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Bollettino U. M. 1.
(8) 8-B (2005), 173-185

Boundary Map and Overrings of Half-factorial Domains.

NATHALIE GONZALEZ - SEBASTIEN PELLERIN

Sunto. — In questo articolo studiamo la fattorizzazione di elementi net sopranelli di un
dominio meta-fattoriale A in funzione del comportamento della funzione di bordo
di A. A tale riguardo, troviamo che gioca un ruolo centrale una condizione sulle
estensioni, che chiomiamo condizione C*. Quindi studiamo quando questa condi-
zione CC™ ¢ verificata. Infine, applichiamo 1 risultati ottenuti al caso speciale de-
gl anelli di polinomi.

Summary. — We investigate factorization of elements in overrings of a half-factorial
domain A in relation with the behaviour of the boundary map of A. It turns out that
a condition, called C*, on the extension plays a central role in this study. We finally
apply our results to the special case of A + XB[X] polynomial rings.

In 1960, Carlitz [4] proved that the class number of an algebraic number
ring is less or equal to 2 if and only if each nonzero nonunit « factors as a prod-
uct of irreducible elements so that the number of such irreducible factors only
depends on the element x. Then, we say that a domain R is atomic if each
nonzero nonunit of R factors as a product of irreducible elements, and that an
atomic domain is a half-factorial domain (or HFD) if each equality

.7'[1...7[,,.:7:1...7:8

with the 7;, 7’s irreducible in R, implies 7 = s.

The study of the properties of HFDs has been a fruitful topic these last
past years (see [5] for a survey). In particular, since HFDs generalize UFDs,
we aim to know which of the properties of UFDs are still true for HFDs. For
instance, a domain R may be a HFD whereas the polynomial ring R[X] is not —
more precisely, Coykendall proved in [8] that, if R[X]is a HFD, then R is inte-
grally closed whereas there are non-integrally closed HFDs (for instance
Z[\/—_S]). Another question in the same vein was to know if a localization of a
HFD is a HFD, this question has been studied by D.F. Anderson, Chapman
and Smith in [1] and by D.F. Anderson and Park in [2] for the case of
Dedekind domains. More generally, we can ask if an overring of a HFD is a
HFD. Of course, it is false in general (for instance, if R is not one-dimensional,
then it admits non-discrete valuation overrings, whence non-atomic overrings)
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but we aim to characterize which overrings are HFDs. In particular, a natural
conjecture then turns out: if R is a HFD, is its integral closure R also a HFD?
In 1983, Halter-Koch gave a positive response for the case of orders in
quadratic algebraic number rings [14], which was generalized to the general
case of algebraic number rings by Coykendall in 1999 [9] who nevertheless
proved in [11] that this conjecture fails in general. Anyway, in [9], Coykendall
introduced a new tool, the boundary map of a HFD, which allows us better in-
vestigations of factorization properties in the overrings of a HFD.

The aim of this paper is, given a half-factorial domain A, to study the be-
haviour of the boundary map of A on its overrings and then, to derive condi-
tions for these overrings to be half-factorial.

If R is an integral domain, then U(R) will denote its group of units and R *
its set of nonzero elements. We will often use the word atom for an irreducible
element of an integral domain. As usual, Z will denote the ring of integers and
N the set of nonnegative integers. All rings are commutative with identity and
integral domains.

1. — Integral characters of an integral domain.

DEFINITION 1.1. — Let A be an integral domain with quotient field K. We
call an integral character on A, each function ¢ : A—7Z such that

p(ey) = @(x) + e(y)

for all x, yeA. If ¢(A) # {0}, we say that ¢ is non trivial on A.
Then, for every x, ye A, set:

w(ﬁ) =g(x) — ¢(y).
Y

That is, we extend the integral character ¢ to K, and we then say that ¢ is an
integral character on K. If ¢(K) # {0}, we say that ¢ is non trivial on K.

Note that ¢(K) is a subgroup of Z. Thus we can always assume that ¢(K) =
7.. From now on, we will always make this assumption. The following example
will be the main interest of this paper.

ExAMPLE 1.2. — Let us consider an atomic domain A with quotient field K
and a pseudo-length function {: A— XN on A that is [13]:

(@) C(xy) =0(x)+0(y) for all x,y in A*
(72) £(x) >0 for each nonprime irreducible element x of A.
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We can then extend this function to K* by setting:
a
aA,{’ (3) ={(a)—((b)

for each a, b € A*. The function 3, , is called the boundary map related to A
and €.

In the particular case of a HFD A, there exists a (pseudo-)length function
( on A such that £(x) =1 if and only if x is an atom [17] (in particular, {(x) =0
if and only if x is a unit of A). Then the associated boundary map is defined by

with the 7;, 7/’s irreducible in A [9].
Ti...Tg

If A is an integral domain with quotient field K and ¢ is an integral charac-
ter on K, then we will often say that ¢ is an integral character on A.

94(x) =7 —s where x = Mo T

DEFINITION 1.3. — Let A be an integral domain with quotient field K and let
@ be a non trivial integral character on K. Then ¢ is said to be positive on A if
@(x) =0 for all x € A. If moreover, ¢(x) > 0 for all nonunit x € A, then ¢ is said
to be strictly positive on A.

Respectively, we say that ¢ is negative on A if ¢(x) <0 for all xe A, and
that ¢ is strictly megative on A if moreover ¢(x) <0 for all nonunit
reA.

EXAMPLE 1.4. — Let us consider an atomic domain A with quotient field K
and a pseudo-length function  on A. Then the boundary map associated to { is
positive on A.

ExAMPLE 1.5. — Let us consider a (rank-one) discrete valuation ring V with
quotient field K and let us denote v the valuation. Then v is a non-trivial inte-
gral character on K* which is strictly positive on V.

We first give a consequence of the positiveness of an integral character.

LEMMA 1.6. — If ¢ 1is positive on A, then @(u) =0 for each unit u of A.

PrOOF. — We have ¢(u) + @(u ') = ¢(1) = 0 and the result follows as ¢ is
positive. =

Note that it may occur that ¢(u) = 0 for each unit # of A but ¢ takes both
positive and negative values on A. Indeed, consider the integral character ¢
defined on K[X, Y] by ¢ = vy — vy, Where vy and vy respectively denote the X-
adic and the Y-adic valuations on K[X, Y]. Then ¢(u) =0 for each unit « of
K[ X, Y] nevertheless ¢(X) =1 and @(Y) = —1.
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ProposITION 1.7. — If A is not a field and @ is an integral character
on A, then the following are equivalent:

(1) @ 1is either strictly positive or strictly negative on A
(11) @(x) =0 for each nonunit xeA.

ProOOF. — The fact that (¢) implies (i7) is clear. Conversely, assume that
@(x) # 0 for each nonunit x € A, it suffices to show that ¢ is either positive or
negative. Assume, by way of contradiction, that there exist nonunits «, y in A
with ¢@(x) =m >0 and ¢(y) = —n <0, then we have:

(p(.,)cﬂy?ﬂ) — 0 .

It follows that the element "y ™ is invertible in A, whence x and y are both in-
vertible in A. This contradicts the choice of x and y. =

The next proposition gives an interesting example of a strictly positive in-
tegral character which will be useful in the remainder of this paper.

ProPOSITION 1.8. — Let ¢ be a non-trivial integral character on A and con-
sider the multiplicatively closed set S = {xeA; ¢(x) =0}

@) If ¢ is positive on A, then S A #= K and ¢ is strictly positive on
S 1A.
(1) If @ takes both positive and megative values, then S 1A =K.

PrOOF. — (i) Let « be a nonzero element of S "'A and write x = 2 with
S

aeA* and seS. Then p(x) = ¢(a) — ¢(s) = p(a) = 0 since ¢ is positive on A.
Therefore ¢ is positive on S ~1 A. Moreover, if x is a nonunit, then a ¢ S, that is,
@(a) > 0. Thus ¢(x) > 0, that is, ¢ is strictly positive on S ~! A. Lastly, assume
that S "' A = K, it follows from Lemma 1.6 that ¢ is trivial on S "' A thus on A,
we reach a contradiction.

(#1) Let us consider an element & € A such that ¢(x) #Z 0, say ¢(x) =m > 0.
Then there exists y e A with ¢(y) = —n <0. We have ¢(x"y™) =0 that is
x"y™ is invertible in S "' A, hence so is x. Since each nonzero element of A is
invertible in S !4, S 1A is a field and S 'A=K. =

Now, we investigate some consequences of the notion of strictly positive in-
tegral character.

PRrOPOSITION 1.9. — If ¢ 1s strictly positive integral character on an inte-
gral domain A, then A is a bounded factorization domain (BFD). In particu-
lar, A is an atomic domain.
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PrOOF. — Let us consider an ascending chain Ax,c Ax;c Ax,C ... of princi-
pal ideals of A. Then, for each » =0, we can write «, , ; = x, ¥, Where ¥, is a
nonunit of A. Since ¢ is strictly positive on A, we thus have ¢(x, , 1) < ¢(x,).
Hence the sequence (¢(x,)),, < strictly decreases in IN and it thus follows that
A satisfies the ascending chain condition on principal ideals. Therefore A is
atomic.

Now, consider a nonzero nonunit x of A and a factorization x =&,...£, as a
product of irreducible factors. Then

(p(ac) = ¢(§1) +.0+ (/7(§n)

Since ¢ is strictly positive on A, the ¢(&;)’s are positive integers, thus » is
bounded by ¢(x). =

REMARK 1.10. — If ¢ is a strictly positive integral character on an integral
domain A and if ¢(x) =1, then x is an atom. Indeed, write x = ab, then ¢(a) +
@(b) = @p(x) =1, whence ¢(a) =0 or ¢(b) =0 that is, a or b is a unit of A.

Note that the converse fails. Indeed, consider the X-adic valuation vy on
the integral domain K[X?2, X?], then X? is an atom but vyx(X?) = 2.

In fact, if A is an atomic domain then, A is half-factorial if and only if there
is a positive integral character on A which takes the value 1 exactly on the
atoms (see [17]).

PROPOSITION 1.11. — Let us consider two domains A c B with the same quo-
tient field K and an integral character ¢ on K. If ¢ is strictly positive on A
and positive on B, then UA) = U(B) N A.

ProOF. - It is clear that the units of A are units of B. Conversely, if u is a
unit of B which belongs to A then, from Lemma 1.6, ¢(u) = 0. Since g is strict-
ly positive on A, it follows that » is a unit of A. =

Note that it is not sufficent to assume ¢ strictly positive on B. For instance,
the p-adic valuation is strictly positive on 7, but not on Z.

We now focuse on the case of boundary maps. Let A be a half-factorial do-
main with quotient field K and B be an overring of A. Recall that the bound-
ary map of A is the function 9,: K*—7 defined by 9,(u) =0 for each ue
UCA) and

for every irreducible elements 7;, 7; of A. Since the boundary map 9, is clear-
ly strictly positive on A, we obtain:
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COROLLARY 1.12. — If 9,4 s positive on B, then:

() For each unit w of B, d4(u) =0.
(i1) UA) = UW(B) N A.

Then, from the previous corollary, Proposition 1.9 and Remark 1.10, we
derive:

COROLLARY 1.13. — If 9, 1s strictly positive on B then:

(1) 94 s positive on B.
(21) For each unit uw of B, d4(u) =0.
(1127) B is a BFD (in particular B is atomic).
() UA) = U(B)NA.
(v) Each atom of A is an atom of B.

This result allows us to give an example of an atomic overring which admits
a nonunit element of boundary zero (giving a negative answer to the last ques-
tion of [11] or [6, Problem 27]): it is sufficient to find an irreducible element of
A which does not remain irreducible in B.

ExXAMPLE 1.14. - Set A = Z + XZ[t][X] and B = Z[t, X]. Then A is a HFD

[12, Proposition 1.8] and B is a factorial overring of A. The element f=X(t+ X)

Xt+X)] . .
x@+ X1 is a nonzero nonunit of B

is irreducible in A but not in B and t + X =
with boundary 0.

In this example, the element with boundary 0 is prime (since the top ring is
a UFD). We can give another example with a boundary 0 element which is ir-

reducible but not prime in B.

ExXAMPLE 1.15. - Set A = 7 + X7Z[t][X] and B = Z[t2?, t3] + XZ[t][X]. Then
A is a HFD and B is an overring of A which is not an HFD (since Z[t?, t?] is

not an HFD). The element f= Xt? is irreducible in A but not in B and t2 =

2
[XJis a nonzero nonunit of B with boundary 0 which is not prime in B.

It is easy to see that, in Corollary 1.13, (v) implies (tv) (but the converse
fails). Moreover, (v) is an improvement of [9, Corollary 2.6]. Now, we
ask:

QUESTION 1. — If B satisfies conditions (), (727) and (v), is 9,4 strictly positive
on B?

In the following remark, we give a positive answer to the previous question
in the case when the conductor [A : B] = {xe B, tBCA} contains a prime ele-
ment of B.
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REMARK 1.16. — Let us consider A an HFD, B an overring. We suppose that
there exists a prime 7 of B such that 7B C A (that is, we [A : B]). In this case,
d, is strictly positive on B if and only if each irreducible element of A remains
irreducible in B and U(B) N A = UA).

Indeed, if the condition on units is satisfied x is an irreducible element of
A. Let beB such that 9,(b) =0 then mbe A and 9,(xb) = 94(r) =1; thus
b = 1 is an irreducible element of A. As each irreducible of A is irreducible in
B, we conclude that b is a unit of B. The converse follows from corollary
1.13.

2. — Overrings of half-factorial domains.

Troughout this section, A is a half-factorial domain (HFD) with quotient
field K and B is a proper overring of A, that is, AcBcK.

The purpose of the following is to investigate factorization in the overring
B of A in relation with the behaviour of the boundary map d, on B. The key
fact of this section is that the boundary map is strictly positive on A.

PROPOSITION 2.1. — Assume that the atoms of A are atoms of B and that B
is a HFD. Then 9, is strictly positive on B.

ProoF. — Let « be a nonzero element of B of boundary 0 and write

Tq... T,
x:—
Ty1...T,

where the 7;, 7/’s are irreducible in A, then we obtain:
Tl ...‘17,,96‘ - .7'[1 ....7'[,,..

Since each atom of A is an atom of B and since B is a HFD, it follows that x is a
unit of B. =

Now, we recall a condition on extensions which is often used in factoriza-
tion problems (see for instance [10], [12], [14], [15] and [16]).

DEFINITION 2.2. — We say that an extension of integral domains R c T satis-
fies the condition " if for each element ¢ e 7T, there exists a unit « of 7' such
that ut e R.

REMARK 2.3. — Let A be an atomic domain and B be an overring of A such
that the extension A c B verifies C* and such that each atom of A is an atom of
B. Thus U(B) N A = U(A), B is also atomic and the atoms of B are of the form
ust where 7 is an atom of A.

Indeed, let © be a nonzero nonunit of B. Then, there exists a unit % of B
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such that ux € A. Since A is atomic and as ux is a nonunit of A, we can write
ux =7,...7, where the z/s are irreducible in A. That is x=u 'n,...7,,
where % ~!is a unit of B and 4, ..., 7, are atoms of A, whence of B. Therefore
B is atomic.

Moreover, since the atoms of A are atoms of B, a product us (where u is a
unit of B and s is an atom of A) is an atom of B. Conversely, let T be an atom of
B, then there exists a unit u of B with ut € A. Write ur = vy with ¢, y in A. As
is an atom of B, « or ¥ is a unit of B, say x. Then xe U(B) N A, that is x e
U(A). Therefore ur is an atom of A.

PROPOSITION 2.4. — Assume that the extension Ac B satisfies C* and that
ds(u) =0 for each unit w of B, then 9, is strictly positive on B and B is a
HFD.

PrOOF. — Let b be a nonzero nonunit of B. Then there exists a unit  of B
such that ub is a nonzero nonunit of R, thus d,(ub) >0, therefore 9,(b) =
Aa(u) + 94(b) > 0.

It follows from Corollary 1.13 and the previous remark that B is atomie.
Write x; ... x,, = ¥, ...y, with the x;, ;s irreducible in B. For each i, there is a
unit %; of B such that x; = u;x; is an atom of A, and for each j, there is a unit v;
of B such that y; = v;y; is an atom of A. Set u =, ... u,, and v =", ...7,, then
V2] ... X, =uYy{ ... Y, , thus:

Oa(v) + da(wy) + ... + 94(®y,) = a(u) + I (y/) + ... + 34 (y,)

Whence m=n. ®

ExAmMPLE 2.5. — [1] Let A be a Dedekind domain with class group Zg and
such that the set of nonzero ideal classes which contain prime ideal is S, =
{1, 2, 3}. Then A is HFD [7].

Let p be a prime ideal of A which lies in class 3. Then there exists an ele-
ment tep such that ¢ is not in any prime of classes 1 and 2. Set 7 =
{1,¢,t%, ...} and B=T"'D = D[1/t]. The extension Ac B satisfies * but 9,
is not strictly positive on B. Indeed, there exist units in B with nonzero bound-
ary. For example, as p is a prime ideal which lies in class 3, there exists an ir-
reducible element a €A such that Aa = p2

Here is an example of a half-factorial polynomial overring of a HFD such
that the extension satisfies the condition C*.

EXAMPLE 2.6. — Let A =7+ X7Z[t, X] and B =7Z[t?, t3]+ XZ[t, X]. We
have seen, in Example 1, that there exist elements of B with boundary zero.
Set S={beB, 9,(b) =0}, then:

AcBc7Z[t,X]1cS'B
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and S !B = Q(t, X). Indeed, let us suppose that % =t with be B and se€ S,
S

that is 94 (s) =0, thus 94(bX) = 0. Since bX € A, bX is a unit of A. We obtain a
contradiction and then conclude, by Proposition 1.8, that, for each beB,
ds(b) = 0.

Each nonzero nonunit % of S ~! B has a nonzero boundary. From Corollary
1.13, S “' B is atomic, U(S "' B) N A = U(A) and each irreducible element in A
remains irreducible in S “! B. We now prove that each irreducible element of
S 1B is associated to an irreducible element of A, that is, the extension Ac
S !B satisfies .

Let ¢ be an irreducible element of S "' B, write g = < with aeB and e

Sc UGS ' B). So, up to a unit of S ~' B, we can assume that g € B. If g € A then
¢ is irreducible in A (by the condition on units), thus assume that g¢ A and
that ¢ is not associated to any element of A. Consider the nonzero nonunit ele-
ment gX of A and consider the following factorization gX =f;...f,, where
fis---, fn are atoms of A. Assume that n =1 then gX =f,. It follows that
94(g) =0 (indeed, 34(g) + 9,(X) = 34(f;)) which contradicts the fact that g is
irreducible in S ~! B. Thus n = 2. One of the f/s is of order 1, say f; = Xk, where
he7[X,t]cS 'B. Thus we can write g = h(f;...f,). As ¢ is irreducible in
S 1B and (f;...f,) is a nonunit of A, we conclude that & is a unit of S ~1B.
Consequently, g is associated to an element of A which contradicts our hypoth-
esis. From Proposition 2.4, we then conclude that S !B is HFD.

Recall that 9,(a) = 0 whenever a € K is almost integral over A [9, Lemma
2.3]. We first summarize some properties in this case.

PropoSITION 2.7. — If the extension AcC B is almost-integral, then:

(@) For each nonzero a in B, d4(a) = 0.
(11) For each unit uw of B, 94(u) =0.
(#i1) UA) = WB)NA.

Note that Coykendall gave, in [11], an example of an integral extension A c
B such that there exist nonunit elements with boundary 0, moreover in this
case B is exactly the integral closure of the half-factorial domain A. It leads to
the following question:

QUESTION 2. — Find an example of an integral extension A ¢ B such that B is
atomic and there exist nonunit elements with boundary 0.

It seems that all known examples of integral extensions Ac B with A HFD
and B atomic satisfy the condition C*. This remark stresses the interest of the
following result which can easily be deduced from Proposition 2.4.

THEOREM 2.8. — Assume that the extension Ac B is almost-integral and
satisfies C*, then:
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(1) 9,4 1s strictly positive on B.
(11) Each atom of A is an atom of B.
(ti1) B is a HFD.
Now, we give a sufficient condition for an extension to satisfy C*.

PROPOSITION 2.9. — Assume that there exists a prime element w of B such
that tBcA and that UA) = W(B) N A. Then, for each atom x of B with
ox(x) =1, there exists a unit u of B such that uxeA. In particular, if
Is(x) =1, then ux is an atom of A for some unit u of B.

Proor. — Since 7B cA and U(B) N A = U(A), & is also an atom of A, thus
d4() =1. Let x be an atom of B, set d,(x) =k =1, mx is in A and 94 (nx) =
k+ 1 =2. Thus we can write szx =7, ... 7}, Where the 7,’s are irreducible in
A. Since 7 is a prime element of B, one of the 7,’s, say 71, is in #B. Hence, there
exists ¢ in B such that 7, =y and « = yr,... 7, ;. Since x is an atom of B, ei-
ther y or one of the 7,;’s for some 7 =2 is a unit of B, whence a unit of A as
U(B) N A = U(A). Since the ;s are irreducible in A, they are nonunits, thus
w=y 1is a unit of B such that ux =7,...7,,;€A.

In the case where J,(x) =1, we then obtain an element ux of A with
Is(ux) = 34 (u) + d4(x) =1, that is, ux is an atom of A. =

Then, from Proposition 2.4, we derive the following corollary which gives a
partial positive answer to the conjecture stated in [11].

COROLLARY 2.10. — Assume that there exists a prime element 7 of B such
that tBCA and that 34 is strictly positive on B. Then, the extension AcB
satisfies the condition C*. In particular, B is a HFD.

That is, the conjecture of [11] is true whenever the conductor of B in A con-
tains a prime element of B.

3. — Application to polynomial rings.

In this section, we change the notations. Let A c B be an extension of inte-
gral domains (not necessarily an overring). We set R = A + XB[X] and study
the factorization of elements in the overring B[X] when R is a HFD.

So, we assume that R = A + XB[X] is a HFD. Firstly, since the extension
Rc B[X] is almost-integral, we have:

LEMmMA 3.1. — The boundary map O is positive on B[X]. In particular, we
have UA) = U(B) N A.

Now, we investigate the boundary of the atoms of B[X].
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LEMMA 3.2. — Let f be an irreducible element of B[X], then either
Ir(f) =0 or dp(f) =1

ProOF. — Let f be an irreducible element of B[X] such that fis in R then, as
UA) = W(B) N A, fis also irreducible in R and 9, (f) = 1. If fis associated to
an element of R, there exists a unit « of B[X] such that ufe R. Hence ufis irre-
ducible in R and 9;(f) = dp(uf) = 1. So, assume that f is an irreducible of
B[X] which is not associated to any element of R. Then fX e R and fX is irre-
ducible in R. Indeed, write fX = gh. We may assume that & = Xh, where h, €
B[X]. Then f= gh,. As h; ¢ U(B) (from the hypothesis), we have ge U(B) N R,
that is, g € U(R). Since fX is irreducible in R, one has 9z (fX) = 1. Whence
Op(f)=0. m=m

ExaMPLE 3.3. — Let AcB be an extension such that R =A + XB[X] is a
HFD. Set 7=B[X] and S = {te T, 9z(T) =0}. Then Rc S ' T satisfies C*. In
particular, S ~!7T is HFD.

Indeed, from Proposition 1.8, we have S ~!T = L(X) where L is the quo-
tient field of B. Moreover, S ~! T is atomic and U(S ~'T) N R = U(R). Thus we
just have to prove that each irreducible element of S ~'7 is associated to an
(irreducible) element of R which is given by Proposition 2.9. From Proposition
2.4, we immediately have the last assertion.

Of course, it follows that when there are no boundary zero element in the
overring B[X], we obtain a positive answer to the following question:

QUESTION 3. — If R=A + XB[X] is a HFD, is B[X] a HFD?
In fact, we have a bit more than this partial answer:

THEOREM 3.4. — Let Ac B an extension of integral domains such that the
domain R=A + XB[X] is o« HFD and the domain B[X] is atomic. Then the
Sollowing two conditions are equivalent:

(1) The extension AcC B satisfies the condition C.
(1) Each atom f of B[X] verifies dr(f) = 1.
In particular, if the previous conditions are fulfilled, then B[X] is a
HFD.

ProoF. - Firstly, we assume that the extension A c B satisfies C". It is clear
that the extension A + XB[X] c B[X] satisfies also C*. Let f be an atom of B[X],
by Lemma 3.2, 9z (f) = 0 or 9z (f) = 1. There exists a unit  of B such that ufis
an (irreducible) element of R and 9r(f) = dr(uf) =1.

Conversely, we conclude by using Proposition 2.9 (where the prime ele-
ment is X). The last assertion follows from Proposition 2.4. =

Note that the previous theorem improves one implication of [15, Theorem
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13], namely it was proved that R is an HFD if and only if B[X] is an HFD un-
der the condition C* and another condition. Note that we can not improve the

second implication in the same way, as attested by the next example [12,
Example 2.8].

ExaMPLE 3.5. — We set B = C[t] (the ring of power series with complexes
coefficients) and A = R + tR + ¢*C[t]. This ring has been proved to be atomic
by Anderson and Park [3, theorem 2.1], and A is not a HFD since o(4) =2 [3,
Theorem 3.2]. Thus A + XB[X] is not a HFD, B[X] is a HFD (in fact it is a
UFD) and the extension A c B satisfies C*. Indeed, let f be a non zero element
in B. We may write f=t"g where r is the order of f and g is a unit of B. Then
g f=t"1is in A.
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