ; Rn ), adj Du�
L q (V ; Rn3n ), with 1/p11/qG111/n (in particular, when u�Wloc

1 , p (V ; Rn )
for some pDn 2 /(n11)), or when u�Lloc

Q (V ; Rn )OWloc
1 , n21 (V ; Rn ) (actually,

it suffices to require that u 1 �Lloc
Q (V ; Rn ), and that the vector field of

derivatives (Du 2 , Du 3 , R , Du n ) �Lloc
n21 (V ; R(n21)3n ) ). In the latter case,

it is clear that the products in (31) are in Lloc
1 (V). Also, if u�W 1, p (V ; Rn )

and adj Du�L q (V ; Rn3n ) with 1 /p11/qG111/n , then this integrability
property still holds by virtue of Hölder’s inequality together with the
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fact that 1 /q11/(p *) G1 and, due to the Sobolev Embedding Theorem,
u�Lloc

p * (V ; Rn ).
For smooth functions the Jacobian determinant det Du(x) and the distri-

butional Jacobian determinant Det Du coincide. In fact, if u�W 1, n (V ; Rn )
then using the fact that the adjugate is divergence free, it is easy to see that
(30) reduces to (31). Also, Müller, Tang and Yan proved in [56] that if u�
W 1, n21 (V ; Rn ) and if adj Du�L n/(n21) (V ; Rn3n ) then Det Du4 det Du and
it belongs to L 1 (V). This relation may fail if u is not sufficiently regular. As an
example, consider (see [38])

u(x) »4
n
ka n 1NxNn x

NxN
, V»4B1 ,

where B1 , as in the previous sections, stands for the open ball in Rn centered
at zero and with radius one. Then u�W 1, p (B1 ; Rn ) for all pEn , det Du41
a.e. in B1 , but

Det Du4 Ln DB1 1v n a n d 0 ,

where Ln denotes the Lebesgue measure in Rn and v n is the volume of the
unit ball B1 . Similarly, as shown in [29], if u(x) »4x/NxN then det Du40 a.e. in
B1 and Det Du4v n d 0 .

These examples suggest that, at least for some ranges of p , when Det Du is
a Radon measure then its absolutely continuous part with respect to the n-di-
mensional Lebesgue measure reduces to det Du . Indeed, this holds when u�
W 1, p (V ; Rn ) and adj Du�L q (V ; Rn3n ) with 1 /p11/qG111/n (see [52]);
see also Theorem 5.

The presence of singular measures in Det Du is in perfect agreement with
recent experiments, which suggest that, in addition to bulk energy, surface
contributions and singular measures may also be energetically relevant, thus
disfavoring the creation of extremely small cavities (see [17], [32] and [33]).
These considerations have motivated the search for a characterization of the
singular measures which may appear in the description of the distributional
Jacobian determinant. If we do not impose any geometrical or analytical re-
strictions on the function u , then it is possible to attain Radon measures with
support of arbitrary Hausdorff dimension. Precisely, it was proven by Müller
[54] (see also [52]) that, given a� (0 , n), there exists a compact set K%B1 with
Hausdorff dimension a , and there exists u�W 1, p (B1 ; Rn )OC 0 (B1) for all
pEn , such that

Det Du4 det Du Ln DB1 1m s ,(32)

where m s is a positive Radon measure, singular with respect to Ln , and
such that supp m s 4K . The situation is dramatically different if u�
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W n21 (V , S n21 ), as it can be shown that if Det Du is a finite, signed, Radon
measure then Det Du is a finite integer combination of Dirac masses (see
Brezis and Nirenberg [12], [13]). The use of BMO and Hardy spaces allows
one to obtain higher integrability results along the lines of Müller [51], [53],
and Coifman, Lions, Meyers and Semmes [18]. As an example, it can be shown
that if u�W 1, n (V ; Rn ) is such that det DuF0, then (see also Brezis, Fusco
and Sbordone [11] and Iwaniec and Sbordone [40]) det Du log(21det Du) �
Lloc

1 (V).
As mentioned before, in this paper we assume that u is a function of

class

W 1, p (V ; Rn )OWloc
1 , Q (V0]0(; Rn )

for some p� (n21, n) and for an open set V%Rn containing the origin. The
definition of the total variation TV(u , V) introduced in (2) follows the ap-
proach commonly used for variational problems with non-standard growth and
coercivity conditions (see [1], [2], [9], [15], [27], [29], [38], [45], [47], [48]). The
aim of this paper is to characterize TV(u , V). In [29] Fonseca and Marcellini
accomplished this for u(x) 4x/NxN . Fonseca and Malý [27], and Bouchitté,
Fonseca and Malý [9] set up the problem into a broader context. Precisely, if
f : V3Rn3n KR is a Carathéodory function, then the effective (or relaxed)
energy is defined as

Fp , q (u , V) »4 infmlim inf
hKQ

s
V

f (x , Duh ) dx : uh �Wloc
1 , q , uh � u in W 1, pn .(33)

In the case, where f (x , j) »4g(det j) and g : K [0 , 1Q) is a convex function,
then (see [15], [22], [27])

Fp , n (u , V) Fs
V

g(det Du(x) ) dx if pFn21 ,

and if pDn21 then (see [9])

Fp , n (u , V) 4s
V

g(det Du(x) ) dx1m s (V) ,

for some Radon measure m s , singular with respect to the Lebesgue measure
Ln . For a general integrand f , and under the growth condition 0 G f (x , j) G

C(11NjNq ), with pD
n21

n
q , we have

Fp , q (u , V) 4hu Ln DV1l s ,(34)
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where (see [1]) hu GQf (x , Du), and l s is a singular measure. If f4 f (j) then it
can be shown that (see [9], [27])

hu 4Qf (Du) ,(35)

where Qf stands for the quasiconvexification of f , precisely (see [19], [50])

Qf (j) »4 inf{ s
(0 , 1 )n

f (j1DW(x) ) dx : W�C0
1 (V ; Rn )} .

This may no longer be true when f depends also on x and pEq (although it is
still valid if f (x , Q) is convex, see [1]). Indeed, Gangbo [31] constructed an
example where f (x , j) 4x K (x) Ndet jN , and hu 4 f if and only if LN (¯K) 40.
Hence, in general, (35) fails and f **(x , ˜u) Ghu is the only known lower
bound (see also [1], [9], [27], [29], [45], [46]).

Further understanding of the total variation TV(u , V) asks for mastery of
weak convergence of minors for pEn . Works by Ball [4], Dacorogna and Mu-
rat [21], Giaquinta, Modica and Souček [38], and Reshetnyak [58], established
that

uh � u in W 1, n (V ; Rn ) ¨ det Du � det Du

in the sense of measures, where we recall that a sequence ]m h ( of Radon mea-
sures is said to converge in the sense of measures to a Radon measure m in V if
for every W�Cc (V ; R) we have

s
V

W dm h Ks
V

W dm .

Müller [51] has shown that, if in addition det Duh F0, then det Duh � det Du
weakly in L 1 (V). Moreover, if uh � u in W 1, p (V ; Rn ) and ]adj Duh( is bound-
ed in L q (V ; Rd3n ) with pFn21, qFn/(n21), one of these two inequalities
being strict, then

det Duh � det Du in the sense of measures .

Also, if uh �W 1, n (V ; Rn ), uh � u in W 1, p (V ; Rn ) and pDn21, then

adj Duh � adj Du in L p/(n21) ( pDn21 .(36)

A complete characterization of weak convergence of the determinant has
been obtained by Fonseca, Leoni and Malý in [28], where it was shown that, if
the sequence ]uh ( %W 1, n (V ; Rn ) converges to a function u in L 1 (V ; Rn ), if
]uh ( is bounded in W 1, n21 (V ; Rn ), and if det Duh � m for some Radon mea-
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sure m , then

dm

d Ln
4 det Du , a.e. x�V .(37)

For related works we refer to [2], [4], [15], [19], [20], [22], [30], [31], [34], [38],
[44], [50], [51], [56].

What can we then say about the singular measure m s in (32), its signifi-
cance and interpretation, and what are the relations, if any, between the total
variation of Det Du , i.e. NDet DuN(V), and TV(u , V)? An answer is given by
Theorem 5, which contemplates a general framework where only integrability
assumptions are considered, and no structural properties of the function u are
prescribed. Next we present the proof of this result.

PROOF OF THEOREM 5. – Since TV(u , V) E1Q , by (34) and (35) TV(u , Q) is
a finite Radon measure, and it admits the Radon-Nikodym decomposition (10).
In particular, it follows that det Du�L 1 (V).

Let dD0 be fixed and consider a sequence ]uh(h�N%C 1 (V ; Rn ) such that
uh � u in W 1, p (V ; Rn ), with pDn21, and

TV(u , V)1dF lim
hK1Q

s
V

Ndet DuhNdx .(38)

We first observe that, without loss of generality, we may assume that the se-
quence of the first components ]uh

1(h�N is bounded in L Q (V). Indeed, under
the notation M»4Vu 1

VQ , it suffices to consider the truncation

wh
1 (x) »4

.
/
´

2M

uh
j (x)

M

if uh
j (x) G2M ,

if 2MGuh
j (x) GM ,

if uh
j (x) FM ,

and to set wh »4 (wh
1 , uh

2 , R , uh
n ), for every h�N . It is easy to verify that, as

hK1Q , wh converges to u in the weak topology of W 1, p (V ; Rn ) and, since
Ndet DwhNGNdet DuhN , for almost every x�V , inequality (38) still holds with
]uh(h�N replaced by ]wh(h�N .

Since TV(u , V) E1Q , by (38) the sequence ]det Duh(h�N is bounded
in L 1 (V), therefore, up to a subsequence (not relabeled) det Duh �*mA as
hK1Q , where mA is a finite Radon measure. By (37) we have

dmA

d Ln
4 det Du , a.e. x�V .(39)

Next we prove that the distribution Det Du coincides with mA on C0
1 (V) and

hence, by regularization and density, on C0
0 (V). To prove this, for fixed W�
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C0
1 (V) we have

aDet Du , Wb 42s
V

!
i41

n

u 1 ( adj Du)1
i ¯W

¯xi

dx

42 lim
hKQ

s
V

!
i41

n

uh
1 (adj Duh)1

i ¯W

¯xi

dx4 lim
hKQ

s
V

det Duh W dx4amA, Wb .

Here we have used the facts that, since uh � u in W 1, p (V ; Rn ) for pDn21,
then adj Duh weakly converge to adj Du in L p/(n21) , and since the sequence
]uh

1(h�N is bounded in L Q (V) and converges as hK1Q to u 1 in L p (V),
it also converges to u 1 in L q (V), for every qE1Q , in particular for

q4
p

p2 (n21)
, the conjugate exponent of p

n21
. Therefore, in view of (39), we

deduce the Radon-Nikodym decomposition for Det Du as asserted in (11).
Let A be an open subset of V and let W�C0

1 (A ; R) be such that VWVQG1.
By (38), a similar argument yields

NaDet Du, WbN4Ns
A

!
i41

n

u 1 (adj Du)1
i ¯W

¯xi

dxN4 lim
hKQNs

A

!
i41

n

uh
1 (adj Duh)1

i ¯W

¯xi

dxN
4 lim

hKQNs
A

det Duh W dxNG lim sup
kKQ

VWVQs
A

Ndet DuhNdxGTV(u , A)1d .

It suffices to let dK01 , and to take the supremum over all such functions W ,
to conclude (12), i.e., NDet DuN(A) GTV(u , A).

Suppose now, in addition, that u�Wloc
1 , n (V0]0(; Rn ). Let A be an open sub-

set of V such that 0 �A . We recall that for every sequence uh which converges
to u in the weak topology of W 1, p (A ; Rn ) for some pDn21, with u , uh �
Wloc

1 , n (A ; Rn ) for every h�N , we have (see [20])

lim inf
hK1Q

s
A

Ndet DuhNdxFs
A

Ndet DuNdx .

Hence

TV(u , A) 4s
A

Ndet DuN dx ,

whenever A is an open subset of V and 0 �A . Therefore we conclude that
supp l s % ]0(, and thus l s 4ld 0 for some constant lF0, where d 0 is the Dirac
measure at the origin.

On the other hand, in view of the inequality NDet DuN(A) GTV(u , A) in
(12), it follows that supp m s %supp l s % ]0(, therefore m s 4md 0 , for some con-
stant m�R , with NmNGl , where we have used (12) once more. r
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REMARK 18. – The result stated in Theorem 5 holds also under the as-
sumption that u�W 1, p (V ; Rn ) for some pDn 2 /(n11). Indeed, in this case,
instead of truncating the sequence ]uh

1(h�N we use the fact that, by Kondra-
chov’s Compact Embedding Theorem, uh Ku strongly in L n 2

, with n 2 being
the conjugate exponent of n 2 /(n 2 21). Again, ]Duh(h�N weakly converges in
L p (V ; Rn3n ) and the sequence ]adj Duh(h�N weakly converges in
L n 2 /(n 221) .

5. – The 2-dimensional case.

Let n42. For every j4 (j 1 , j 2 ) �R2 , jc0, we denote by Arg j the
unique angle in [2p , p) such that

cos Arg j4
j 1

NjN
, sin Arg j4

j 2

NjN
.

As before, we denote by Br the circle in R2 with center in 0 and radius rD0.
Then B1 is the circle of radius r41 and ¯B1 4S 1 is its boundary. If a ,
b� [0 , 2p], aEb , then S(a , b) stands for the polar sector given by

S(a , b) »4 ]j4r( cos w , sin w) �R2 : rG1, w� [a , b] ) .

In the sequel v : [0 , 2p] KR2 is a Lipschitz-continuous closed curve, i.e.,
v(0) 4v(2p), that we represent as v4 (v 1 , v 2 ) 4 (v 1 (w), v 2 (w) ), with w�
[0 , 2p]. We shall denote by vw »4 (vw

1 , vw
2 ) the gradient of v , which exists for al-

most every w� [0 , 2p]. If v(w) c0 for every w� [0 , 2p], then we denote by
Av (w) the quantity

Av (w) »4Arg v(0)1s
0

w
v 1 (t) vw

2 (t)2v 2 (t) vw
1 (t)

Nv(t)N2
dt .

There exists a simple relation between Av and Arg v , which is inferred from
the next lemma.

LEMMA 19. – If v : [0 , 2p] KR2 is a Lipschitz-continuous curve such that
v(w) c0 for every w� [0 , 2p], then, for every a , b� [0 , 2p] with aEb , there
exists k�Z such that

Av (b)2Av (a) 4Arg v(b)2Arg v(a)12kp .(40)

PROOF. – Assume first that v�C 1 ( [0 , 2p]; R2 ) and that there exist at most
a finite number of angles w i� [0, 2p) such that either v 1 (w i)40 or v 2 (w i)40.
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Then, for every wcw i (since v 1 (w i ) c0) we have

d

dw
Arg v(w) 4

d

dw
arctan

v 2 (w)

v 1 (w)
4

v 1 (w) vw
2 (w)2v 2 (w) vw

1 (w)

Nv(w)N2
.

The result then follows by integrating this equality and recalling that, each
time that v(w) crosses the half line ](x , y) �R2 : xE0, y40(, and this may
happen at most a finite number of times (necessarily for w equal to some w i ,
where v 2 (w i ) 40), the function Arg v(w) has a jump of 62p .

In the general case, we approximate v by a sequence ]vj (j�N of curves of
class C 1 ( [0 , 2p]; R2 ) such that ]vj (j�N uniformly converges to v and
]dvj /dw(j�N converges to dv/dw in L p ( [0 , 2p] ) for every p� [1 , 1Q). We may
construct the curves vj so that vj(w)c0 for all w� [0, 2p] and either v 1 (w i)40
or v 2 (w i ) 40 only for finitely many i . Moreover, if Arg v(w) c2p , then
Arg vj (w) KArg v(w), while, if Arg v(w) 42p , then, up to a subsequence,
Arg vj (w) KArg v(w) 42p or Arg vj (w) Kp . Finally, the quantity

Avj
(b)2Avj

(a) 4s
a

b
vj

1 vj , w
2 2vj

2 vj , w
1

NvjN
2

dt

converges, as jK1Q , to Av (b)2Av (a). From the relation

Avj
(b)2Avj

(a) 4Arg vj (b)2Arg vj (a)12kj p ,

valid for every j�N and for some kj �Z , we see that the sequence kj is bound-
ed, since Arg vj (b), Arg vj (a) � [2p , p). Then, up to a subsequence, we obtain
the conclusion (40) as jK1Q . r

As in Section 2, we denote by G a curve in R2 parametrized in the following
way

G»4 ]j1r(w)( cos w , sinw) : w� [0 , 2p]( ,(41)

where r(w) is a piecewise C 1 function such that r(0) 4r(2p), and r(w) Fr0 for
every w� [0 , 2p] and for some r0 D0. Condition (41) means that G is the Lips-
chitz-continuous boundary of a domain

D»4 ]j1r( cos w , sin w) : w� [0 , 2p], 0 GrGr(w)( ,

starshaped with respect to a point j in the interior of D . In the sequel it is un-
derstood that the function r(w) is extended to R by periodicity.

LEMMA 20. – Let G be as in (41) and let v : [0 , 2p] KG be a Lipschitz-con-
tinuous map such that Arg (v(0)2j) 40. Then the curve v may be represent-
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ed in the form

v(w) 4j1r(Av2j (w) )( cos Av2j (w), sin Av2j (w) )(42)

for all w� [0 , 2p].

The proof of this lemma may be found in [24].

REMARK 21. – Under the assumptions of Lemma 20, from the representa-
tion formula (42) for v(w) it follows that, if Av2j (a) 4Av2j (b), then v(a) 4

v(b). Conversely, if v(a) 4v(b) then there exists k�Z such that Av2j (a) 4

Av2j (b)12kp . However, notice that if G is the boundary of a simply connect-
ed domain which is not starshaped with respect to j , then the conclusion of
Lemma 20 may not be true. In particular, the condition Av2j (a) 4Av2j (b)
may not imply that v(a) 4v(b).

The next Lemma 22, found in [24], plays a central role in the study of the 2-
dimensional case. For the convenience of the reader, we include its proof
below.

LEMMA 22 (The «umbrella» lemma). – Let G4 ]j1r(w)( cos w , sin w)( and
let v : [0 , 2p] KG be a Lipschitz-continuous map. If a , b� [0 , 2p], aEb , are
such that Av2j (a) 4Av2j (b), then for every eD0 there exists a Lipschitz-
continuous map w : S(a , b) KR2 satisfying the boundary conditions

.
/
´

w(1 , w) 4v(w)

w(r , a) 4w(r , b) 4j1r(v(a)2j)

( w� [a , b] ,

( r� [0 , 1] ,
(43)

and such that

s
S(a , b)

Ndet Dw(x)N dxEe .(44)

PROOF. – Without loss of generality we can assume that Arg (v(0)2j) 40.
Fix h�N and set

wh (r , w) »4j1rr(W h (r , w) )( cos W h (r , w), sin W h (r , w) ) ,(45)

where, for every r� [0 , 1] and for every w� [a , b],

W h (r , w) »4r h Av2j (w)1 (12r h ) Av2j (a) .

Since W h (1 , w) 4Av2j (w), W h (r , a) 4W h (r , b) 4Av2j (a), by the representa-
tion formula (42) of Lemma 20 we obtain the validity of the boundary condi-
tions (43).

Now we evaluate the left hand side in (44). We observe that, if u(x) 4
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(u 1 (r , w), u 2 (r , w) ), and using the notation ¯u i

¯r
4ur

i , ¯u i

¯w
4uw

i (i41, 2 ), we
have

det Du(x) 4
1

r

N
N
N

ur
1 (r , w)

ur
2 (r , w)

uw
1 (r , w)

uw
2 (r , w)

N
N
N

.(46)

For the function wh we obtain

s
S(a , b)

Ndet Dwh (x)Ndx4s
0

1

drs
a

b

N ¯(wh
1 , wh

2 )

¯(r , w) Ndw .

Now the Jacobian determinant of wh is

¯(wh
1 , wh

2 )

¯(r , w)
4rr 2 (W h )

¯W h

¯w
4r h11 r 2 (W h ) Av2j8 (w) ,

and we conclude that

s
S(a , b)

Ndet Dwh (x)N dx4s
0

1

r h11 drs
a

b

r 2 (W h )NAv2j8 (w)Ndw4
c

h12
,

where we denote by c a suitable constant. The conclusion follows by choosing
h�N sufficiently large. r

REMARK 23. – We call Lemma 22 the «the umbrella lemma» due to the fact
that the geometric representation of the graph of the map w : R2 KR2 consi-
dered in Lemma 22 is some sort of «umbrella» (under some mathematical
tolerance and human imagination!). In fact, let us consider for simplicity
the case where the image G of the map v is the unit circle [0 , 2p] %R2 centered
around j40. Then the graph of w is a subset of S 1 : it «starts» from the center
j40 (the starting point of the «umbrella-stick», in correspondence to r40)
and it «ends» for r41, at the surface ]w(1 , w) 4v(w) : w� [a , b]( %S 1 , which
can be interpreted as the upper surface of the open umbrella, to protect one
from the rain. Moreover, by (44), like an umbrella, the total volume of the im-
age of w is small (large upper surface, small volume! In our 2-d case, we have
a 2-dimensional «picture» of an umbrella, with large upper length and small
area).

We refer to Figures 1, 2 and 3, where we represented the image of the map
wh (r , w) in (45) under three particular choices of the parameters. Precisely,
for fixed h�N we considered wh : S(a , b) KB1 (i.e., r(W h (r , w) ) in (45) identi-
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Fig. 1. – A 2-d image of the map w defined in (47), with h44, for a particular (piecewise
linear) function Au (w). The angle which the umbrella-stick forms with the x-axis is given
by Au (a) 4Au (b) 4p/2 . The maximun M and the minimum m of Au (w) 4W(1 , w),
which give the bounds for the angles of the image w(1 , w) at the surface S 1 of the ball
B1 , in this case are equal to m4p/6 , M45p/6 , respectively. Note that the map is ra-
dially linear when w4a and w4b , where the angle of the image is equal to p/2 .

cally equal to 1 and j40) given by

.
/
´

wh (r , w) 4r( cos W h (r , w), sin W h (r , w) )

W h (r , w) 4r h Av (w)1 (12r h ) Av (a) ,
(47)

where Av : [a , b] KR is a function such that Av (a) 4Av (b). The common
value of Av at w4a and w4b is the asymptotic value of the angle W h (r , w) as
rK01 and it represents the angle which the umbrella-stick forms with the
x-axis. At r41 the angle W h (1 , w) holds Av (w); therefore the maximum M
and the minimum m of Av (w) represent the bounds for the angle W h (1 , w) of
the image w(1 , w) at the surface S 1 of the ball B1 . These pictures has been
made by Emanuele Paolini, starting from the analytic expression of w in
(47). We thank him for the beautiful job.

An abbreviated proof of the result below may be found in [24].

LEMMA 24. – Let v : [0 , 2p] KG be a Lipschitz-continuous map. Let a ,
b� [0 , 2p], aEb , be such that Av2j (a) 4Av2j (b). If Av2j (w) is piecewise
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Fig. 2. – Another 2-d image of the map w defined in (47), with h44, for a different choise of
the piecewise linear function Au(w). In this case we obtain an asymmetric umbrella. Again
Au(a) 4Au(b) 4p/2, while in this case m42p/6, M45p/6. The map is not one-to-one:
only the image points with angles 2p/6 and 5p/6 may be assumed once; all the other points
are hit at least twice; the points with angle p/2 are hit at least three times.

strictly monotone in [a , b] (with a finite number of monotonicity intervals)
then

s
a

b

](v 1 (w)2j 1 ) vw
2 (w)2 (v 2 (w)2j 2 ) vw

1 (w)( dw40 .

PROOF. – Without loss of generality we assume that j4 (0 , 0 ). Since Av (w)
is piecewise strictly monotone in [a , b] and Av (a) 4Av (b), there exists a parti-
tion of the interval [a , b], a4w 0 Ew 1 EREw N 4b , NF2, such that, for
every i41, 2 , RN , the real function Av (w) is strictly increasing in [w i21 , w i]
and is strictly decreasing in [w i , w i11] (or viceversa). We will prove the lemma
by an induction argument based on the number N of these maximal intervals
of monotonicity.

Let us first assume that N42. Hence there exists w 1 � (a , b) such that
Av (w) is strictly increasing in [a , w 1] and is strictly decreasing in [w 1 , b], or
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Fig. 3. – Map w : S(a , b) KB1 in (47). Here we fixed h43, while the angle which the
umbrella-stick forms with the x-axis is equal to Au (a) 4Au (b) 40. The bounds for the
angle of the image w(1 , w), at the surface S 1 of the unit ball B1 , in this case are equal to
m40, M42p1p/2 . The map is radially linear when the angle Au (w) of the image is 0
(and this happens only if w4a4b , when W(1 , w) 4Au (w) 40). The map w is not one-
to-one: due to the overlaping phenomenon, some points with r close to 1 and 0 GWEp/2
are assumed at least four times.

conversely. To fix the ideas, let us assume that Av (w) is strictly increasing in
[a , w 1]. For every (r , w) �S(a , b) let us define vA(r , w) »4rv(w) . If Av (w 1 )2

Av (a) G2p , then vA restricted to the interior of S(a , w 1 ) and S(w 1 , b) is one-
to-one. Moreover the images vA(S(a , w 1 ) ) and vA(S(w 1 , b) ) are equal. Therefore,
by the area formula,

s
S(a , w 1 )

Ndet DvA(x)Ndx4area (vA(S(a , w 1 ) ) ) 4

area (vA(S(w 1 , b) ) ) 4 s
S(w 1 , b)

Ndet DvA(x)N dx .
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Since det DvA F0 in S(a , w 1 ) and det DvA G0 in S(w 1 , b), we obtain

s
S(a , w 1 )

det DvA(x) dx4area (vA(S(a , w 1 ) ) ) 4

area (vA(S(w 1 , b) ) ) 42 s
S(w 1 , b)

det DvA(x) dx .

By using again (46), we have

det DvA(r, w)4
1

r

N
N
N

v 1 (w)

v 2 (w)

rvw
1 (w)

rvw
2 (w)

N
N
N
4v 1 (w) vw

2 (w)2v 2(w) vw
1 (w)4Av(w)Nv(w)N2.

Therefore, as claimed,

0 4 s
S(a , b)

det DvA(x) dx4s
0

1 r drs
a

b

]v 1 (w) vw
2 (w)2v 2 (w) vw

1 (w)( dw

4
1

2
s
a

b

]v 1 (w) vw
2 (w)2v 2 (w) vw

1 (w)( dw .

If 2kpEAv (w 1 )2Av (a) G2p(k11) for some kF1, then we denote by w 8�
(a , w 1 ), w 9� (w 1 , b) the points such that Av (w 8 ) 4Av (w 9 ) 42kp1Av (a).
Again, using the area formula, we have

s
S(a , w 1 )

Ndet DvA(x)N dx

4 s
S(a , w 8 )

Ndet DvA(x)N dx1 s
S(w 8 , w 1 )

Ndet DvA(x)N dx4k area D1area E ,

where D is the domain in (6) enclosed by G and E is the domain represented in
polar coordinates by

E4 ]r( cos Av (w), sin Av (w) ) : w� [w 8 , w 1 ] , 0 GrGr(w)(

4 ]r( cos Av (w), sin Av (w) ) : w� [w 1 , w 9 ] , 0 GrGr(w)( .

Therefore, we also have

s
S(w 1 , b)

Ndet DvA(x)N dx4

s
S(w 1 , w 9 )

Ndet DvA(x)N dx1 s
S(w 9 , b)

Ndet DvA(x)N dx4area E1k area D .
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Arguing as before we get the thesis (with N42)

1

2
s
a

b

]v 1 (w) vw
2 (w)2v 2 (w) vw

1 (w)( dw4 s
S(a , b)

det DvA(x) dx

4 s
S(a , w 1 )

Ndet DvA(x)N dx2 s
S(w 1 , b)

Ndet DvA(x)N dx40 .

By induction, we assume that the result is true if there are N21 maximal
intervals of monotonicity for the function Av (w). Then we consider the case
where there are N of such intervals, with endpoints a4w 0Ew 1EREw N4b .
Without loss of generality, we can assume that Av (w) is strictly increasing
in [a , w 1] and is strictly decreasing in [w 1 , w 2]. If Av (a) DAv (w 2 ), then there
exists g� (w 1 , w 2 ) such that Av (g) 4Av (a); since the thesis holds for the case
of two intervals [a , w 1], [w 1 , g], we obtain

s
a

g

]v 1 vw
2 2v 2 vw

1( dw40 .(48)

The thesis also holds for the N21 intervals [g , w 2], [w 2 , w 3], R , [w N21 , b],
and so we have

s
g

b

]v 1 vw
2 2v 2 vw

1( dw40 ,

which, together with (48), yields the conclusion if Av (a) DAv (w 2 ).
If Av (a) 4Av (w 2 ), then the same argument works with g4w 2 . If Av (a) E

Av (w 2 ) then there exists d� (a , w 1 ) such that Av (d) 4Av (w 2 ) and, as before,
by considering the two intervals [d , w 1], [w 1 , w 2], we have

s
d

w 2]v 1 vw
2 2v 2 vw

1( dw40 .(49)

Then we «modify» the function v(w) by «cutting out» the interval (d , w 2 ) from
[a , b]. Precisely, we define in the interval [a1 [w 2 2d], b]

w(w) »4
.
/
´

v(w2 [w 2 2d] )

v(w)

if a1 [w 2 2d] GwGw 2 ,

if w 2 GwGb .

Then Aw (w) is piecewise strictly monotone in [a1 [w 2 2d], b], with N21
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monotonicity intervals. By the induction assumption we have

04 s
a1[w 22d]

b

]w 1 ww
2 2w 2 ww

1( dw4s
a

d

]v 1 vw
2 2v 2 vw

1( dw1s
w 2

b

]v 1 vw
2 2v 2 vw

1( dw ,

which, together with (46), yields the conclusion. r

The lemma below is proven in [24].

LEMMA 25. – Let v : [0 , 2p] KG be a Lipschitz-continuous map. Let
Av2j (w) be piecewise strictly monotone in [a , b] (with a finite number of
monotonicity intervals). For every eD0 there exists a Lipschitz-continuous
map w : B1 KR2 such that w(1 , w) 4v(w) for every w� [0 , 2p], and

s
B1

Ndet Dw(x)N dxEe1
1

2 Ns
0

2p

]v 1 (w) vw
2 (w)2v 2 (w) vw

1 (w)( dwN.

Next we consider maps u4u(r , w) depending explicitly on r as well. We
assume first that u is a smooth map in the unit ball B1 %R2 .

LEMMA 26 (The integral of the Jacobian for smooth maps). – Let u�
W 1, Q (B1 ; R2 ). For every r� (0 , 1 ] we have

s
Br

det Du(x) dx4
1

2
s
0

2p

mu 1 (r , w)
¯u 2

¯w
(r , w)2u 2 (r , w)

¯u 1

¯w
(r , w)n dw .(50)

PROOF. – If first u�C 2 (B1 ; R2 ), then by the divergence theorem, we have
for every r� (0 , 1 )

(51) s
Br

det Du(x) dx4

s
Br

divgu 1 ¯u 2

¯x2

, 2u 1 ¯u 2

¯x1
h dx4 s

¯Br

mu 1 ¯u 2

¯x2

n 1 2u 1 ¯u 2

¯x1

n 2n dH 1 ,

where n4 (n 1 , n 2 ) is the exterior normal to ¯Br and dH 1 4ds4rdw is the ele-
ment of arclenght. A standard approximation argument yields formula (51) for
every u�W 1, Q (B1 ; R2 ) and for every r� (0 , 1 ) (since u�W 1, Q (¯Br ; R2 ) for
every r� (0 , 1 ) too).
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With an obvious abuse of notation, we write u in polar coordinates (r , w),
i.e., u(x1 , x2 ) 4u(r , w). We have

¯u

¯x1

4
¯u

¯r

¯r

¯x1

1
¯u

¯w

¯w

¯x1

4
¯u

¯r
cos w2

¯u

¯w

sin w

r
,

¯u

¯x2

4
¯u

¯r

¯r

¯x2

1
¯u

¯w

¯w

¯x2

4
¯u

¯r
sin w1

¯u

¯w

cos w

r
.

Since on ¯Br the exterior normal reduces to n4 (n 1 , n 2 ) 4 ( cos w , sin w), from
(51) we obtain

¯u 2

¯x2

n 1 2
¯u 2

¯x1

n 2 4

g ¯u 2

¯r
sin w1

¯u 2

¯w

cos w

r
h cos w2g ¯u 2

¯r
cos w2

¯u 2

¯w

sin w

r
h sin w4

¯u 2

¯r
sin w cos w1

1

r

¯u 2

¯w
cos2 w2

¯u 2

¯r
sin w cos w1

1

r

¯u 2

¯w
sin2 w4

1

r

¯u 2

¯w
.

Thus on ¯Br , since dH 1 4rdw , we get

s
Br

det Du(x) dx4 s
¯Br

mu 1 ¯u 2

¯x2

n 1 2u 1 ¯u 2

¯x1

n 2n dH 1 4s
0

2p

u 1 ¯u 2

¯w
dw .

For symmetric reasons, starting now from det Du(x) 42(u 2 Qux2
1 )x1

1 (u 2 Q
ux1

1 )x2
, we also obtain

s
Br

det Du(x) dx4s
0

2p

2u 2 ¯u 1

¯w
dw ,

and thus, for every value of a real parameter l ,

s
Br

det Du(x) dx4ls
0

2p

u 1 ¯u 2

¯w
dw1 (12l)s

0

2p

2u 2 ¯u 1

¯w
dw ,

and, in particular, for l41/2 we reach the conclusion in (50). r

We are not going to give the proof of Theorem 1, which may be found in
[24]. However, the reader may check that, starting from the preliminary lem-
mas proved in this section, Theorem 1 can be proved following the lines of the
proof of Theorem 9 given in Section 7.
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6. – The «eight» curve.

Let us denote by g the image of the «eight» curve, i.e., the union of the two
circles g1 and g2 of radius 1 , respectively of center at (1 , 0 ) and at (21, 0 ).
Below we will use some elementary representation formulas for g1 and g2 .
Precisely, for g1 we will use the representation formulas

g1 »4 ](j 1 , j 2 ) �R2 : j 1
2 1j 2

2 22j 1 40( ,

j�g1 0(0 , 0 ) `
.
/
´

j 1 42 cos2 Arg j

j 2 42 cosArg j QsinArg j .
(52)

With the aim to prove Theorem 4, we start with some preliminary results con-
cerning a map w with values in the circle g1 .

LEMMA 27. – Let w : [0 , 2p] Kg1 be a Lipschitz-continuous curve such
that w(0) 4 (2 , 0 ). The real function R(w) defined by R(w) »40 if w(w) 4

(0 , 0 ) and by

R(w) »4
w 1 (w) ww

2 (w)2w 2 (w) ww
1 (w)

Nw(w)N2
, if w(w) c (0 , 0 ) ,(53)

is bounded in [0 , 2p] by a constant depending only on the Lipschitz constant
of w . Moreover, if

Aw (w) 4s
0

w
w 1 (t) ww

2 (t)2w 2 (t) ww
1 (t)

Nw(t)N2
dt

then, for every a , b� [0 , 2p] such that w(a) c (0 , 0 ) and w(b) c (0 , 0 ), there
exists k�Z such that

Aw (b)2Aw (a) 4Arg w(b)2Arg w(a)1kp .(54)

STEP 1 (boundedness of R(w)). – Let L be the Lipschitz constant of w . If

Nw(w)NF
1

2
, then there exists a constant c such that

NR(w)NGcL .(55)

On the other hand, if Nw(w)NE
1

2
then, since [w 1 (w)]2

1[w 2 (w)]2
22w 1 (w)40,

we deduce that Nw(w)N2 42w 1 (w) and w 1 (w) 412o12 [w 2 (w)]2
. Taking the

derivative of both sides we obtain

ww
1 (w) 4

w 2 (w) ww
2 (w)

o12 [w 2 (w)]2
.
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Therefore, if w(w) c (0 , 0 ), for almost every w we also have

R(w) 4
w 1 (w) ww

2 (w)2w 2 (w) ww
1 (w)

Nw(w)N2
4

ww
2 (w)

2
2

w 2 (w) ww
1 (w)

2w 1 (w)

4
ww

2 (w)

2
u12

[w 2 (w)]2

g12k12 [w 2 (w) ]2h Qk12 [w 2 (w) ]2
v .

The derivative of the real function g(t) 412k12 t satisfies the condition
g 8 (t) F1/2 for every t� [0 , 1 ); thus we have

12k12 [w 2 (w) ]2 F
1

2
[w 2 (w)]2

.

We deduce that

NR(w)NG
1

2
Nww

2 (w)Nu11
2

k12 [w 2 (w) ]2
v ,

and again (55) holds for an appropriate constant c since Nw 2 (w)NE
1

2
. This

proves the first assertion of the lemma.

STEP 2 (proof of (54) under special assumptions). – To prove assertion (54)
we first make the further assumption that there exist N disjoint open intervals
(a i , b i ) such that

0 4a 1 Eb 1 Ga 2 Eb 2 GRGa N Eb N 42p ,

and w(w) 4 (0 , 0 ) if and only if w� [0 , 2p]0 0
i41

N

(a i , b i ). Fix a , b� (0 , 2p) such

that w(a) c (0 , 0 ) and w(b) c (0 , 0 ). If a , b� (a i , b i ) for some i�
]1, 2 , R , N(, then, using an argument similar to that of the first part of Lem-
ma 19, we have

Aw (b)2Aw (a) 4Arg w(b)2Arg w(a) .(56)

Otherwise, if there exists i� ]1, 2 , R , N( such that

a i EaEb i Ga i11 EbEb i11 ,(57)

then we apply (56) to the interval (a , b i 2e) to obtain

Aw (b i 2e)2Aw (a) 4Arg w(b i 2e)2Arg w(a) .

In the limit as eK01 , since when w(w) �g1 0](0 , 0 )( then Arg w(w) �
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g2
p

2
, p

2
h , we obtain

Aw (b i )2Aw (a) 46
p

2
2Arg w(a) ,(58)

where the sign 1 holds if w 2 (w) D0 as wKb i
2 , and the sign 2 holds other-

wise. Similarly, we have

Aw (b)2Aw (a i11 ) 4Arg w(b)2g6
p

2
h(59)

and, adding side by side (58) and (59), yields

Aw (b)2Aw (a) 4Arg w(b)2Arg w(a)1kp ,

where k� ]21, 0 , 1(. The general case, when (57) is not necessarily satisfied,
follows from the previous case by iteration.

STEP 3 (proof of (54)). – Let w : [0 , 2p] Kg1 be a Lipschitz-continuous
map. Let ]Ij(j�N be a sequence of disjoint open intervals (possibly empty)
such that w(w) c (0 , 0 ) if and only if w�Nj�N Ij . For every h�N we
define

wh (w) »4

.
`
/
`
´

w(w)

(0 , 0 )

if w� 0
j41

h

Ij ,

if w� 0
j41

h

Ij .

Then the sequence of Lipschitz constants Lh of wh is bounded. Moreover wh

converges uniformly to w in [0 , 2p], as hK1Q , and the corresponding se-
quence ]Rh (w)(h�N converge to R(w) almost everywhere in [0 , 2p]. There-
fore, integrating (50), we deduce that ]Awh

(w)(h�N converges to Aw (w) uni-
formly in [0 , 2p]. Let a , b� [0 , 2p] be such that w(a) c (0 , 0 ) and w(b) c

(0 , 0 ). For h large enough we also have wh (a) 4w(a) c (0 , 0 ) and wh (b) 4

w(b) c (0 , 0 ) and, by the previous step,

Awh
(b)2Awh

(a) 4Arg w(b)2Arg w(a)1kh p .

Since the sequence ]kh( is bounded, we can pass to the limit in a subsequence
and we arrive at the conclusion (54). r

LEMMA 28. – Under the same assumptions of the previous Lemma 27, for
every w� [0 , 2p] we have

w(w) 42 cos Aw (w)( cos Aw (w), sin Aw (w) ) .(60)
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PROOF. – Recall that w(0) 4 (2 , 0 ) and so Arg w(w) 40. By Lemma 27, if
w(w) c (0 , 0 ), then there exists kw�Z such that Arg w(w) 4Aw (w)1kw p . By
(52) we deduce the conclusion

.
/
´

w 1 (w) 42 cos2 Arg w(w) 42 cos2 Aw (w)

w 2 (w) 4sin 2 Arg w(w) 4sin 2 Aw (w) 42 sin Aw (w) Qcos Aw (w) .

If w(w 0 ) 4 (0 , 0 ) and there exists a sequence w i Kw 0 such that w(w i ) c (0 , 0 )
for every i�N , then (60) holds for w4w i . Since Aw (w) is a continuous func-
tion, (60) holds for w4w 0 as well.

If w(w 0 ) 4 (0 , 0 ) and a sequence w i Kw 0 such that w(w i ) c (0 , 0 ) for
every i�N does not exist, then there exists an interval (w 0 2d , w 0 1d), with
dD0, such that w(w) is identically equal to (0 , 0 ) in (w 0 2d , w 0 1d). In this
case let us denote by (a , b) the largest interval containing w 0 with this proper-
ty; since R(w) 40 in (a , b) we have Aw (a) 4Aw (w 0 ). On the other hand (57)
holds for w4a since (a , b) is an extremal interval; hence

w(w 0 ) 4 (0 , 0 ) 4w(a) 42 cos Aw (a)( cos Aw (a), sin Aw (a) )

42 cos Aw (w 0 )( cos Aw (w 0 ), sin Aw (w 0 ) ) . r

The next lemma is similar to the «umbrella» Lemma 22, with the main dif-
ference that here the starting point of the «umbrella-stick» is placed at a
boundary point of the circle g1 .

LEMMA 29 (The «umbrella» lemma for the «eight» curve). – Let
w : [0 , 2p] Kg1 be a Lipschitz continuous curve. Assume that there exist
a , b� [0 , 2p], aEb , such that Aw (a) 4Aw (b). Then, for every eD0, there
exists a Lipschitz-continuous map wA : S(a , b) KR2 satisfying the boundary
conditions

.
/
´

wA(1 , w) 4w(w)

wA(r , a) 4rw(a)

wA(r , b) 4rw(b)

( w� [a , b] ,

( r� [0 , 1 ] ,

( r� [0 , 1 ] ,

(note that w(a) 4w(b) ) and such that

s
S(a , b)

Ndet DwA(x)N dxEe .

PROOF. – For fixed h�N we set

wAh (r , w) »42r cos W h (r , w)( cos W h (r , w), sin W h (r , w) ) ,
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where

W h (r , w) »4r h Aw (w)1 (12r h ) Aw (a) .

Let us test the boundary conditions of wA(r , w). By Lemma 28, for every w�
[a , b] we have

wAh (1 , w) 42 cos Aw (w)( cos Aw (w), sin Aw (w) ) 4 (wh
1 (w), wh

2 (w) ) 4w(w) ,

and, for every r� [0 , 1],

wAh (r , a)42r cos Aw (a)( cos Aw (a), sin Aw (a) )4r(wh
1 ( (a) ), wh

2 ( (a) ) ) 4rw(a) .

Similarly wAh (r , b) 4rw(b) for every r� [0 , 1]. Using an argument similar to
the one used in Lemma 22, we can see that (we do not denote in the matrix the
dependence on h)

det DwAh (x) 4
1

r

N
N
N

wAr
1 (r , w)

wAr
2 (r , w)

wAw
1 (r , w)

wAw
2 (r , w)

N
N
N

44r h cos2 W h (r , w) Aw8 (w) .

By Lemma 27 the function

Aw8 (w) 4
w 1 (w) ww

2 (w)2w 2 (w) ww
1 (w)

Nw(w)N2

is bounded; thus there exists a constant c such that

s
S(a , b)

Ndet DwAh (x)N dxGcs
0

1

r h11 dr4
c

h12
,

and this concludes the proof of our lemma. r

LEMMA 30. – Let w : [0 , 2p] Kg1 be a Lipschitz-continuous map. If a , b�
[0 , 2p], aEb , are such that Aw (a) 4Aw (b), and if the function Aw (w) is
piecewise strictly monotone in [a , b] (with a finite number of monotonicity
intervals), then

s
a

b

]w 1 (w) ww
2 (w)2w 2 (w) ww

1 (w)( dw40 .

PROOF. – This result can be proved just as in Lemma 24. r

The lemma below was established in [24].

LEMMA 31. – Let u : [0 , 2p] Kg4g1Ng2 be a Lipschitz-continuous
map. Assume that there exist N disjoint open intervals Ij % [0 , 2p] such that
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u(Ij ) is contained either in g1 or in g2 for every j41, 2 , R , N , and u(w) 4

(0 , 0 ) when w� 0
j41

N

Ij . Assume, in addition, that the function

w K u 1 (w) uw
2 (w)2u 2 (w) uw

1 (w)

has piecewise constant sign in [0 , 2p]. Then, for every eD0, there exists a
Lipschitz-continuous map wA : B1 KR2 satisfying the boundary condition
wA(1 , w) 4u(w) for every w� [0 , 2p], and such that

s
B1

Ndet DwA(x)N dxEe1
1

2
!
j41

N

Ns
Ij

]u 1 (w) uw
2 (w)2u 2 (w) uw

1 (w)( dwN.

The proof of Theorem 4 is contained in [24]. However, the reader may
check that following the argument used in Section 7 to prove Theorem 9, and
using the lemmas proved in this section, Theorem 4 can be obtained with a
similar proof.

7. – The n-dimensional case.

In this section we prove Theorem 9. We first recall a lower bound and an
upper bound estimates for TV(u , V) that have been obtained in [24]. We note
that Lemma 32 is a variant of Lemma 5.1 (see also Lemma 2.3) by Marcellini
[47], who considered the general quasiconvex case with the exponent p below
the critical growth exponent n , precisely n 2 /(n11) EpEn .

LEMMA 32 (Lower bound - first estimate. – Let u�L Q (V ; Rn )O
W 1, p (V ; Rn )OWloc

1 , Q (V0]0(; Rn ) for some p� (n21, n). The following esti-
mate holds

TV(u , V) F Ns
V

det DuA(x) dxN ,

whenever uA : VKRn is a Lipschitz-continuous map which agrees with u on
the boundary of V , i.e., uA(x) 4u(x) on ¯V .

LEMMA 33 (Lower bound - second estimate. – Let u�L Q (V ; Rn )O
W 1, p (V ; Rn )OWloc

1 , Q (V0]0(; Rn ) for some p� (n21, n). For every rD0
such that Br %V the following estimate holds

TV(u , V) F s
V0Br

Ndet Du(x)N dx1Ns
Br

det DuA(x) dxN ,(61)

where uA : Br KRn is any Lipschitz-continuous map which coincides with u
on the boundary of Br , i.e., uA(x) 4u(x) on ¯Br .
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LEMMA 34. – Let u�W 1, p (B1 ; Rn )OWloc
1 , Q (B1 0]0(; Rn ) for some p�

[1 , n). If

1

r n2p s
Br

NDt uNp dxGM0

for every r� (0 , 1 ) and for some positive constant M0 , then there exists a
constant c(n , p) and a sequence r j K0 such that

1

r j
n2p21 s

¯Br j

NDt uNp dH n21 Gc(n , p) M0 .

PROOF. – For every jF2 we have

s
1/(2 j)

1 /j

dr s
¯Br

NDt uNp dH n21 G s
B1/j

NDt uNp dxG
M0

j n2p
.(62)

Therefore there exist r j �g 1

2 j
, 1

j
h such that

s
¯Br j

NDt uNp dH n21 G
3M0

j n2p21
;(63)

in fact, if (63) does not hold, then for every r�g 1

2 j
, 1

j
h we should have

s
¯Br

NDt uNp dH n21 F
3M0

j n2p21

and thus

s
1/(2 j)

1 /j

dr s
¯Br

NDt uNp dH n21 F
3M0

j n2p21
Q

1

2 j
D

M0

j n2p
,

which is in contradiction with (62). Since 1

2 j
Er j E

1

j
, we deduce that r j K0,

and that g 1

j
hn2p21

Gr j
n2p21 if pFn21, while g 1

j
hn2p21

G (2r j )n2p21 if

pEn21. From (63) we finally have

s
¯Br j

NDt uNp dH n21 G
3M0

j n2p21
Gc(n , p) M0 r j

n2p21 ,

where c(n , p) 43 if p� [n21, n), c(n , p) 43 Q2n2p21 if p� [1 , n21). r
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We denote a generic element of the surface of the unit ball ¯B1 4S n21 by
v . Let v 0 �S n21 be fixed. For every j� ]1, 2 , R , n21( let t j : S n21 2

]v 0( KS n21 by a vector field of class C 1 such that, for every x�S n21 2 ]v 0(,
the set of vectors ]t 1 (v), t 2 (v), R , t n21 (v)( is an orthonormal basis for the
tangent plane to the surface S n21 at the point v . Without loss of generality
(up to a change of sign to one of the vectors) we can assume that t 1 (v),
t 2 (v), R , t n21 (v) have the property that, if we denote by n(v) the exterior
normal unit vector to S n21 at v , then the system of vectors ]n(v), t 1 (v), R ,
t n21 (v)( is a positively oriented basis of Rn . I.e.,

n(v)Rt 1 (v)RRRt n21 (v) 4e1 Re2 RRRen

or, equivalently, that the determinant of the matrix whose column vectors are
the components of n(v), t 1 (v), R , t n21 (v) with respect to e1 , e2 , R , en , is
equal to 1 .

If v : S n21 KRn , v�W 1, Q (S n21 ; Rn ), v4 (v 1 , v 2 , R , v n ), is a Lipschitz-
continuous map, we denote by Dt v the vector of Rn21 whose components are
Dt 1

v , Dt 2
v , R , Dt n21

v .

LEMMA 35. – Let v�W 1, Q (S n21 ; Rn ), h�C 1 ( [0 , 1]), with h(0) 40 and let

w(x) 4h(NxN) v g x

NxN
h . For almost every x�B1 we have

NDw(x)N2 4 Nh 8 (NxN) vg x

NxN
hN

2
1

h 2 (NxN)

NxN2 NDt vg x

NxN
hN

2
;(64)

(65) det Dw(x) 4

h 8 (NxN) h n21 (NxN)

NxNn21
!
i41

n

(21)i21 v ig x

NxN
h ¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
g x

NxN
h .

Moreover, if h(t) 4 t for every t� [0 , 1], then

(66) s
B1

det Dw(x) dx

4
1

n
s

¯B1

!
i41

n

(21)i21 v i (v)
¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
(v) dH n21 .

PROOF. – Since v : S n21 KRn is a Lipschitz-continuous map, then Dt v(v)
exists (in the classical sense) H n21 almost everywhere on S n21 and the map
xKv(x/NxN) is classically differentiable for almost every x�B1 . Let xc0 be a
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point of B1 where v(x/NxN) is differentiable; since the vectors

n4ng x

NxN
h, t 1 4t 1g x

NxN
h , R , t n21 4t n21g x

NxN
h ,

form a basis of Rn , for every i41, 2 , R , n we have

Dw i (x) 4
¯w i (x)

¯n
n1 !

j41

n21
¯w i (x)

¯t j

t j

4h 8 (NxN) v ig x

NxN
h n1

h(NxN)

NxN
!
j41

n21
¯v i (x/NxN)

¯t j

t j ,

and thus we obtain (64). Moreover, Dw(x) is equal to the matrix ]Dw 1 (x),
Dw 2 (x), R , Dw n (x)(. If we express each column of Dw(x) as linear combina-
tion of the elements of the basis ]n , t 1 , R , t n21 (, since w(x) 4

h(NxN) v g x

NxN
h , we obtain the matrix

Dw(x) 4

.
`
`
`
`
`
´

h 8 (NxN) v 1g x

NxN
h

h(NxN)

NxN

¯v 1

¯t 1
g x

NxN
h

Q Q Q

h(NxN)

NxN

¯v 1

¯t n21
g x

NxN
h

h 8 (NxN) v 2g x

NxN
h

h(NxN)

NxN

¯v 2

¯t 1
g x

NxN
h

Q Q Q

h(NxN)

NxN

¯v 2

¯t n21
g x

NxN
h

Q Q Q

Q Q Q

Q Q Q

Q Q Q

h 8 (NxN) v ng x

NxN
h

h(NxN)

NxN

¯v n

¯t 1
g x

NxN
h

Q Q Q

h(NxN)

NxN

¯v n

¯t n21
g x

NxN
h

ˆ
`
`
`
`
`
˜

.

Thus the determinant of the matrix Dw(x), computed by developing the first
row, is given by (65). By integrating over B1 both sides of (65), with h(t) 4 t for

every t� [0 , 1], since
h 8 (NxN) h n21 (NxN)

NxNn21
41, we obtain

s
B1

det Dw(x) dx

4s
B1

!
i41

n

(21)i21 v ig x

NxN
h ¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
g x

NxN
h dx

4s
0

1

dr s
¯Br

!
i41

n

(21)i21 v ig x

NxN
h ¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
g x

NxN
h dH n21
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4s
0

1

r n21 dr s
¯B1

!
i41

n

(21)i21 v i (v)
¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
(v) dH n21

4
1

n
s

¯B1

!
i41

n

(21)i21 v i (v)
¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
(v) dH n21 . r

LEMMA 36. – Let V be an open set containing the origin. Assume that, for
some p� (n21, n), u�W 1, p (V ; Rn )OWloc

1 , Q (V0]0(; Rn ) satisfies

sup
rD0

1

r n2p s
Br

NDt uNp dxGM0

for a positive constant M0 . Let v�W 1, Q (S n21 ; Rn ) be such that

lim
rK01

max ]Nu(rv)2v(v)N : v�¯B1 ( 40 .

Then there exists a sequence r j K0 such that

lim
jK1Q

s
B1

det Dwj (x) dx4s
B1

det Dw(x) dx ,(67)

where wj (x) »4NxNu gr j
x

NxN
h and w(x) »4NxNv g x

NxN
h .

PROOF. – Let r j be the real sequence converging to zero of Lemma 34. By

assumption wj (x) »4NxNu gr j
x

NxN
h converges to w(x) »4NxNv g x

NxN
h uniformly

in B1 . Let us prove that wj weakly converge in W 1, p (B1 ; Rn ) to w . In fact, by
(64) of Lemma 35 we have

NDwj (x)N2 4 Nugr j
x

NxN
hN

2
1r j

2NDt ugr j
x

NxN
hN

2

and thus the L p norm of Dwj remains bounded. In fact, by Lemma 34,

s
B1

NDwj (x)Np dxGc1 1c2 r j
ps
B1

NDt ugr j
x

NxN
hN

p
dx

4c1 1c2 r j
ps

0

1

dr s
¯Br

NDt ugr j
x

NxN
hN

p
dH n21

4c1 1c2 r j
ps

0

1
r n21

r j
n21

dr s
¯Br j

NDt u(y)Np dHy
n21

4c1 1
c2

nr j
n2p21 s

¯Br j

NDt u(y)Np dHy
n21 4c1 1

c2

n
c(n , p) M0 .
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By (65) we also have, with a4p/(n21),

(68) s
B1

Ndet Dwj (x)NadxGc3r j
a(n21)s

B1

Nugr j
x

NxN
hN

a

NDtugr j
x

NxN
hN

a(n21)
dxG

Gc4 r j
a(n21) r j

12n s
¯Br j

NDt u(y)Np dHy
n21 4c4

1

r j
n212p s

¯Br j

NDt u(y)Np dHy
n21 ,

which is bounded, again by Lemma 34. Therefore, since aD1, to obtain the
conclusion (67) it is sufficient to prove that

(69) lim
jK1Q

s
B1

Wdet Dwj (x) dx4s
B1

W det Dw(x) dx , ( W�C0
1 (B1 ) .

Since pDn21, we apply Reshetnyak’s [58] weak continuity result on the ma-
trix adjn21 Dwj of minors (n21)3 (n21) of Dwj , which weakly converge in
L

p

n21 to the corresponding matrix adjn21 Dw of minors of Dw (see) (36)). By
the uniform convergence of wj to w , for every W�C0

1 (B1 ) we get the
conclusion

lim
jK1Q

s
B1

W det Dwj dx4 lim
jK1Q

2s
B1

wj
1

¯(W , wj
2 , R , wj

n )

¯(x1 , x2 , R , xn )
dx

42s
B1

w 1 ¯(W , w 2 , R , w n )

¯(x1 , x2 , R , xn )
dx4s

B1

W det Dw dx . r

PROOF OF THEOREM 6. – Let u�Lloc
Q (V ; R2 )OW 1, p (V ; Rn )O

Wloc
1 , Q (V0]0(; Rn ) for some p� (n21, n). Let ]e h(h�N be a sequence converg-

ing to zero and consider the convolution uh »4 ũ h e h
of u with a smooth molli-

fier h e h
. For every h�N , uh �C 1 (V h ; Rn ), where we set V h »4 ]x�V :

dist (x , ¯V) De h (. Moreover, for every V 8%%V0]0(, uh Ku uniformly in V 8 ,
Duh (x) KDu(x) for every x�V0E , where E is a Borel set of zero measure,
and the sequence ]uh(h�N is Lipschitz-continuos in V 8 , with a Lipschitz con-
stant independent of h . Denote by N0 the set of real numbers given by

N0 »4 ]rD0 : H n21 (¯BrOE) D0( .

If Br %%V then we have

0 4NEOBrN4s
0

r

H n21 (¯BrOE) dr ,

and thus the one-dimensional Lebesgue measure of N0 is equal to zero. We can
repeat the proof of Lemma 36 to reach the same conclusion for a sequence



IRENE FONSECA - NICOLA FUSCO - PAOLO MARCELLINI232

]r j(j�N% (0 , r), ]r j(j�NON0 4R , r j K0. Since uh Ku uniformly on Br j
,

Dt uh (x) KDt u(x) H n21-almost everywhere on ¯Br j
, and the sequence

]uh(h�N is Lipschitz-continuos on Br j
with a Lipschitz constant independent of

h , then Dt uh KDt u in L q (¯Br j
) for every qF1. Fixed W�C0

1 (V) and denoting
by n4n(x) 4 (n 1 , n 2 , R , n n ) the exterior normal unit vector to ¯Br j

, we
have

s
V0Br j

u 1 ¯(W , u 2 , R , u n )

¯(x1 , x2 , R , xn )
dx

4 lim
hK1Q

s
V0Br j

uh
1 ¯(W , uh

2 , R , uh
n )

¯(x1 , x2 , R , xn )
dx

42 lim
hK1Q

{ s
V0Br j

W
¯(uh

1 , uh
2 , R , uh

n )

¯(x1 , x2 , R , xn )
dx

1 s
¯Br j

uh
1!

i41

n

(21)i21 W
¯(uh

2 , uh
3 , R , uh

n ) n i

¯(x1 , R , xi21 , xi11 , R , xn )
dH n21}

42 s
V0Br j

W det Du dx

2 s
¯Br j

u 1!
i41

n

(21)i21 W
¯(u 2 , u 3 , R , u n ) n i

¯(x1 , R , xi21 , xi11 , R , xn )
dH n21 .

By the analytic expression (78) of n , together with (iii) of Lemma 37, with the

notation wj (x) »4NxNu gr j
x

NxN
h , we obtain

s
V0Br j

u 1 ¯(W , u 2 , R , u n )

¯(x1 , x2 , R , xn )
dx

42 s
V0Br j

W det Du dx2 s
¯Br j

u 1 W
¯(u 2 , u 3 , R , u n )

¯(t 1 , t 2 , R , t n21 )
dH n21

42 s
V0Br j

W det Du dx2s
¯B1

wj
1W(r jv)

¯(wj
2 , wj

3 ,R , wj
n)

¯(t 1 , t 2,R , t n21)
dH n21

42 s
V0Br j

W det Du dx2s
¯B1

wj
1W(r jv)!

i41

n

(21)i21
¯(wj

2 , wj
3 ,R , wj

n) n i

¯(x1 ,R , xi21 , xi11 ,R , xn)
dH n21
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42 s
V0Br j

W det Du dx2s
B1

¯ gwj
1 W gr j

x

NxN
h , wj

2 , R , wj
nh

¯(x1 , x2 , R , xn )
dx

42 s
V0Br j

W det Du dx2s
B1

Wgr j
x

NxN
h det Dwj dx

2s
B1

wj
1

¯ gW gr j
x

NxN
h , wj

2 , R , wj
nh

¯(x1 , x2 , R , xn )
dx .

As jK1Q the quantity W gr j
x

NxN
h converges to W(0) uniformly in B1 . Then,

by the bound (68) and by (69), we obtain

lim
jK1Q

s
B1

Wgr j
x

NxN
h det Dwj (x) dx4s

B1

W(0) det Dw(x) dx .

Moreover, as in the proof of Lemma 36, the sequence ]NDwjN(j�N is bounded
in L p (B1 ) and

Ns
B1

wj
1

¯ gW gr j
x

NxN
h , wj

2 , R , wj
nh

¯(x1 , x2 , R , xn )
dxNGc1 r js

B1

NwjNNDwjN
n21

NxN
dxGc2 r j ,

which converges to zero as jK1Q . Therefore, since det Du�L 1 (V), letting
jK1Q in (70) we obtain

s
V

u 1 ¯(W , u 2 , R , u n )

¯(x1 , x2 , R , xn )
dx42s

V

W det Du dx2W(0)s
B1

det Dw dx ,

with w(x) »4NxNv g x

NxN
h; i.e.,

Det Du4 det Du1m0 d 0 , where m0 4s
B1

det Dw dx .

Then, the total variation NDet DuN(V) of Det Du is equal to

NDet DuN(V) 4s
V

Ndet DuNdx1Nm0N ,

which agrees with the conclusion (16). r

PROOF OF THEOREM 9. – Step 1 (lower bound). We first notice that, by
virtue of (13), there exists rD0 such that u�L Q (Br ; Rn ). Let p� (n21, n).
Let r j K0 be the sequence of the Lemma 34, and consider j�N sufficiently
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large so that Br j
%Br %V . By the estimate (61) of Lemma 33 we have

TV(u , V) F s
V0Br j

Ndet Du(x)Ndx1N s
Br j

det DuA(x) dxN ,(71)

where uA : Br j
KRn is any Lipschitz-continuous map which assumes the bound-

ary value uA(x) 4u(x) on ¯Br j
. In particular, we consider the extension uA 4 wAj

given by wAj (x) »4
NxN

r j

u gr j
x

NxN
h , and, using a change of variables, we

have

s
Br j

det DwAj (x) dx4s
B1

det Dwj (x) dx ,

where wj (x) »4NxNu gr j
x

NxN
h . Letting jK1Q in (71), by Lemma 36 we

get

TV(u , V) F lim inf
jK1Q

s
V0Br j

Ndet Du(x)Ndx1 lim
jK1Q

N s
Br j

det DwAj (x) dxN

4s
V

Ndet Du(x)Ndx1 lim
jK1Q

Ns
B1

det Dwj (x) dxN

4s
V

Ndet Du(x)Ndx1Ns
B1

det Dw(x) dxN ,

where w(x) »4NxNv g x

NxN
h . We represent det Dw(x) using (66) of Lemma 35,

and we obtain the lower bound

TV(u , V) Fs
V

Ndet Du(x)Ndx1Ns
B1

det Dw(x) dxN4s
V

Ndet Du(x)Ndx

1
1

n N s
¯B1

!
i41

n

(21)i21 v i (v)
¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
(v) dH n21N.

Step 2 (upper bound in the radially symmetric case). Here we assume
that u(x) »4v(x/NxN). Let r h be a sequence of positive numbers converging to
zero as hK1Q and let h�N be sufficiently large so that Br h

%V . As before,
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we use the notation w(x) »4NxNv(x/NxN), and we define

uh (x) »4

.
`
/
`
´

NxN

r h

vg x

NxN
h4

1

r h

w(x) 4wg x

r h
h

u(x) 4vg x

NxN
h

if x�Br h
,

if x�V0Br h
.

Then ]uh (h�N converges to u in the strong norm topology of W 1, p (V ; Rn ).
Therefore we can use the definition (22) of TV s (u , V) and, since det Du(x) 40
in V0Br h

we have

(72) TV s (u , V) G lim inf
hK1Q

s
Br h

N 1

r h
n

det Dwg x

r h
hNdx

4s
B1

Ndet Dw(x)Ndx4 Ns
B1

det Dw(x) dxN ,

where the last equality follows from the fact that, by assumption, det Dw(x)
has constant sign in B1 . In fact, by (65) of Lemma 35, with h(NxN) 4NxN , we
have

det Dw(x) 4 !
i41

n

(21)i21 v ig x

NxN
h ¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
g x

NxN
h ,

and thus, by the sign condition (18), the left hand side has constant sign as
well as the right hand side. Therefore, from Step 1 and from (72), when
u(x) »4v(x/NxN) we get

TV(u , V) 4TV s (u , V) 4TV(v , B1 )

4
1

n N s
¯B1

!
i41

n

(21)i11 v i (v)
¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )
(v) dH n21N.

We explicitly observe that, as a consequence of what we have shown in Steps 1
and 2, we have achieved the proof of Theorem 11 in the radially symmetric
case; moreover, the representation formula for TV(v , V) is independent of the
open set V containing the origin.

Step 3 (upper bound in the general case). By Lemma 34 there exists a se-
quence (r h )h�N , converging to zero as hK1Q , and such that

1

r h
n2p21 s

¯Br h

NDt uNp dH n21 Gc(n , p) M0 .(73)
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For every h�N , we denote by s h a real sequence in (0 , 1 /2) to be chosen later
(see (76)). For every h41, 2 , R , let h h (r) be a cut-off function such that
h h (r) 41 if 0 GrGr h (12s h ), h h (r) 40 if r h GrG1, h h (r) is linear in the
interval [r h (12s h ), r h ]. Fix eD0. From Step 2 there exists a Lipschitz-con-

tinuous map w : B1 KRn such that w(x) »4vg x

NxN
h on a neighborhood of ¯B1

and

s
B1

Ndet Dw(x)NdxETV(v , B1 )1e .(74)

Then, with the notation v»4x/NxN , we define

uh (x) »4

.
`
/
`
´

wg x

r h (12s h )
h

hh (NxN) v(v)1[12h h (NxN) ] u(r h v)

u(x)

if 0 GNxNGr h (12s h ),

if rh (12s h )ENxNEr h ,

if x�V0Br h
.

(75)

We first prove that ]uh (h�N converges to u in the strong topology of
W 1, p (V ; Rn ). In fact

s
V

Nuh 2uNp dx4 s
Br h

Nuh 2uNp dxGc s
Br h (12s h )

Nwg x

r h (12s h )
hN

p
dx

1c s
Br h 0 Br h (12s h )

mNvg x

NxN
hN

p
1Nugr h

x

NxN
hN

pn dx1c s
Br h

Nu(x)Np dx

Gcr h
n]VwVL Q (B1 )

p 1VvVL Q (¯B1 )
p 1Vu(r h v)2v(v)VL Q (¯B1 )

p
(1c s

Br h

Nu(x)Np dx ,

which goes to zero as hK1Q , since r h K0 and Vu(r h v)2v(v)VL Q (¯B1 )
p K0.

Moreover, by (64) of Lemma 35, we have

s
V

NDuh 2DuNp dx

Gc1 s
Br h (12s h )

NDwg x

r h (12s h )
hN

p
dx1c1 s

Br h 0Br h (12s h )

NDt vNp

NxNp
dx

1c1 s
Br h 0Br h (12s h )

NDt ugr h
x

NxN
hN

p
dx
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1
c1

r h
ps h

p s
Br h0Br h(12s h)

Nugr h
x

NxN
h2vg x

NxN
hN

p
dx1c1s

Br h

NDuNpdx

Gc2 r h
n2p (12s h )n2ps

B1

NDw(x)Np dx1c2 s
Br h 0Br h (12s h )

1

NxNp
dx

1c2 s
r h (12s h )

r h

dr s
¯Br

NDt ugr h
x

NxN
hN

p
dH n21

1c2
r h

n2p

s h
p21

Vu(r h v)2v(v)VL Q (¯B1 )
p 1c1 s

Br h

NDuNp dx

Gc3 r h
n2p 1

c3

r h
n21

r h
n s h s

¯Br h

NDt u(y)Np dHy
n21

1c3
r h

n2p

s h
p21

Vu(r h v)2v(v)VL Q (¯B1 )
p 1c1 s

Br h

NDuNp dx .

By the bound (73) we obtain

s
V

NDuh 2DuNp dxGc(w , v , M0 ) r h
n2p

1c
r h

n2p

s h
p21

Vu(r h v)2v(v)VL Q (¯B1 )
p 1c1 s

Br h

NDuNp dx

and this quantity goes to zero as hK1Q if we assume that

s h »4r h

n2p

p21(76)

(we use here the fact that pEn). Therefore, as hK1Q , uh converges to u in
the strong norm topology of W 1, p (V ; Rn ). Thus, by (74) and by the lower
semicontinuity of TV s (u , V) with respect to the strong convergence in
W 1, p (V ; Rn ), we have

TV(u , V) GTV s (u , V) G lim inf
hK1Q

s
V

Ndet Duh (x)Ndx

Gs
B1

Ndet Dw(x)Ndx1s
V

Ndet Du(x)Ndx1 lim inf
hK1Q

s
Br h 0Br h (12s h )

Ndet Duh (x)Ndx

GTV(v , B1 )1e1s
V

Ndet Du(x)Ndx1 lim inf
hK1Q

s
Br h 0Br h (12s h )

Ndet Duh (x)Ndx .
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If we prove that

lim
hK1Q

s
Br h 0Br h (12s h )

Ndet Duh (x)Ndx40 ,(77)

then, letting eK01 we reach the upper bound

TV(u , V) GTV s (u , V) GTV(v , B1 )1s
V

Ndet Du(x)Ndx

which, together to the lower bound in Step 1, yields the conclusion

TV(u , V) 4TV s (u , V) 4TV(v , B1 )1s
V

Ndet Du(x)Ndx .

Therefore it remains to prove (77). To this aim, arguing as in the proof of
(65), we can evaluate det Duh (x) by taking first the derivative of uh with re-
spect to the radial direction, and then the tangential derivatives. We get

s
Br h 0Br h (12s h )

Ndet Duh (x)NdxG
c1

r h s h
s

Br h 0Br h (12s h )

mNugr h
x

NxN
h2vg x

NxN
hNkNDtvg x

NxN
hN

n21
1NDtugr h

x

NxN
hN

n21ln dx

G
c1

r h s h

Vu(r h v)2v(v)VL Q (¯B1 )

Q {c2 s
Br h 0Br h (12s h )

1

NxNn21
dx1

r h
n s h

r h
n21 s

¯Br h

NDt uNn21 dH n21}

Gc3 Vu(r h v)2v(v)VL Q (¯B1 ){c2 1 s
¯Br h

NDt uNn21 dH n21} .

Finally, since by (73) we also have

s
¯Br h

NDt uNn21 dH n21 Gc4{ 1

r h
n2p21 s

¯Br h

NDt uNp dH n21}
n21

p

Gc5 ,

then, from the above inequality, we deduce that

s
Br h 0Br h (12s h )

Ndet Duh (x)N dxGc6 Vu(r h v)2v(v)VL Q (¯B1 ) ,

which converges to zero as hK1Q . Thus (77) is proved. r
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We conclude this section with some algebraic results used in the paper. We
introduce some notations. Denote M m3n by the family of m3n matrices. If A
is an n3n matrix (A�M n3n), Xi , j (A) is the matrix obtained from A by delet-
ing the i-th row and the j-th column of A . If S is an (n21)3n matrix (S�
M (n21)3n), X, j (S) stands for the matrix obtained from S by deleting the j-th
column of S . If T is an n3 (n21) matrix (T�M n3 (n21)), then Xi , (T) is the
matrix obtained from T by deleting the i-th row of T .

The properties stated in the next two lemmas are known and we do not give
their proofs. We refer the reader for instance to the book by Cartan [14].

LEMMA 37 Algebraic lemma. – The following properties hold:

(i) Let j , h�Rn and let B�M n3n . If Aij 4j i h j and A4 (Aij ) �M n3n ,
then

det (A1B) 4 !
i , j41

n

(21)i1 j j i h j det (Xi , j (B) )1det (B) .

(ii) Let T�M n3 (n21) be a matrix whose column vectors
]t 1 , t 2 , R , t n21( form an orthonormal basis of Rn . Then

!
i41

n

[det (Xi , (T) ) ]2 41 .

(iii) Let S�M (n21)3n and T�M n3 (n21) . Then

det (S QT) 4 !
i41

n

det (X, i (S) ) Qdet (Xi , (T) ) .

As in Section 2, fixed v 0 �¯B1 , for every j� ]1, 2 , R , n21( we consider a
vector field t j : ¯B1 0]v 0( KRn of class C 1 such that the set of vectors ]t 1 (x),
t 2 (x), R , t n21 (x)( is an orthonormal basis for the tangent plane to the sur-
face ¯B1 at the point x , for every x�¯B1 0]v 0(. For every x�¯B1 0]v 0( we de-
note by T(x) the n3 (n21) matrix whose columns are given by the vectors
]t 1 (x), t 2 (x), R , t n21 (x)(. Consider the vector

n(x) »4 !
i41

n

(21)i11 det (Xi , (T(x) ) ) ei .(78)

Up to a change of sign to one of the vectors t 1 (x), t 2 (x), R , t n21 (x), we can
assume that, at every x�¯B1 0]v 0(, n(x) represent the exterior normal unit
vector to ¯B1 . That n(x) is a normal unit vector to the surface ¯B1 follows from
the following result.

LEMMA 38 (On the normal unit vector).. – For every x�¯B1 0]v 0( the vec-
tor n(x) has norm equal to 1 and it is orthogonal to the vectors t 1 (x),
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t 2 (x), R , t n21 (x); i.e.,

.
/
´

Nn(x)N41

an(x), t i (x)b 40

( x�¯B1 0]v 0 ( ,

( x�¯B1 0]v 0 ( , ( i41, 2 , R , n21 .

8. – Relaxation in the general polyconvex case.

As mentioned in Section 4, the characterization of TV(u , V) may be viewed
within a broader context, namely as part of a program to search for the de-
scription and identification of the defect measure obtained through relaxation
of energies when there is a gap between the space of coercivity and the space
guaranteeing apriori continuity. Indeed, TV(u , V) is a particular case of a
functional of the type Fp , q (u , V) in (33).

Here formally we may consider

(79) F(u , V) »4 infmlim inf
hK1Q

s
V

g(M(Duh (x) ) ) dx :

uh � u weakly in W 1, p (V ; Rn ), uh �W 1, n (V ; Rn )n .

Then F(u , V) is the relaxed functional of the integral functional

F(u , V) »4s
V

g(M(Du) ) dx ,

where u : VKRn . The vector-valued map M(Du) of minors of Du is given by

M(Du) »4 (Du , adj2 Du , R , adjn21 Du , det Du) �RN ,

where, for j42, R , n21, adjj Du denotes the matrix of all minors j3 j of Du

and N4 !
j41

n gn

j
h2

(in particular N45 if n42). Finally g : RN K [0 , 1Q) is a

convex function satisfying the growth conditions

gQ Ndet jNGg(M(j) ) GL(11NjNp )1gQ Ndet jN ,(80)

for some constants LF0, gQD0, for all matrices j�Rn3n and for some expo-
nent p� [1 , n).

A particularly important case of F(u , V) is the area integral

A(u , V) »4s
V

k11NM(Du)N2dx ,
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which in the 22d setting reduces to

A(u , V) 4s
V

k11NDu(x)N2 1Ndet Du(x)N2dx .

Theorem 39 below has been proved by Marcellini [46], [47] for pDn 2/(n11)
and by Dacorogna and Marcellini [20] for pDn21 (pF1 if n42). A limiting
case, with p4n21, has been considered under different assumptions by
Acerbi and Dal Maso [2], Celada and Dal Maso [15], Dal Maso and Sbordone
[22] and by Fusco and Hutchinson [30]. The relaxation in this context has
been first considered by Fonseca and Marcellini [29].

THEOREM 39 (Lower semicontinuity below the critical exponent). – Let V be
an open set of Rn . Let g : RN KR be a nonnegative convex function.
Then

lim inf
hK1Q

s
V

g(M(Duh ) ) dxFs
V

g(M(Du) ) dx ,

for every sequence uh which converge to u in the weak topology of
W 1, p(V ; Rn) for some pDn21, with u , uh�Wloc

1, n(V ; Rn) for every h�N .

It has been shown in [9] that, if pDn21, then F(u , Q) is a Radon measure
and, for every open set A%V ,

F(u , A) 4g(M(Du) ) Ln DA1m s (A) ,

where m s is a finite Radon measure, singular with respect to the Lebesgue
measure Ln . A longtime question has been to identify the singular measure m s .
In Theorem 40 we achieve this for the class of maps u�Wloc

1 , Q (V0]0(; Rn ) con-
sidered in Section 2. Precisely, using Theorem 1 in 2-d and Theorem 9 for the
general n-d case, we can prove the following relaxation result.

THEOREM 40 (Relaxation in n-d). – Let V be an open set of Rn , nF2, con-
taining the origin. Let u�W 1, p (V ; Rn )OWloc

1 , Q (V0]0(; Rn ) for some p�
(n21, n), such that, for a positive constant M0 ,

sup
rD0

1

r n2p s
Br

NDuNp dxGM0 .

Let v : ¯B1 4S n21 KRn , v�W 1, Q (S n21 ; Rn ), be a Lipschitz-continuous
map such that

lim
rK01

maxmNugr
x

NxN
h2vg x

NxN
hN: x�B1 0]0(n40 .
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Moreover, if n42 we assume that the map v has values in the set G defined in
(5); while, if nF3, then we assume that the quantity

!
i41

n

(21)i11 v i ¯(v 1 , R , v i21 , v i11 , R , v n )

¯(t 1 , t 2 , R , t n21 )

has constant sign H n21-almost everywhere on ¯B1 . Then the relaxed func-
tional F(u , V), defined in (79) with g : RN K [0 , 1Q) satisfying (80), is
given by

F(u , V) 4s
V

g(M(Du(x) ) ) dx1gQ TV(v , B1 ) ,

where the total variation TV(v , B1 ) of v is given in (20).

PROOF. – Step 1 (lower bound). Consider a sequence ]uh (h�N of class
W 1, n(V ; Rn) converging to u in the weak topology of W 1, p(V ; Rn), as hK1Q.
Let r� (0 , 1 ) be fixed. By Theorem 39, on the lower semicontinuity below
the critical exponent, using the bound on the left hand side of (80), we
have

lim inf
hK1Q

F(uh , V)Flim inf
hK1Q

s
V0Br

g(M(Duh (x))) dx1lim inf
hK1Q

gQs
Br

Ndet Duh(x)Ndx

F s
V0Br

g(M(Du(x) ) ) dx1gQ TV(v , B1 ) .

Letting rK0 we deduce the lower bound

F(u , V) Fs
V

g(M(Du(x) ) ) dx1gQ TV(v , B1 ) .

Step 2 (upper bound). For every eD0 there exists a Lipschitz-continuous
map w : B1 KRn satisfying

s
B1

Ndet Dw(x)N dxEe1TV(v , B1 )(81)

and such that w4v on ¯B1 . Indeed, if n42 we use (Lemma 25), while if nF3
we use (74). By Lemma 34 there exists a sequence (r h )h�N , converging to zero
as
hK1Q , and such that

1

r h
n2p21 s

¯Br h

NDt uNp dH n21 Gc(n , p)M0 .
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For every h�N we set s h »4r h

n2p

p21 , and we define uh (x) as in (75). As in Step 3
of the proof of Theorem 9, we can show that

lim
hK1Q

s
Br h 0Br h (12s h )

NDuhNp dx4 lim
hK1Q

s
Br h 0Br h (12s h )

Ndet Duh (x)Ndx40(82)

and, by also using the inequality on the right hand side of (80), we can prove
the upper bound

F(u , V) G lim inf
hK1Q

F(uh , V) Gs
V

g(M(Du(x) ) ) dx1

lim inf
hK1Q

s
Br h 0Br h (12s h )

]L(11NDuhNp )1gQ Ndet DuhN( dx1gQs
B1

Ndet Dw(x)Ndx .

By (81) and (82), letting e go to zero, we conclude that

F(u , V) Gs
V

g(M(Du(x) ) ) dx1gQ TV(v , B1 ) . r

9. – A relevant n-dimensional class of maps.

The singular map u : Rn 0]0( KRn , defined for xc0 by

u(x) 4
x

NxN
,(83)

belongs to the class W 1, p (B1 ; Rn )OWloc
1 , Q (V0]0(; Rn ) for every p� [1 , n),

but u�W 1, n (B1 ; Rn ). In this case a formula for the total variation TV(u , V)
was already known. Indeed, (84) below has been first given in 1986 by Mar-
cellini [47] (see also Fonseca and Marcellini [29]). In this section we generalize
the formula to more general maps.

To deduce (84) using the tools developed in this work, write u(x) 4

v(x/NxN), where the map v : ¯B1 KRn is the identity on ¯B1 4S n21 . The map
vA(x) 4NxN Qv(x/NxN) 4x is the smooth extension of u according with Corollary
12. Clearly DvA(x) 4Id is the identity matrix and det DvA(x) 41. Therefore, if
V is any open set of Rn containing the origin, Corollary 12 gives

TVg x

NxN
, Vh4Ns

B1

det DvA(x) dxN4s
B1

dx4NB1N4v n .(84)

Next we generalize the structure (83) and we consider a class of maps re-
cently studied by Jerrard and Soner [42]. Consider a function w�C 1 (V ; Rn )
(or, more generally, a locally Lipschitz-continuous map w : VKRn classically
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differentiable at x40) such that det Dw(0) c0. Let V be an open set contain-
ing the origin and define u : V0]0( KRn by

u(x) »4
w(x)2w(0)

Nw(x)2w(0)N
.(85)

Note that the condition det Dw(0) c0 ensures the existence of rD0 such that
w(x) cw(0) for every x�Br 0]0(, and in the sequel we limit ourselves to open
sets V%Br containing the origin.

First we show that, without loss of generality, we may assume that
Dw(0) 4Id is the identity matrix. Indeed, by assumption, the gradient Dw(0)
of w at x40 is a nonsingular matrix n3n; let us denote by A»4Dw(0) this
matrix, and by A 21 its inverse matrix. Define on V0]0(

z(x) »4u(A 21 x) 4
w(A 21 x)2w(0)

Nw(A 21 x)2w(0)N
, ( x�V0]0( .

Let ]uh(h�N be a sequence in W 1, n (V ; Rn ) which converges, as hK1Q , to u
weakly in W 1, p (V ; Rn ). Then zh (x) »4uh (A 21 x) converges weakly in
W 1, p (V ; Rn ) to z(x) 4u(A 21 x). Since

s
A(V)

Ndet Dzh (x)Ndx4 s
A(V)

Ndet Duh (A 21x)N Q Ndet A 21Ndx4s
V

Ndet Duh (x)N dx ,

we deduce that TV(z , A(V) ) 4TV(u , V). We also have [Dw(A 21 x)]x40 4

Dw(0) QA 21 4Id , where Id is the identity matrix. Therefore, the above com-
putations show that, without loss of generality, to evaluate the total variation
TV(u , V) of the Jacobian determinant we may assume that

A4Dw(0) 4Id .(86)

Under (86), with u given in (85), we define v : ¯B1 KRn by v(y) »4y , for
every y�¯B1 . We have

lim
rK0

max ]Nu(ry)2v(y)N : y�¯B1( 40 .(87)

Indeed, since w is differentiable at x40, we obtain

u(ry)2v(y) 4
w(ry)2w(0)

Nw(ry)2w(0)N
2y4

ry1o(r)

Nry1o(r)N
2y4

y1
o(r)

r

Ny1
o(r)

r N
2y ,

which converges to zero as rK0. Thus assertion (87) is proved.
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Moreover, for every x�Br 0]0( with Br compactly contained in V , if we
denote by L the Lipschitz constant of w in Br , we have

NDu(x)NGc1
NDw(x)N

Nw(x)2w(0)N
Gc1

L

Nw(x)2w(0)N
,

for a constant c1 . Since A4Dw(0) 4Id , then

Nw(x)2w(0)N4NDw(0) Qx1o(NxN)N4Nx1o(NxN)NF
1

2
NxN

for every x�Br 0
with r 0 sufficiently small; thus

NDu(x)NGc1
L

Nw(x)2w(0)N
G

2c1 L

NxN
.

Also, for every pEn , we have

sup
0 ErGr 0

1

r n2p s
Br

NDuNp dxG sup
0 ErGr 0

c2

r n2p s
Br

1

NxNp
dxG

sup
0 ErGr 0

c2 Qv n

r n2p s
0

r

r n212p dr4
c2 Qv n

n2p
.

Therefore the assumptions (13), (14) are satisfied, and we can apply Theorem
9, when v : S n21 KS n21 is the identity map. Since Nu(x)N41 for every x�
V0]0(, then det Du(x) 40 in V0]0(, and hence, by (84) we finally get

TV(u , V) 4TVg x

NxN
, Vh4v n , with u(x) »4

w(x)2w(0)

Nw(x)2w(0)N
.

10. – Some 2- and 3-dimensional examples.

We start with a simple application of the general 2-d result of Theorem 1.

EXAMPLE 41. – Let u(x) »4v(x/NxN), where v : [0 , 2p] KS 1 is the map
v(w) 4 ( cos g(w), sin g(w) ), with g : [0 , 2p] KR Lipschitz-continuous function
such that g(2p) 4g(0)12kp , for some k�Z . Since v 1 (w) vw

2 (w)2

v 2 (w) vw
1 (w) 4g 8 (w), by Theorem 1 we obtain

TV(u , B1 ) 4
1

2 Ns
0

2p

g 8 (w) dwN4NkNp .
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Note that here g is not necessarily a monotone function and that

TV(u , B1 ) 4
1

2 N s
0

2p

g 8 (w) dwN, with the absolute value sign outside the inte-

gral sign, and not inside as could have been expected. On the other hand, if
w(x) 4NxNu(x) is the radially linear Lipschitz-continuous extension of v , we

have instead TV(w , B1 ) 4
1

2
s
0

2p

Ng 8 (w)Ndw .

Consider a Lipschitz-continuous closed curve v : [0 , 2p] Kg , with para-
metric representation v(w) 4 (v 1 (w), v 2 (w) ) and with v(0) 4v(2p). As in
Section 2, we denote by ]Ij

1(j and by ]Ik
2(k sequences of disjoint open in-

tervals of [0 , 2p] such that v(Ij ) %g1 and v(Ik ) %g2 (and v(w) 4 (0 , 0 ) when
w� (Nj Ij

1 )N (Nk Ik
2 )). With u(x) »4v(x/NxN), we stated in Theorem 4 the

following upper and lower estimates

TV(u , B1 ) G
1

2
!
j�NNs

Ij

]v 1 (w) vw
2 (w)2v 2 (w) vw

1 (w)( dwN;(88)

(89) TV(u , B1 ) F

1

2
{N!

j�N
s

Ij
1

]v 1 vw
2 2v 2 vw

1( dwN1N !
k�N

s
Ik

2

]v 1 vw
2 2v 2 vw

1( dwN} .

We notice that, if the curve v : [0 , 2p] Kg4g1Ng2 admits only two in-
tervals I1

1 and I2
2 where v(I1

1 ) %g1 , v(I2
2 ) %g2 respectively, then the above

estimates for TV(u , B1 ) are in fact equalities, and

TV(u , B1 ) 4
1

2
{Ns

I1
1

]v 1 vw
2 2v 2 vw

1( dwN1Ns
I2

2

]v 1 vw
2 2v 2 vw

1( dwN} .(90)

Moreover, the total variation of the distributional determinant NDet DuN(B1 )
is given by

NDet DuN(B1 ) 4
1

2 Ns
0

2p

]v 1 (w) vw
2 (w)2v 2 (w) vw

1 (w)( dwN.

In [24] we presented 2-dimensional examples illustrating situations where
TV(u , V)DNDet DuN(V) and where there is a gap between (88) and (89).

Finally we consider a 3-dimensional example.
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EXAMPLE 42. – Let us consider the map v : S 2 KS 2 %R3 defined, in spheri-
cal coordinates, by

v(w , c) »4

.
/
´

v 1 4cos g(w) sin c

v 2 4sin g(w) sin c ,

v 3 4cos c

for w� [0 , 2p], c� [0 , p], where g : [0 , 2p] K [0 , 2p] is a Lipschitz-continu-
ous function such that g(2p)2g(0) 42kp for some k�Z . By formula (65)
we can see that, if v is a generic point of S 2 , represented in the form
v4 ( cos w sin c , sin w sin c , cos c), then we have

v 1 (v)
¯(v 2 , v 3 )

¯(t 1 , t 2 )
(v)2v 2 (v)

¯(v 1 , v 3 )

¯(t 1 , t 2 )
(v)1v 3 (v)

¯(v 2 , v 1 )

¯(t 1 , t 2 )
(v) 4g 8 (w) .

Thus, if the function g is monotone, then the sign assumption (18) is satisfied
and, by Theorem 9, we obtain

TV(v , B1 ) 4
2

3
Ng(2p)2g(0)N4

4

3
pNkN ,(91)

which, as expected, is equal to the absolute value NkN of the topological degree

of the map times the volume v 3 4
4

3
p of the unit ball in R3 .

However, formula (91) also holds if the function g is not monotone, i.e., if
the sign assumption (18) is not satisfied. To assert this fact (that we do not
want to prove in all details), we can follow the argument used in Section 5 to
prove Theorem 1. In particular, if for some a , b , with 0 GaEbG2p , we have
g(a) 4g(b), then for every eD0 we can construct a Lipschitz-continuous

map w : Sa , bKR3 such that w(x) »4NxNv g x

NxN
h if x�¯Sa , b and

s
Sa , b

Ndet Dw(x)NdxEe ,

where Sa , b is the subset of B1 of points x4 (r cos w sin c , r sin w sin c , r cos c),
with 0 GrG1, aGwGb , 0 GcGp . The map w can be defined similarly to
the one used in the proof of the «umbrella» Lemma 22, setting w(r , w , c) »4

r( cos W(r , w) sin c , sin W(r , w) sin c , cos c), where W(r , w) »4r h g(w)1 (12

r h ) g(a), with h sufficiently large.
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