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Uniform Exponential Stability for Linear Discrete Time
Systems with Stochastic Perturbations in Hilbert Spaces.

VIORICA MARIELA UNGUREANU

Sunto. – In questo lavoro è trattato il problema della stabilità esponenziale e della sta-
bilità esponenziale uniforme per i sistemi discreti variabili in tempo, perturbati
con le variabili aleatorie independenti. Ci sono date due rappresentazioni delle so-
luzioni dei sistemi discussi e si è stabilito il legame tra esse. Ognuna delle due rap-
presentazioni conduce a stabilire delle condizioni necessarie e sufficienti per otte-
nere i due tipi di stabilità. C’è dato un teorema di caratterizzazione della stabilità
esponenziale uniforme usando le ecuazioni Lyapunov. Nel caso stazionario, i due
tipi di stabilità sono equipollenti.

Summary. – In this paper we study the exponential and uniform exponential stability
problem for linear discrete time-varying systems with independent stochastic per-
turbations. We give two representations of the solutions of the discussed systems
and we use them to obtain necessary and sufficient conditions for the two types of
stability. A deterministic characterization of the uniform exponential stability, in
terms of Lyapunov equations are given.

1. – Introduction.

The main object of this paper is to discuss the problem of the exponential
and uniform exponential stability of time-varying systems described by linear
difference equations in infinite dimensional Hilbert spaces. We give two
representations of the solutions of these systems and we establish a relation
between them. These representations are very important in order to obtain
the characterizations of the two types of stability.

One of these two representations of solutions allows us to reduce the
stability problem in the stochastic case to the same one in the deterministic
case (see Theorem 9). So, the characterization of the uniform exponential
stability of the stochastic systems can be obtained as a consequence of
the results of [6]. The other representation (see Theorem 6) leads us
to obtain similar results (see Theorem 13) as those formulated in [7],
where it is treated the case of linear discrete-time systems with Markov



VIORICA MARIELA UNGUREANU758

perturbations in finite dimensional spaces. The Theorem 12 establish a
relation between the two representations.

A characterization of the uniform exponential stability is given by using the
discrete-time Lyapunov equations. This result is similar to those obtained in
[6], for the deterministic case and in [9], for the stochastic time-invariant case.
Finally, we treated as an application the time-invariant case. We obtained
some equivalent characterizations of the uniform exponential stability proper-
ty of the solutions of the discussed systems and we solved the algebraic Lya-
punov equations associated with these systems.

2. – Preliminaries.

Let H be a real separable Hilbert space and L(H) be the Banach space of
all bounded linear operators transforming H into H . We write a. , . b for the in-
ner product and V .V for norms of elements and operators. We denote by a7b ,
a , b�H the bounded linear operator of L(H) given by a7b(h) 4 ah , bba for
all h�H .

Nuclear operators. The operator A�L(H) is said to be nonnegative, and
we write AF0, if A is self adjoint and aAx, xbF0 for all x�H. For A, B�L(H),
AF0 we denote by A 1/2 the square root of A (see [3]) and by NBN the operator
(B * B)1/2 . Let A�L(H), AF0 and ]en (n�N* be an orthonormal basis in H . We

define Tr(A) by Tr(A) 4 !
n41

Q

aAen , en b. It is not difficult to see that Tr(A) is a

well defined number independent of the choice of the orthonormal basis
]en (n�N* .

If A�L(H) we put VAV1 4Tr(NAN) GQ and we denote by C1 (H) the set
]A�L(H) /VAV1 EQ(. The elements of C1 (H) are called nuclear operators.
Using the polar decomposition of A�L(H), it can be proved that VAV1 4

supm !
n41

Q

NaAj n , h n bN , j n , h n orthonormal systems in Hn and by theorems T.9,

T.78 pp. 54-55 in [4] it follows that the definition of the nuclear operator intro-
duced above is equivalent with that given in [4].

It is known (see [4]) that C1 (H) (the operators’ trace class) is a Banach
space endowed with the norm V . V1 and for all A�L(H) and B�C1 (H) we have
AB , BA�C1 (H).

We denote by H and 8 the subspaces of L(H) and C1 (H) formed by all self-
adjoint operators and by K (respectively K1) the cones of all nonnegative op-
erators of H (respectively 8). H is a Banach space and since 8 is closed in
C1 (H) with respect to V . V1 we deduce that it is a Banach space, too. In this pa-
per we need some well-known results of operators’ theory, which we resume
below (see [1], [5], [4], [8]).
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THEOREM 1 (see [1]). – If A� H is a compact operator then there exists an
orthonormal basis ]en (n�N* %H and a sequence ]l n (n�N * %R , l nKnKQ

0 such
that Aen 4l n en for all n�N*, that is

A4 !
n41

Q

l n en 7en ,(1)

where the convergence is in norm. By convenience we will say that the rela-
tion (1) is a Hilbert-Schmidt decomposition of A .

PROPOSITION 2 [8]. – Let A belongs to 8. Then it is compact and from the

above theorem we have (1) and VAV1 4 !
n41

Q

Nl nN .

Using Theorem 1 it is easy to establish (see [4]) the following corollary:

COROLLARY 3. – If A� 8 and A4 !
n41

Q

l n en 7en is the Hilbert-Schmidt

decomposition of A (Theorem 1), where the series is norm convergent, then

A4 !
n41

Q

l n en 7en is V . V1 convergent.

Covariance operators. Let (V , F, P) be a probability space and j be a real
(or H) valued random variable on V . We write E(j) for his mean value (ex-
pectation). We denote by L 2 4L 2 (V , F, P , H) the space of all equivalence
class of H-valued random variables j such that EVjV

2 EQ (with respect to the
equivalence relation jAh ` E(Vj2hV

2 ) 40).
It is useful to recall (see [2]) that if j is a H valued random variable such as

EVjV

2 EQ , then we have aE(j), ub 4Eaj , ub for all u�H .
If j�L 2 , we define the operator E(j7j) : HKH , E(j7j)(u) 4

E(au , jbj) for all u�H .
It is easy to see that E(j7j), which is called the covariance operator of j ,

is a linear, bounded and nonnegative operator. Let ]en (n�N* be an orthonor-
mal basis in H . Using the Monotone Convergence Theorem and the possibility
to commute the inner product and the expectation we have TrE(j7j) 4

!
n41

Q

EVaj , en bV

2 4E !
n41

Q

Vaj , en bV

2 4EVjV

2 EQ . Thus E(j7j) is nuclear and

VE(j7j)V1 4EVjV

2 .(2)

3. – Representations of the solutions of linear discrete-time systems.

Let us consider the stochastic system

xn11 4An xn 1j n Bn xn ,(3)
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where An , Bn �L(H) and j n are real independent random variables, which sa-
tisfy the conditions E(j n ) 40 and ENj nN2 4bn EQ for all n�N .

We denote by X(n , k), nFkF0 the random evolution operator associated
with the linear system (3) i.e X(k , k) 4I and X(n , k) 4 (An21 1

j n21 Bn21 )R(Ak 1j k Bk ) for all n
.

Dk .
If xn 4xn (k , x) is the solution of the system (3) with the initial condi-

tion

xk 4x ,(4)

then it is unique and xn (k , x) 4X(n , k) x .
It is easy to see that if nDk , then there exists a continuous function

F : R n2k KH (F is dependent of n , k , x) such that xn (v)4F(j k (v), R ,
j n21 (v) ), v�V . Thus, it follows that xn is a H valued random variable.

From the independence of j m , m40, 1 , 2 , R and by using the properties
of the independent random variables it results that xn and j n are independent,
too. In the case n4k the last statement is obviously true.

Using the induction, we can prove that xn �L 2 for all n�N , nFk .
Since xn �L 2 and (2) holds we deduce that E(xn 7xn ) is a nuclear, non-

negative operator and

VE(xn 7xn )V1 4EVxn V

2 .(5)

We consider the linear operator An : 8 K 8, An (Y) 4An YAn*, which is
well-defined because 8 is a (left and right) ideal of the space L(H). Since
VAn (Y)V1 GVAn V

2
VYV1 we deduce that An �L(8).

By analogy, we deduce that Bn : 8 K 8, Bn (Y) 4Bn YBn* is an element of
L(8). We associate to (3) the deterministic system defined on 8:

yn11 4 An yn 1bn Bn yn ,(6)

where An , Bn , n�N are the linear operators defined as above.
We consider the bounded linear operator

Un : 8 K 8, Un (Y) 4 An (Y)1bn Bn (Y).(7)

If Y(n , k) is the evolution operator associated with the system (6) then
Y(n , k) 4Un21 Un22 R Uk if n21 Fk and Y(k , k) 4I , where I is the identity
operator on 8. Since, Un�L(8) it follows that Y(n , k) �L(8) for all nFkF0.
Let us denote by yn 4yn (k , R) the solution of (6) with yk 4R� 8; it is clear
that it is unique and yn (k , R) 4Y(n , k)(R) for all n , k�N , nFk , R� 8.

REMARK 4. – It is a simple exercise to verify that Un (K1 ) ’ K1 and
Y(n , k)(K1 ) ’ K1 for all nFk , n , k�N .
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The following theorem gives a representation of the covariance operator
associated to the solution of (3) by using the evolution operator Y(n , k).

THEOREM 5. – If xn 4xn (k , x) is the solution of (3), (4), then E(xn 7xn ) is
the solution of the system (6) with the initial condition yk 4x7x .

PROOF. – Since xn �L 2 and ]xn , j n ( are independent random variables for
all nFkF0, we have successively:

aE(xn 7xn ) u , vb 4E(au , xn baxn , vb) 4

E(au , An21 xn21 1j n21 Bn21 xn21 baAn21 xn21 1j n21 Bn21 xn21 , vb) 4

E(au , An21 xn21 baAn21 xn21 , vb1j n21 au , An21 xn21 baBn21 xn21 , vb1

j n21 au , Bn21 xn21 baAn21 xn21 , vb1j n21
2 au , Bn21 xn21 baBn21 xn21 , vb).

and

aE(xn 7xn )u , vb 4

E(au , An21 xn21 baAn21 xn21 , vb)1bn21 E(au , Bn21 xn21 baBn21 xn21 , vb) 4

E(aAn21* u , xn21 baxn21 , An21* vb)1bn21 E(aBn21* u , xn21 baxn21 , Bn21* vb) 4

E(axn21 7xn21 (An21* u), An21* vb1bn21 axn21 7xn21 (Bn21* u), Bn21* vb) 4

a(An21 E(xn21 7xn21 )1bn21 Bn21 E(xn21 7xn21 ) )(u), vb

for all u , v�H . In order to obtain the last equality we have used the possibili-
ty to commute the inner product and the expectation. Thus we have
E(xn 7xn )4An21 E(xn21 7xn21 )1bn21 Bn21 E(xn21 7xn21 ) and E(xk 7xk ) 4

x7x . The conclusion follows from the uniqueness of the solution of (6) with
the initial condition yk 4x7x . r

From the above proposition it follows E(xn 7xn ) 4Y(n , k)(x7x). By (5), we
have

EVxn (k , x)V

2 4VE(xn 7xn )V1 4Vyn (k , x7x)V1 .

We get

EVX(n , k)xV

2 4VY(n , k)(x7x)V1(8)

for all nFkF0 and x�H .
We consider the mapping Qn : H K H,

Qn (S) 4An* SAn 1bn Bn* SBn ,(9)

where An , Bn and bn 4ENj nN2 EQ are defined as above.
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It is easy to see that Qn is a linear and bounded operator.
Let us define the operator T(n , k) by T(n , k) 4Qk Qk11 R Qn21 �L(H) for

all n21 Fk and T(k , k) 4I , where I is the identity operator on H.

THEOREM 6. – If X(n , k) is the random evolution operator associated with
the system (3), then we have

aT(n , k)(S) x , yb 4EaSX(n , k) x , X(n , k) yb(10)

for all nFkF0, S� H and x , y�H .

PROOF. – Let S� H and x , y�H . Since xn21 4X(n21, k) x and j n21 are
independent random variables, we deduce that j n21 and aAX(n21, k) x ,
BX(n21, k) yb (resp. j n21

2 and aAX(n21, k) x , BX(n21, k) yb) are inde-
pendent, too on (V , F, P) for all A , B�L(H). Computing, we get

EaSX(n , k) x , X(n , k) yb 4E(aSAn21 X(n21, k) x , An21 X(n21, k) yb

1j n21 aSAn21 X(n21, k) x , Bn21 X(n21, k) yb

1j n21 aSBn21 X(n21, k) x , An21 X(n21, k) yb

1j n21
2 aSBn21 X(n21, k) x , Bn21 X(n21, k) yb)

4EaAn21* SAn21 X(n21, k) x , X(n21, k) yb

1bn21 EaBn21* SBn21 X(n21, k) x , X(n21, k) yb .

It follows

EaSX(n , k) x , X(n , k) yb 4EaQn21 (S) X(n21, k) x , X(n21, k) yb(11)

for all x , y�H . Let us consider the operator V(n , k) : H K H,

aV(n , k)(S) x , yb 4EaSX(n , k) x , X(n , k) yb(12)

for all S� H and x , y�H .
It is easy to see that V(n , k) is well defined because the right member of

this equality is a symmetric bilinear form, which also defines a unique linear,
bounded and self-adjoint operator on H .

From (11) and (12) we obtain V(n , k)(S) 4V(n21, k) Qn21 (S) if
n21 Fk and V(k , k) 4I . Now it is easy to see that V(n , k) 4T(n , k) and it
follows (10). r

Since Qp (K) % K for all p�N we deduce that T(n , k)(K) % K.
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4. – Theorems which characterize exponential and uniform exponential
stability.

We need the following definitions.

DEFINITION 7. – We say that the system (3) is uniformly exponential
stable if there exist bF1, a� (0 , 1 ) and n0 �N such that we have

EVX(n , k) xV

2 Gba n2k
VxV

2(13)

for all nFkFn0 and x�H .

DEFINITION 8. – The system (3) is exponentially stable if there exist bF1,
a� (0 , 1 ) and n0 �N such that we have

EVX(n , 0 ) xV

2 Gba n2k EVX(k , 0 ) xV

2(14)

for all nFkFn0 and x�H .

First, we establish a necessary and sufficient condition for the uniform ex-
ponential stability (resp. exponential stability) of system (3) by using the evo-
lution operator Y(n , k) �L(8).

THEOREM 9. – The system (3) is uniformly exponential stable if and only if
the system (6) is uniformly exponential stable on 8 or equivalently if and
only if there exist bF1, a� (0 , 1 ) and n0 �N such that

VY(n , k)V1 Gba n2k(15)

for all nFkFn0 , where VY(n , k)V1 4 sup
T� 8, VTV141

VY(n , k)(T)V1 .

PROOF. – From (8) and the Definition 7 it follows that the uniform exponen-
tial stability of system (3) is equivalent with the following assertion: there
exist bF1, a� (0 , 1 ) and n0 �N such that we have

VY(n , k)(x7x)V1 Gba n2k
Vx7xV1(16)

for all nFkFn0 and x�H .
Because the implication «ˆ» is obviously true, we only prove the

converse.
«¨» Let T� 8, VTV1 41. If T4 !

i41

Q

l i ei 7ei is the Hilbert-Schmidt (Theo-

rem 1) decomposition of T, where ]ei (i�N* %H , is an orthonormal basis, then
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we use Corollary 3 and the boundedness of Y(n , k) and we have

NNY(n , k) g!
i41

Q

l i ei 7eihNN
1
4

NN !
i41

Q

l i Y(n , k)(ei 7ei ) NN
1
G !

i41

Q

Nl iNVY(n , k)(ei 7ei )V1 .

Since the system ]ei (i�N* is orthonormal we deduce from the hypothesis
and (16) that there exist bF1, a� (0 , 1 ) and n0 �N such that

VY(n , k)(ei 7ei )V1 Gba n2k

for all nFkFn0 . Thus VY(n , k)(T)V1 Gba n2k !
i41

Q

Nl iN .

By Proposition 2 we get VY(n , k)(T)V1 Gba n2k
VTV1 4ba n2k . Now we ob-

tain the conclusion. r

THEOREM 10. – The system (3) is exponentially stable if and only if there
exist bF1, a� (0 , 1 ) and n0 �N such that we have

VY(n , 0 )(T)V1 Gba n2k
VY(k , 0 )(T)V1(17)

for all nFkFn0 and T� K1 .

PROOF. – «ˆ» We consider (17) for T4x7x and we have
VY(n , 0 )(x7x)V1 Gba n2k

VY(k , 0 )(x7x)V1 . By (8) and Definition 8 we obtain
the conclusion.

«¨» Let T� K1 and T4 !
i41

Q

l i (ei 7ei ) be its Hilbert-Schmidt decomposi-

tion. Then l i F0 for all i41, 2 R . It follows from the definition of V . V1 that if
T1 , T2 � K1 and c , d are real, nonnegative numbers, then VcT1 1dT2 V1 4

cVT1 V1 1dVT2 V1 .
Thus, if the system (3) is exponentially stable, we use Corollary 3, the

boundedness of Y(n , k) and the above property of V . V1 and we have:

VY(n , 0 )(T)V1 4 NN !
i41

Q

l i Y(n , 0 )(ei 7ei ) NN
1
4

!
i41

Q

l i VY(n , 0 )(ei 7ei )V1 G !
i41

Q

l i ba n2k
VY(k , 0 )(ei 7ei )V1 4

ba n2k !
i41

Q

l i VY(k , 0 )(ei 7ei )V1 4ba n2k
VY(k , 0 )(T)V1

for all nFkFn0 . The proof is finished. r

The following lemma is known (see [10]).
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LEMMA 11. – Let T�L(H). If T(K) % K then VTV4VT(I)V , where I is the
identity operator on H .

PROOF. – It is obviously true that VT(I)VGVTV and we only will prove the
converse.

Let S� H such as VSVG1. Then VSV4 sup
VxV41

NaSx , xbN and 2IGSGI . Since

2T(I) GT(S) GT(I), we have NaT(S) x , xbNG aT(I) x , xb for all x�H . Thus,
VT(S)VGVT(I)V for all S� H such as VSVG1 and we deduce that VTVG

VT(I)V . r

The following theorem establishes a relation between the operator T(n , k)
and the evolution operator Y(n , k).

THEOREM 12. – If H is a real Hilbert space then

VY(n , k)(x7x)V1 4 aT(n , k)(I) x , xb(18)

and

VT(n , k)V4VY(n , k)V1 ,(19)

where VY(n , k)V14 sup
T� 8, VTV141

VY(n , k)(T)V1 and I is the identity operator on H .

PROOF. – From Theorem 6 we have

aT(n , k)(I) x , xb 4EVX(n , k) xV

2 .

Now we use (8) and we obtain (18). From (18) we deduce

VT(n , k)(I)V4 sup
x�H , VxV41

aT(n , k)(I) x , xb 4

4 sup
x�H , VxV41

VY(n , k)(x7x)V1

4 sup
x7x� 8, Vx7xV141

VY(n , k)(x7x)V1 G

G sup
T� 8, VTV141

VY(n , k)(T)V1 4VY(n , k)V1 .

Now, we prove the opposite inequality. Let T� 8 and T4 !
i41

Q

l i ei 7ei be

its Hilbert-Schmidt decomposition (Theorem 1). Arguing as in the proof of
Theorem 9 we get

VY(n , k)V1 4 sup
T� 8, VTV141

VY(n , k)(T)V1 4 sup
T� 8, VTV141

NN !
i41

Q

l i Y(n , k)(ei 7ei ) NN
1
.
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From (18), Lemma 11 and Proposition 2 we obtain

VY(n , k)V1 G sup
T� 8, VTV141

!
i41

Q

Nl iNVY(n , k)(ei 7ei )V1

4 sup
T� 8, VTV141

!
i41

Q

Nl iNaT(n , k)(I) ei , ei b

G sup
T� 8, VTV141

!
i41

Q

Nl iNVT(n , k)(I)VVei V

2

4VT(n , k)(I)V sup
T� 8, VTV141

!
i41

Q

Nl iN

4VT(n , k)(I)VVTV1 4VT(n , k)(I)V4VT(n , k)V .

The proof is complete. r

The results from above allow us to give characterizations of the exponential
and uniform exponential stability of system (3) by using both operators
Y(n , k) and T(n , k).

THEOREM 13. – The following statements are equivalent:
a) the system (3) is uniformly exponential stable;
b) there exist bF1, a� (0 , 1 ) and n0 �N such that

VY(n , k)V1 Gba n2k(20)

for all nFkFn0 ;
c) there exist bF1, a� (0 , 1 ) and n0 �N such that

VT(n , k)VGba n2k(21)

for all nFkFn0 .

PROOF. – The equivalence between a) and b) is given by Theorem 9 and the
equivalence «b) ` c)» follows from the above theorem. r

THEOREM 14. – The following statements are equivalent:
a) the system (3) is exponentially stable;
b) there exist bF1, a� (0 , 1 ) and n0 �N such that we have

VY(n , 0 )(T)V1 Gba1
n2k

VY(k , 0 )(T)V(22)

for all nFkFn0 and T� K1 ;
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c) there exist bF1, a� (0 , 1 ) and n0 �N such that we have

aT(n , 0 )(I) x , xb Gba n2k aT(k , 0 )(I) x , xb(23)

for all nFkFn0 and x�H , where I�L(H) is the identity operator.

PROOF. – The equivalence between a) and b) is a consequence of the Theo-
rem 10 and the equivalence «a) ` c)» follows from the Definition 8 and from
(10). The proof is complete. r

The following remark is a consequence of theorems T.14 and T.13.

REMARK 15. – If the system (3) is uniformly exponential stable, then it is
exponentially stable.

PROOF. – Since (3) is uniformly exponential stable, we deduce from Theo-
rem 13 b) that there exist bF1, a� (0 , 1 ) and n0 �N such that
VY(n , k)(T)V1 Gba n2k

VTV1 for all nFkFn0 and T� 8. Taking T4Y(k , 0 )(S),
where S� K1 is arbitrary we obtain (22) and it follows the conclu-
sion. r

5. – The uniform exponential stability and the Lyapunov equations.

On the space H we consider the Lyapunov equation

Pn 4An* Pn11 An 1bn B *n Pn11 Bn 1Wn ,(24)

where ]Wn ( is a sequence in H with the property that there are u , vD0 such
that we have

uVxV

2 G aWn x , xb GvVxV

2(25)

for all n�N and x�H . It is easy to see that if (25) holds, then VWn VGv for all
n�N . Now we can prove the following theorem:

THEOREM 16. – The system (3) is uniformly exponential stable if and only
if the equation (24) has a unique solution P4 (Pn )n�N with the property that
there exist m , MD0 such that

mVxV

2 G aPn x , xb GMVxV

2(26)

for all n�N and x�H .
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PROOF. – Let us prove the implication «¨». If Qn is the linear bounded ope-
rator given by (9) then we introduce the linear operator

Pn 4 !
k4n11

Q

Qn R Qk21 (Wk )1Wn 4 !
k4n

Q

T(k , n)(Wk ) .

Since the series !
k4n

Q

VT(k , n)(Wk )V converges in R , it follows that Pn is
well-defined.

Indeed, if nFn0 we deduce from Theorem 13 and the hypothesis that there
exist bF1, a� (0 , 1 ) and n0 �N such that

!
k4n

Q

VT(k , n)(Wk )VG !
k4n

Q

ba k2n
VWk VGv !

k4n

Q

ba k2n 4
vb

12a
EQ .

If nEn0 , we use again the Theorem 13 and we have

!
k4n

Q

VT(k , n)(Wk )VGvg !
k4n

n0

VT(k , n)V1VT(n0 , n)V !
k4n0

Q

ba k2n0hEQ .

The conclusion follows. More, if

M4v maxmmax
nEn0

m !
k4n

n0

VT(k , n)V1VT(n0 , n)V

b

12a
n,

b

12a
n

then we have VPn VGM . Since T(n , k) �L(H) and Wk � H for all nFkF0, we
deduce Pn � H; hence aPn x , xb GMVxV

2 for all nFkF0 and x�H .
By (25) and since T(n , k)(K) % K, we get aPn x , xb F aWn x , xb FuVxV

2 . We
take m4u and we deduce that (26) holds. Computing we have

Qn (Pn11 )1Wn 4 !
k4n12

Q

Qn Qn11 R Qk21 (Wk )1Qn (Wn11 )1Wn 4

!
k4n11

Q

Qn R Qk21 (Wk )1Wn 4Pn .

Therefore Pn is a solution of (24).
Now we prove the uniqueness of the solution. Let us assume that Rn

is another solution of (24), which satisfies (26). Then we have Pn 2Rn 4

Qn (Pn11 2Rn11 ) and, by induction, Pn 2Rn 4T(n1k , n)(Pn1k 2Rn1k ).
By (26), we have

VPn 2Rn VGVT(n1k , n)V VPn1k 2Rn1k VG2MVT(n1k , n)V(27)

From the hypotheses and from Theorem 13 it follows sup
kKQ

VT(n1k , n)V40

for all n�N . As kKQ in (27) we get Pn 4Rn for all n�N .
«ˆ» If Pn is the solution of the equation (24) which satisfies (26), then
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Pn 4T(n11, n)(Pn11 )1Wn . Thus

EaPn X(n , k) x , X(n , k) xb 4

EaT(n11, n)(Pn11 ) X(n , k) x , X(n , k) xb1EaWn X(n , k) x , X(n , k) xb

for all nFk . From Theorem 6 we obtain

EaT(n11, n)(Pn11) X(n, k) x, X(n, k) xb4aT(n, k) T(n11, n)(Pn11) x, xb

4 aT(n11, k)(Pn11 ) x , xb

4EaPn11 X(n11, k) x , X(n11, k) xb.

By (25) and (26) we obtain

EaPn X(n , k) x , X(n , k) xb F

EaPn11 X(n11, k) x , X(n11, k) xb1
u

M
EaPn X(n , k) x , X(n , k) xb.

From (24), (25), (26) and since Pn is nonnegative we deduce u

M
E1. (If

u

M
41 we obtain the trivial case). We have

g12
u

M
h EaPn X(n , k) x , X(n , k) xb FEaPn11 X(n11, k) x , X(n11, k) xb

and, by induction

g12
u

M
hn112k

aPk x , xb FEaPn11 X(n11, k) x , X(n11, k) xb.

From (26) it follows mEVX(n11, k)xV

2 GM g12
u

M
hn112k

VxV

2 . If we take

b4
M

m
F1, a412

u

M
and n0 40 we obtain the conclusion. The proof is

complete. r

6. – The time-invariant case.

Now, we consider the time-invariant case when An4A , Bn4B and bn 4b .
In this case the operators Un and Qn given by (7) and (9) become Un (Y) 4

U(Y) 4AYA *1bBYB *, for all Y� 8 and Qn (Y) 4Q(Y) 4A * YA1bB * YB
for all Y� H. Thus we have

Y(n , k)(Y) 4Y(n2k , 0 )(Y) and Y(n , k)(Y) 4U n2k (Y)(28)
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for all Y� 8 and respectively

T(n , k)(Y) 4T(n2k , 0 )(Y) and T(n , k)(Y) 4Q n2k (Y)(29)

for all Y� H.
The following theorem gives necessary and sufficient conditions for the

uniform exponential stability of the system (3) in the time-invariant case and
also, establishes the equivalence between the exponential stability and the
uniform exponential stability in this case.

THEOREM 17. – The following assertions are equivalent:
a) the system (3) is uniformly exponential stable;
b) there exist bF1 and a� (0 , 1 ) such that we have

VY(n , 0 )V1 Gba n or equivalently VU n
V1 Gba n(30)

for all n�N ;
c) there exist b F1 and a� (0 , 1 ) such that we have

VT(n , 0 )VGba n or equivalently VQ n
VGba n(31)

for all n�N ;
d) r(U) E1;
e) r(Q) E1;
f ) lim

nKQ
EVX(n , 0 )xV

2 40 uniformly for x�H , VxV41;

g) lim
nKQ

VY(n , 0 )(x7x)V1
2 40 uniformly for x�H , VxV41;

h) the system (3) is exponentially stable.
We denote by r(U) (respectively r(Q)) the spectral radius of U (respecti-

vely Q).

PROOF. – From Theorem 13, (28) and (29) it results the equivalences «a) `
b)» and «a) ` c)». We will prove b) ` d).

«b) ¨ d)». From (30) we have VU n
V1 Gba n and by using T.2.38 from [3] we

see that r(U) 4 lim
nKQ

n
kVU n

V1 GaE1.

«d) ¨ b)». Let r(U) 4 lim
nKQ

n
kVU n

V1 4sE1 and let eD0 be such that s1

e4aE1. Then, there exists k0 �N such that for all nFk0 we have VU n
V1 Ga n .

If we take b4maxm1, max
p�N , pGk0

VU p
V1

a p
n, we obtain the conclusion. Analogously,

we can show that «c) ` e)». The equivalence «f) ` g)» is a consequence of (8).
The implication «b) ¨ g)» is obviously true and, since a) ` b) and f) ` g),

we obtain a) ¨ f).
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Conversely, from f) and (10) we deduce sup
nKQ

aT(n , 0 )(I) x , xb 40, uniform-

ly for x�H , VxV41. Thus it exists k0 �N such that aT(k0 , 0 )(I) x , xb E
1

2
for

all x�H , VxV41. Since T(k0 , 0 )(I) F0 and VT(k0 , 0 )(I)V4VT(k0 , 0 )V we get

VT(k0 , 0 )VE
1

2
.

From (29) we deduce that there exits k0 �N such that VQ k0
VE

1

2
. Let n�N .

We have n4k0 c1r , where c , r�N , 0 GrEk0 and Q n 4 (Q k0 )c Q r .

Now we obtain VQ n
VGVQ k0

V

c
VQ r

V . Taking a4g 1

2
h1/k0

and b4

max
r�N , rEk0

]2r/k0
VQ r

V(, it follows «f) ¨ c)». Since a) ` c) we obtain «f) ¨ a)» and

the equivalence a) ` f) is proved.
Finally, we show that a) ` h). The implication «a) ¨ h)» follows from Re-

mark 15. Let us assume that h) holds. From Theorem 14 we see that there
exist bF1, a� (0 , 1 ) and n0 �N such that we have aT(n , 0 )(I)x , xb G

ba n2k aT(k , 0 )(I)x , xb for all nFkFn0 and x�H . By Lemma 11 we get
VT(n , 0 )VGba n2k

VT(k , 0 )V for all nFkFn0 .
Now we use (29) and we obtain VQ n

VGba n2k
VQ k

V . We take k4n0 and we
have

n
kVQ n

VGa (n2n0 ) /n n
kbVQ n0

V for all nFn0 . As nKQ in the last inequal-
ity we obtain r(Q) GaE1 and e) holds. Now we use the implication «e) ¨ a)»
and the proof is finished. r

We consider the Lyapunov algebraic equation

P4Q(P)1J(32)

on the space H, where Q is the operator introduced above and J� H is a positi-
ve operator. (J� H is a positive operator if there exists gD0 such that JDgI ,
where I is the identity operator on H.)

In the time-invariant case the Theorem 16 has the following corollary:

COROLLARY 18. – If An 4A , Bn 4B and bn 4b , then the solution of (3) is
uniformly exponential stable if and only if the equation (32) has a unique po-
sitive solution.

PROOF. – If (32) has a positive solution P then the equation (24) with Wn 4J
has a solution Pn 4P which satisfies (26). By Theorem 16 it follows that (3) is
uniformly exponential stable.

Conversely, if (3) is uniformly exponential stable then the Lyapunov

equation (24) with Wn 4J has a unique solution Pn 4 !
k40

Q

Q k (J) such as (26)

holds. From Theorem 17 we deduce r(Q) E1 and consequently Pn 4

(I2Q)21 (J) 4
not

P . Since Pn doesn’t depend on n it is clear that Pn is the positi-
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ve solution (Pn FJ) of (32). If P1 is another positive solution of (32) then it is
also a solution of (24) which satisfy (26). By Theorem 16 it follows P1 4P . The
proof is complete. r
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