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Quantum Moment Equations
for a Two-Band k Qp Hamiltonian.

LUIGI BARLETTI (*)

Sunto. – Vengono dedotte le equazioni per i momenti idrodinamici di un sistema
quantistico descritto da un’Hamiltoniana k Qp a due bande. Nel caso di stati puri si
dimostra che le equazioni dei momenti di ordine 0 e di ordine 1 forniscono un si-
stema chiuso che costituisce l’analogo a due bande delle equazioni del fluido di
Madelung.

Summary. – The hydrodynamic moment equations for a quantum system described by
a two-band k Qp Hamiltonian are derived. In the case of pure states, it is proved that
the order-0 and order-1 moment equations yield a closed system which is the two-
band analogue of Madelung’s fluid equations.

1. – Introduction.

Most mathematical models of quantum transport in semiconductor devices
make use of the so-called effective-mass approximation [19, 20]. This amounts
to substituting the complete Hamiltonian

Hcomplete 42
ˇ2

2m
D1VL 1V ,(1.1)

where VL is the periodic potential of the semiconductor crystal lattice and V
accounts for other potentials, with the simplified effective-mass Hamiltonian

Hem 42
ˇ2

2
˜T M 21 ˜1V .(1.2)

Here, M is a suitable effective-mass tensor, rising up from a parabolic approxi-

(*) Comunicazione presentata a Milano in occasione del XVII Congresso U.M.I.
This research has been supported by the Italian MURST-COFIN2002 entitled Pro-

blemi Matematici delle Teorie Cinetiche, prot. 2002015553-003, and by the European
RTN network Hyperbolic and Kinetic Equations: Asymptotics, Numerics, Analysis,
ref. HPRN-CT-2002-00282.
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mation of the conduction band Ec (k) near a minimum point k * [20]

M 21
ij 4

¯ 2 Ec

¯ki ¯kj

(k *) .(1.3)

Such approximation is good for electron wave numbers k close enough to k *.
Analogous considerations could be done for holes: they can be treated in the
effective-mass approximation by using an effective-mass tensor obtained by a
parabolic approximation of the valence band Ev (k) near a maximum point.

It is important to stress the fact that the effective-mass approximation, by
itself, does not supply any coupling mechanism between energy bands which,
within this approximation, are always decoupled. This is the case of most bipo-
lar electrons-holes models: for both kinds of carriers an effective-mass ap-
proximation is used and then a «generation-recombination» coupling term is
heuristically inserted in the model [19].

However, in some cases a band-tunneling effect (the so-called Zener tun-
neling [12]) becomes the main feature of the semiconductor device. This is the
case of recently developed devices, such as the Interband Resonant Tunneling
Diode, where a conduction electron may become a valence electron after tun-
neling through a double barrier [21]. It is clear that a numerical simulation of
such devices not accounting for band coupling would be unsatisfactory and,
therefore, a mathematical model accounting at least for conduction-valence
coupling must be developed.

The simplest Hamiltonian that allows to treat two coupled bands is the so-
called kQp («k dot p») Hamiltonian [13, 17, 20]

Hk Qp 4

.
`
´

2
ˇ2

2m
D1V1

ˇ2

m
K Q˜

2
ˇ2

m
K Q˜

2
ˇ2

2m
D1V2

ˆ
`
˜

.(1.4)

Here, m is the electron mass and K»4 au1 N˜Nu2 b, is the matrix element of the
gradient operator between the (real) Bloch functions u1 and u2 , which is as-
sumed to be constant. The functions V1 and V2 are the potentials of an electron
in the conduction and in the valence band, respectively. In bulk crystals we
can put V1 4V2 1g , where gD0 is a constant band-gap. In other situations
(such as in heterostructure devices) it may be convenient to let g be a function
of the position. The interested reader may refer to Ref. [20] for more
details.

The Hamiltonian (1.4) describes an electron that «sees» two energy bands
available and, therefore, a Zener tunneling between the two bands is possible.
It has to be remarked that also the k Qp approximation holds for values of the
electron wave numbers close to the extrema of the bands.
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The aim of the present paper is to derive the equations of quantum hydro-
dynamic moments for the Hamiltonian (1.4). We recall that, for a «standard»
quantum Hamiltonian

H4
ˇ2

2m
D1V(1.5)

(which from now on will be referred to as a «one-band Hamiltonian»), quan-
tum hydrodynamic (QHD) equations for pure quantum states were first de-
duced by Madelung in Ref. [18]. These are nowadays known as Madelung
equations. More recently, a whole QHD theory has been developed in order to
treat the much more difficult case of mixed quantum states, in which
Madelung equations can still be written but are not closed any more (see
Refs. [5, 10, 11]).

Generally speaking, there are at least two possible ways to derive QHD
equations. One is deriving equations for densities and phases of WKB pure
states, and then forming convex combinations to get equations for mixed
states. The other is taking moments of quantum kinetic equations (viz. Wigner
equations), in analogy to what is done in classical kinetic theory [15]. In such a
«kinetic way to QHD» the following steps have therefore to be per-
formed:

I. writing a quantum kinetic equation,

II. deriving the hierarchy of moment equations,

III. truncating and closing the hierarchy.

For the single-band Hamiltonian (1.5), it turns out that, in the case of pure
states, the system of order-0 and order-1 moment equations is closed and cor-
responds to Madelung equations.

In the present paper we wish to perform steps I and II for a quantum sys-
tem governed by the k Qp Hamiltonian (1.4). We shall find a convenient way to
write the hierarchy of moment equations and, moreover, we shall prove that
for a pure state the system of order-0 and order-1 equations is closed, yielding
«Madelung-like» two-band QHD equations.

2. – Moment equations for the free k Qp Hamiltonian.

We begin by considering the case of the «free» kQp Hamiltonian

Hk Qp
0 »4

.
`
´

2
ˇ2

2m
D

ˇ2

m
K Q˜

2
ˇ2

m
K Q˜

2
ˇ2

2m
D

ˆ
`
˜

,(2.1)
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corresponding to (1.4) with V1 4V2 40. Note that we can write

Hk Qp
0 4

P 2

2m
2

ˇ2 K 2

2m
I ,(2.2)

where I is the identity matrix and the momentum-like operator P is given
by (1)

P»42iˇg ˜

2K

K

˜
h .(2.3)

Thus, the irrelevant, constant energy term ˇ2 K 2

2m
I disappears from the Liou-

ville equation

iˇ
¯

¯t
S(t) 4 [Hk Qp

0 , S(t) ] 4
1

2m
[P 2 , S(t) ] ,(2.4)

describing the evolution of the time-dependent density operator S(t) [3]. Note
that the space of (pure) states for a two-band system described by Hamiltoni-
an (1.4) or (2.1) is the same as for a spinning electron, i.e. L 2 (Rd , C2 ) (with
d43, but this is not crucial for our discussion). Thus S(t), representing mixed
states, is a self-adjoint 232 matrix of operators Sij (t), with Sij (t) 4Sji*(t),
where i , j� ]1, 2( are the band indices. The corresponding density matrix
r(t), i.e. the matrix of (formal) kernels of Sij (t), is given (using Dirac’s nota-
tion) by

r ij (x , y , t) 4 ax , iNS(t)Ny , jb 4 axNSij (t)Nyb.(2.5)

The self-adjointness of S(t) corresponds to the property

r ij (x , y , t) 4 r ji(y , x , t)

of r(t). By using (2.4) and (2.5) we get the following equation for r(t):

iˇ
¯

¯t
r(t) 4

1

2m
(Px

2 2Py
2 ) r(t) ,(2.6)

where we have found it convenient to introduce the shorthands

Ax »4A7I , Ay »4I7A .(2.7)

(1) The author is indebted to Naoufel Ben Abdallah for this remark.
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This means that on a pure state r ij (x , y) 4c i (x) c j (y) we put

(Ax r)ij (x , y) 4 !
k41

2

(Aik c k )(x) c j (y) ,

(Ay r)ij (x , y) 4c i (x) !
k41

2

(Ajk c k )(y) ;

(2.8)

and then this formula is extended by linearity to mixed states, which are of the

form r4 !
s41

Q

l s r s , where l s F0, !
s41

Q

l s 41 and each r s is a pure state, i.e.

r ij
s (x , y) »4c i

s (x) c j
s (y).

Since Px and Py commute, we can write Px
2 2Py

2 4 (Px 2Py ) Q (Px 1Py ) and
the Liouville equation (2.6) is then recast into the following form:

¯

¯t
r(t) 4

1

m

Px 2Py

iˇ
Q

Px 1Py

2
r(t) .(2.9)

Let us now denote by Wf4Wf (r , p), (r , p) �Rd 3Rd the Wigner trans-
form of f4 f (x , y), (x , y) �Rd 3Rd :

(Wf )(r , p) »4
1

(2pˇ)d s
Rd

f (r1j/2 , r2j/2) e2ij Qp/ˇ dj(2.10)

(see Refs. [1, 7, 8, 16, 19]). We shall adopt the following notations:

1. if A is an operator acting in L 2 (Rd , C), the operator obtained by simila-
rity under the transformation W will be denoted by AA, i.e.

AA »4WAW 21 ;(2.11)

2. W is understood to act element by element on matrices, i.e.

Wgr 11

r 21

r 12

r 22
h »4gWr 11

Wr 21

Wr 12

Wr 22
h .

We now want to write the equation governing the time-dependent Wigner
matrix

w(t) »4Wr(t) ,(2.12)
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where r(t) obeys (2.9). Note that, explicitly,

w(t) 4uw11 (r , p , t)

w12 (r , p , t)

w21 (r , p , t)

w22 (r , p , t)
v

and wij (r , p , t) 4 wji(r , p , t). Thus, we have to transform eq. (2.9) by similari-
ty, applying the transformation W , which leads to introducing the opera-
tors

D »42Wg Px 2Py

iˇ
hW 21 42

PAx 2PAy

iˇ
.(2.13)

P »4Wg Px 1Py

2
hW 21 4

PAx 1PAy

2
.(2.14)

By using the identities [1]

˜
A

x 4
˜r

2
1

ip

ˇ
, ˜

A
y 4

˜r

2
2

ip

ˇ
,(2.15)

and regarding w as the column-vector

w4

.
`
´

w11

w12

w21

w22

ˆ
`
˜

,

we can explicitly write the operators D and P as

D 4˜I1KK , P 4pI1
iˇ

2
KJ(2.16)

where I is the 434 identity matrix and

K»4

.
`
´

0

21

21

0

1

0

0

21

1

0

0

21

0

1

1

0

ˆ
`
˜

, J»4

.
`
´

0

21

1

0

1

0

0

1

21

0

0

21

0

21

1

0

ˆ
`
˜

.(2.17)
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Using (2.9) and (2.11), we obtain the two-band Wigner equation [4, 6]

¯

¯t
w(t) 42

1

m
D Q P w(t) ,(2.18)

which is reminiscent of the usual Wigner equation for a free particle [1, 16, 19]

¯

¯t
w(t) 42

1

m
˜r Qpw(t) .(2.19)

Indeed, if we had used the single-band momentum operator P42iˇ˜ , in-
stead of the two-band momentum (2.3), we would have found D 4˜ and
P 4p .

Let us now introduce the notation a f b 4 a f b(r) for the «local average» of
any phase-space quantity f:

a f b(r) »4s
Rd

f (r , p) dp(2.20)

(being understood that, if f is a matrix, or more generally a tensor, the average
is taken element by element). We remark that, if w4Wr , then

awb(r) 4r(r , r) 4: arb(r)(2.21)

which extends the bracket notation to r . Note that we shall also write awb(t)
and arb(t) for awb(r , t) and arb(r , t), omitting, as usual, all variables but
time.

The advantage of having written the two-band Wigner equation in the
form (2.18) is that this allows to take moment equations very easily. In fact,
since the operator D does not involve the momentum variable p , then aD Qb 4

DaQb. Therefore, from eq. (2.18) we get the order-0 moment equation

¯

¯t
awb(t)1

1

m
D QaP wb(t) 40 .(2.22)

Moreover, since D and P commute, we also have the order-1 moment
equation

¯

¯t
aP7n wb(t)1

1

m
D QaP 7 P wb(t) 40 .(2.23)
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More in general, the following order-n moment equation holds:

¯

¯t
aP7n wb(t)1

1

m
D QaP7(n11) wb(t) 40,(2.24)

where we put

P7n »4 P 7 P 7R7 P
˘×=

n times

(2.25)

Let us introduce the following notations:

n»4 awb, J4 aP wb and Tr

.
`
´

a11

a12

a21

a22

ˆ
`
˜

»4a11 1a22 .(2.26)

Thus the order-0 equation (2.22) reads as follows

¯n

¯t
1

1

m
D QJ40(2.27)

and, taking the trace, we obtain the conservation law

¯ Tr n

¯t
1

1

m
˜ QTr apwb2

2ˇ

m
K Q˜ Im n12 40 .(2.28)

Note that Tr n4n11 1n22 is the total probability density, 1

m
Tr apwb is the total

probability current and 2
2ˇ

m
K Im n12 is an «interband current» [21].

3. – Temperature and Bohmian term.

We now focus our attention on the second-order moment aP72 wb 4

aP 7 P wb. Recalling definitions (2.13) and (2.14), we can write

P72 4u PAx 1PAy

2
v72

4
1

4
gPAx

72 12 PAx 7PAy 1PAy
72h4

4
1

4
gPAx 2PAyh

72
1PAx 7PAy 42

ˇ2

4
D72 1PAx 7PAy ,

where the (component-wise) commutativity between PAx and PAy was used. Note
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also that PAx and PAy are now regarded as acting on column-vectors, rather than
on matrices. Thus,

aP72 wb 42
ˇ2

4
D72 awb1 aPAx 7PAy wb .(3.1)

Before going on, we introduce the following convention: every operation bet-
ween column-vectors has to be understood component-wise. Thus, for
example,

.
`
´

a1

a2

a3

a4

ˆ
`
˜

.
`
´

b1

b2

b3

b4

ˆ
`
˜

»4

.
`
´

a1 b1

a2 b2

a3 b3

a4 b4

ˆ
`
˜

,

.
`
´

a1

a2

a3

a4

ˆ
`
˜

/

.
`
´

b1

b2

b3

b4

ˆ
`
˜

»4

.
`
´

a1 /b1

a2 /b2

a3 /b3

a4 /b4

ˆ
`
˜

and, if ai , bi are d-vectors (such as the four components of aP wb),

.
`
´

a1

a2

a3

a4

ˆ
`
˜

Q

.
`
´

b1

b2

b3

b4

ˆ
`
˜

»4

.
`
´

a1 Qb1

a2 Qb2

a3 Qb3

a4 Qb4

ˆ
`
˜

.
`
´

a1

a2

a3

a4

ˆ
`
˜

7

.
`
´

b1

b2

b3

b4

ˆ
`
˜

»4

.
`
´

a1 7b1

a2 7b2

a3 7b3

a4 7b4

ˆ
`
˜

and so on. Bearing this in mind, we write

aP wb72 4
1

4
a(PAx 1PAy ) wb72 4

1

4
gaPAx wb72 1 aPAy wb72 12aPAx wb7 aPAy wbh4

1

4
a(PAx 2PAy ) wb72 1 aPAx wb7 aPAy wb

and thus, using (2.13),

aP wb72 42
ˇ2

4
Dawb72 1 aPAx wb7 aPAy wb.(3.2)

Hence, using definitions (2.26), from (3.1) and (3.2) we get

aP 7 P wb 4
J7J

n
1Q(n)1nT ,(3.3)
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where

Q(n) »42
ˇ2

4
gD 7 D n2

(D n)7 (D n)

n
h(3.4)

and

nT»4 aPAx 7PAy wb2
aPAx wb7 aPAy wb

n
.(3.5)

Note that the first two terms of the right-hand side of eq. (3.3) depend only on
n , J and their derivatives, while T depend on higher-order moments. In analo-
gy with the single-band case [10, 11], Q(n) is interpreted as a Bohmian «quan-
tum pressure» and T as a «temperature».

PROPOSITION 3.1. – Let w4Wr be the Wigner transform of the mixed state

r4 !
s41

Q

l s r s , where l s F0, !
s41

Q

l s 41 and each r s is a pure state, i.e.
r ij

s (x , y) »4c i
s (x) c j

s (y). Thus

(3.6) T4!
s41

Q
l s n s

n
g aPx r s b

n s
2

aPx rb

n
h7g aPx r s b

n s
2

aPx rb

n
h*

4

4 !
s41

Q
l s n s

n
u aP

A
x w s b

n s
2

aP
A

x wb

n
v7u aP

A
x w s b

n s
2

aP
A

x wb

n
v

*

where w s »4Wr s , n s »4 ar s b 4 aw s b and * denotes adjunction:

.
`
´

a1

a2

a3

a4

ˆ
`
˜

*

»4

.
`
´

a1

a3

a2

a4

ˆ
`
˜

PROOF. – Recalling (2.21) and (2.11) the equality between aPAx , y wb and
aPx , y rb is clear (note also that we are regarding r as a column vector). It is
easier to work with density matrices rather than with Wigner functions. So, let
us define q and q s as follows:

q»4 aPAx wb 4 aPx rb 4 !
s41

Q

l s aPx r s b 4: !
s41

Q

l s q s .(3.7)
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Moreover, using aPx rb 4 aPy rb*, it is easy to check that, for a pure state, we
get

aPx 7Py r s b 4
q s 7 (q s )*

n s

and so, from definition (3.5),

T4
aPx 7Py rb

n
2

aPx rb7 aPy rb

n 2

4 !
s41

Q

l s

aPx 7Py r s b

n
2

q7q *

n 2
4 !

s41

Q

b s q s

n s
7

(q s )*

n s
2

q7q *

n 2

where

b s »4
l s n s

n
.

Note that bs is an r-dependent column-vector with non-negative first and

fourth components and such that !
s41

Q

b s has all the components equal to 1. Thus
we get

T4 !
s41

Q

b sg q s

n s
2

q

n
h7g q s

n s
2

q

n
h*

,

i.e. eq. (3.6). r

As an immediate consequence of Prop. 3.1, we have the following

COROLLARY 3.1. – If w is the Wigner transform of a pure-state density ma-
trix, then T40.

It is worth remarking that in the single-band case, where P42iˇ˜ , it
turns out that

q4J1
iˇ

2
˜n
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and the decomposition (3.6) leads to a «current temperature»

Tc 4 !
s41

Q

b sg J s

n s
2

J

n
h7g J s

n s
2

J

n
h*

,

plus an «osmotic temperature»

Tos 4
ˇ2

4
!
s41

Q

b sg ˜n s

n s
2

˜n

n
h7g ˜n s

n s
2

˜n

n
h*

,

(see Refs. [10, 11]). Things are analogous here, in the two-band case, but far
more complicated because of interband terms.

We can now write more explicitly the order-1 moment equation (2.23) in
the following form:

¯J

¯t
1

1

m
D Qg J7J

n
1Q(n)1nTh40(3.8)

For T40, we obtain from eqs. (2.27) and (3.8) a closed system of Madelung-
like QHD equations for a free, two-band kQp Hamiltonian.

4. – Moments of the potential terms.

We now turn to the complete k Qp Hamiltonian (1.4). Writing Hk Qp4Hk Qp
0 1V ,

where Hk Qp
0 is given by (2.1) and

V»4gV1

0

0

V2
h ,(4.1)

the formalism introduced in Section 2 allows us to write the Wigner equation
for the Hamiltonian Hk Qp in the following form:

¯

¯t
w(t)1

1

m
D Q P w(t) 4

1

iˇ
V w(t) ,(4.2)

where we put

V »4 VAx 2VAy(4.3)
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(see definitions (2.7) and (2.11)). Thus, the corresponding moment equations
are

(4.4)
¯

¯t
aP7n wb(t)1

1

m
D QaP7(n11) wb(t) 4

1

iˇ
aP7n V wb(t), n40, 1 , 2 R .

Using the column-vector representation for r and w , we can write

Vx 4V1 (x) I1
1 1V2 (x) I1

2 , Vy 4V1 (y) I2
1 1V2 (y) I2

2 ,

where

I1
1 »4

.
`
´

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

ˆ
`
˜

, I1
2 »4

.
`
´

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

ˆ
`
˜

,

I2
1 »4

.
`
´

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

ˆ
`
˜

, I2
2 »4

.
`
´

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

ˆ
`
˜

.

(4.5)

Thus, from standard results on Wigner transforms (see e.g. Ref. [1]) we
have

VAx 4V1gr1
iˇ

2
˜ph I1

1 1V2gr1
iˇ

2
˜ph I1

2 ,

V
A

y 4V1gr2
iˇ

2
˜ph I2

1 1V2gr2
iˇ

2
˜ph I2

2 ,

(4.6)

where the pseudo-differential operator g(r , 2iˇ˜p ), acting on a phase-space
function f4 f (r , p), is defined in the following way [8]:

[g(r , 2iˇ˜p ) f ](r , p) »4
1

(2pˇ)d s
Rj

d

s
Rp 8

d

g(r , j) f (r , p 8 ) ei(p2p 8 ) Qj/ˇ djdp 8 .

The following proposition shows that, if the potentials V1 and V2 are regular
enough, the local average aP7n V wb depends only on aP7k wb, with kGn . This
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means that in the moment equations hierarchy (4.4) the potential terms do not
cause «lack of closeness».

In what follows the standard multi-index notation will be used: a multi-in-
dex a4 (a 1 , a 2 , R , a d ), is a d-tuple of non-negative integers and NaN»4

a 1 1a 2 1R1a d , a!»4a 1 !a 2 !Ra d ! . Moreover aGb means a i Gb i for
i41, 2 , R , d .

PROPOSITION 4.1. – Assume that V1 and V2 have derivatives of any order.
Then, for any given n40, 1 , 2 , R , we can write ( formally)

(4.7) aP7n V wb 4 !
NaNGn

!
j41

2 g 2iˇ

2
hNaN ˜a Vj

a!
Faj(awb, aP wb, R , aP7n 8 wb) ,

where the n-tensors Faj are linear in each component of each argument and
n 8Gn2NaN .

PROOF. – Let us consider the expansion of the pseudo-differential opera-
tors appearing in (4.6) in a formal Taylor series with respect to iˇ˜p :

Vjgr6
iˇ

2
˜ph4 !

k40

Q

!
NaN4k

g6
iˇ

2
hk ˜a Vj (r)

a!
˜p

a .(4.8)

From eqs. (4.3), (4.6) and (4.8) we get

V 4 !
k40

Q

!
NaN4k

!
j41

2 g iˇ

2
hk ˜a Vj (r)

a!
Hj

k ˜p
a ,(4.9)

where Hj
k is defined in terms of the matrices Ij

i (see definition (4.5)) as
follows

Hj
k »4 Ij

1 2 (21)k Ij
2 .(4.10)

for j41, 2 and k40, 1 , 2 R . Thus, using (2.16) and (4.8), and putting

t»4
iˇ

2
K ,(4.11)

we can write

(4.12) aP7n V wb 4 !
k40

Q

!
NaN4k

!
j41

2 g iˇ

2
hk ˜a Vj (r)

a!
a(pI1tJ)7n Hj

k ˜p
a wb .

Now, if we consider a single component (pI1tJ)b of the tensor product
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(pI1tJ)7n , (b is a multi-index with NbN4n), integration by parts yields

a(pI1tJ)b Hj
k ˜p

a wb 4
.
/
´

(21)k a(pI1tJ)b2a Hj
k wb,

0 ,

if aGb

if aGO b

(recall that NaN4k), from which we can see that the sum in eq. (4.12) is indeed
extended only to kGn . We shall write, shortly,

aP7n Hj
k ˜p

a wb 4 (21)k aP7n2a Hj
k wb.

Let Pg4 (pI1tJ)g , with NgN4n2k , be any component of P7n2a . Then we
can write

(pI1tJ)g4 !
dGg

gg

d
h (pI)d (tJ)g2d4 !

dGg
gg

d
h p d tg2d JNg2dN ,

and also

(pI1tJ)g Hj
k 4 !

dGg
gg

d
h tg2d JNg2dN Hj

k p d4 !
dGg

gg

d
h tg2d JNg2dN Hj

k (P 2tJ)d4

!
hGdGg

gg

d
hgd

h
h tg2d JNg2dN Hj

k (2tJ)d2h Ph

where the commutativity between P and tJ has been used. This shows that
each component of aP7n2a Hj

k wb is a linear combination of terms aPh wb, with
NhNGn2k .

In conclusion, we have written

aP7n V wb 4 !
k40

n

!
NaN4k

!
j41

2 g 2iˇ

2
hk ˜a Vj (r)

a!
aP7n2a Hj

k wb,

and shown that aP7n2a Hj
k wb is a linear combination of components of

aP7n 8 wb, with n 8Gn2NaN , which proves eq. (4.7). r

5. – Two-band Madelung equations.

Propositions 3.1 and 4.1 imply that the n40 and n41 moment equations
(4.4) for a pure state (i.e. with T40) are closed and yield a two-band
analogue of QHD Madelung equations. In order to write such equations
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we shall express in a more explicit form the moments of the potential
term, (4.7), up to n41.

For n40, recalling definitions (4.5) and (4.10)

aV wb 4V1 H1
0 awb1V2 H2

0 awb 4gGawb,(5.1)

where

G»4

.
`
´

0

0

0

0

0

1

0

0

0

0

21

0

0

0

0

0

ˆ
`
˜

,(5.2)

and g»4V1 2V2 is the band-gap.
For n41 and k40, recalling (2.16) and (4.11), we have a contribution

(5.3) !
j41

2

aVj P Hj
0 wb 4gaP Gwb 4gaG P w1 [P, G] wb 4

gGaP wb1gt[J , G]awb 4gGaP wb1
iˇg

2
K[J , G]awb,

where

[J , G] 4

.
`
´

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

ˆ
`
˜

.

Finally, the contribution of n41 and k41 is

(5.4) !
NaN41

!
j41

2
2iˇ

2
˜a Vj (r) Q a˜a

p P Hj
1 wb 4!

j41

2
2iˇ

2
˜Vj (r) Hj

1 awb 42iˇ˜Eawb ,

where

E»4

.
`
`
`
´

V1

0

0

0

0

V1 1V2

2

0

0

0

0

V1 1V2

2

0

0

0

0

V2

ˆ
`
`
`
˜

.
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Using eqs. (3.3), (5.1), (5.3), (5.4) and recalling definitions (2.26), we can write
the moment equations (4.4) for n40 and n41 in the following form:

(5.5a)
¯

¯t
n1

1

m
D QJ4

g

iˇ
Gn

(5.5b)
¯

¯t
J1

1

m
D Qg J7J

n
1Q(n)1nTh4

g

iˇ
GJ1

g

2
K[J , G] n2˜En ,

where Q(n) is given by (3.4) and T is given by (3.5). By putting T40 in
eqs. (5.5) we obtain a closed Madelung-like system, governing the evolution of
a pure state.

In conclusion, we have written the hierarchy of moment equations for the
two-band k Qp Hamiltonian (1.4) (eqs. (4.4)) and shown that, for regular poten-
tials, the coupling with higher-order moments is only due to the flow terms
D QaP7(n11) wb (Prop. 4.1). Moreover, the first two moment equations with zero
temperature (T40) are decoupled from the rest of the hierarchy and so they
yield a closed, Madelung-like system (eqs. (5.5)).

T h e r e a r e m a n y p r o b l e m s l e f t o p e n h e r e . B e s i d e s p u r e l y m a t h e m a t i c a l
p r o b l e m s , s u c h a s t h e w e l l - p o s e d n e s s o f s y s t e m ( 5 . 5 ) w i t h T40 or it s e q u i v -
a l e n c e w i t h S c h r ö d i n g e r e q u a t i o n ( w h i c h a r e a l r e a d y v e r y d i f f i c u l t q u e s -
t i o n s i n t h e s i n g l e - b a n d c a s e [ 1 1 ] ) , t h e r e i s t h e b i g p o i n t o f f i n d i n g c l o s u r e s ,
e v e n a t a fo r m a l l e v e l , o f t h e m o m e n t e q u a t i o n s i n t h e m i x e d - s t a t e c a s e
(Tc0 ) . I t s e e m s t h a t , i n p r i n c i p l e , t h e r e a r e a t l e a s t t w o p o s s i b i l i t i e s t o
a c h i e v e t h i s . O n e , i n a n a l o g y w i t h t h e m e t h o d f o l l o w e d b y G a r d n e r i n t h e
s i n g l e - b a n d c a s e [ 9 ] , i s u s i n g a «l o c a l v e r s i o n » o f t h e W i g n e r d i s t r i b u t i o n a t
t h e r m a l e q u i l i b r i u m , s e m i - c l a s s i c a l l y a p p r o x i m a t e d a t o r d e r ˇ2 ( s u c h s e m i -
c l a s s i c a l a p p r o x i m a t i o n h a s b e e n c a l c u l a t e d f o r t h e H a m i l t o n i a n ( 1 . 4 ) i n
R e f . [ 2 ] ) . T h e o t h e r i s f o l l o w i n g t h e a p p r o a c h o f D e g o n d a n d R i n g h o f e r [ 5 ] ,
w h i c h i s t h e q u a n t u m a n a l o g u e o f L e v e r m o r e ’ s m o m e n t c l o s u r e t h e o r y
[ 1 5 ] .

We end by a last remark: the method introduced in Sec. 2 for deriving mo-
ment equations may be adapted to a more general class of quantum systems,
such as particles with spin or multi-band k Qp Hamiltonians. As an example, let
us apply our method to the Hamiltonian of the electron in an electromagnetic
field

H4
1

2m
giˇ˜1

e

c
Ah2

1ef .
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In this case we take P»42iˇ˜2
e

c
A and it is not an hard task showing

that

aD wb 4˜r awb and aP wb 4 apwb2
e

c
Aawb.

Note, in particular, that aP wb is the so-called Pauli current [14]. However, the
problem of finding conditions under which our method can be generalized to
other Hamiltonians deserves a deeper investigation and is deferred to a future
work.
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