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Uniform Exponential Stability for Linear Discrete Time
Systems with Stochastic Perturbations in Hilbert Spaces.

VIORrRICA MARIELA UNGUREANU

Sunto. — In questo lavoro ¢ trattato il problema della stabilita esponenziale e della sta-
bilita esponenziale uniforme per i sistemi discreti variabili in tempo, perturbati
con le variabili aleatorie independenti. Ci sono date due rappresentazioni delle so-
luzioni det sistemi discussi e st € stabilito il legame tra esse. Ognuna delle due rap-
presentazioni conduce a stabilire delle condiziont necessarie e sufficienti per otte-
nere i due tipi di stabilita. C’e dato un teorema di caratterizzazione della stabilita
esponenziale uniforme usando le ecuaziont Lyapunov. Nel caso stazionario, i due
tipi di stabilita sono equipollenti.

Summary. — In this paper we study the exponential and uniform exponential stability
problem for linear discrete time-varying systems with independent stochastic per-
turbations. We give two representations of the solutions of the discussed systems
and we use them to obtain necessary and sufficient conditions for the two types of
stability. A deterministic characterization of the uniform exponential stability, in
terms of Lyapunov equations are given.

1. — Introduction.

The main object of this paper is to discuss the problem of the exponential
and uniform exponential stability of time-varying systems described by linear
difference equations in infinite dimensional Hilbert spaces. We give two
representations of the solutions of these systems and we establish a relation
between them. These representations are very important in order to obtain
the characterizations of the two types of stability.

One of these two representations of solutions allows us to reduce the
stability problem in the stochastic case to the same one in the deterministic
case (see Theorem 9). So, the characterization of the uniform exponential
stability of the stochastic systems can be obtained as a consequence of
the results of [6]. The other representation (see Theorem 6) leads us
to obtain similar results (see Theorem 13) as those formulated in [7],
where it is treated the case of linear discrete-time systems with Markov
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perturbations in finite dimensional spaces. The Theorem 12 establish a
relation between the two representations.

A characterization of the uniform exponential stability is given by using the
discrete-time Lyapunov equations. This result is similar to those obtained in
[6], for the deterministic case and in [9], for the stochastic time-invariant case.
Finally, we treated as an application the time-invariant case. We obtained
some equivalent characterizations of the uniform exponential stability proper-
ty of the solutions of the discussed systems and we solved the algebraic Lya-
punov equations associated with these systems.

2. — Preliminaries.

Let H be a real separable Hilbert space and L(H) be the Banach space of
all bounded linear operators transforming H into H. We write (., .) for the in-
ner product and ||.|| for norms of elements and operators. We denote by a ®b,
@, be H the bounded linear operator of L(H) given by a ® b(h) = (h, b)a for
all he H.

Nuclear operators. The operator A e L(H) is said to be nonnegative, and
we write A=0, if A is self adjoint and (Ax,x)=0 for all e H. For A, Be L(H),
A =0 we denote by A2 the square root of A (see [3]) and by |B| the operator
(B*B)'*. Let Ae L(H), A= 0 and {e, }, .+ be an orthonormal basis in H. We

define Tr(A) by Tr(A) = > (Ae,, e,). It is not difficult to see that Tr(A) is a
n=1

well defined number independent of the choice of the orthonormal basis
{en }n eN*-

If AeL(H) we put [|Al; = Tr(|A|) < « and we denote by C;(H) the set
{AeL(H)/|All; < »}. The elements of C,(H) are called nuclear operators.
Using the polar decomposition of A e L(H), it can be proved that [|A]; =

sup { > (A&, 1), &, 1, orthonormal systems in H } and by theorems T.9,
n=1

T.7" pp. 54-55 in [4] it follows that the definition of the nuclear operator intro-
duced above is equivalent with that given in [4].

It is known (see [4]) that C;(H) (the operators’ trace class) is a Banach
space endowed with the norm ||. ||; and for all A € L(H) and B e C;(H) we have
AB, BAeC,(H).

We denote by I and N the subspaces of L(H) and C; (H) formed by all self-
adjoint operators and by X (respectively X;) the cones of all nonnegative op-
erators of I (respectively N). IC is a Banach space and since N is closed in
C,(H) with respect to || . ||; we deduce that it is a Banach space, too. In this pa-
per we need some well-known results of operators’ theory, which we resume
below (see [1], [5], [4], [8]).
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THEOREM 1 (see [1]). — If A € IC is a compact operator then there exists an
orthonormal basis {e,},.n+CH and a sequence {4, },cn+CR, 4, mo such
that Ae, = A,e, for all ne N*, that is

(1) A: E lnen®e’ﬂ/’

n=1
where the convergence is in norm. By convenience we will say that the rela-
tion (1) is a Hilbert-Schmidt decomposition of A.

PROPOSITION 2 [8]. — Let A belongs to N. Then it is compact and from the

o

above theorem we have (1) and |Al; = > |1,].
n=1

Using Theorem 1 it is easy to establish (see [4]) the following corollary:

COROLLARY 3. — If Ae N and A= X A,e,Re, is the Hilbert-Schmidt
n=1
decomposition of A (Theorem 1), where the series is norm convergent, then

A= 2 1,e,®e, is ||.|; convergent.
n=1

Covariance operators. Let (2, , P) be a probability space and & be a real
(or H) valued random variable on Q. We write E(&) for his mean value (ex-
pectation). We denote by L%=L%*(Q, J, P, H) the space of all equivalence
class of H-valued random variables & such that E||&[* < o« (with respect to the
equivalence relation &~y < E(||E — y|P) = 0).

It is useful to recall (see [2]) that if & is a H valued random variable such as
E||&|P < o, then we have (E(&), u) = E(&, u) for all ueH.

If EeL? we define the operator E(EQE&): H—H, E(EQE)u)=
E((u, £)&) for all ueH.

It is easy to see that E(£ ® &), which is called the covariance operator of &,
is a linear, bounded and nonnegative operator. Let {e,},.y+ be an orthonor-
mal basis in H. Using the Monotone Convergence Theorem and the possibility
to commute the inner product and the expectation we have TrE(E®E) =

2 EE e)P=E X (&, e )P =E|&f < . Thus E(E®E) is nuclear and
n=1 n=1

@) IECE®E)|, = EllZP.

3. — Representations of the solutions of linear discrete-time systems.

Let us consider the stochastic system

(3) Lp+1= An L, + San Ly
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where A,, B, e L(H) and &, are real independent random variables, which sa-
tisfy the conditions E(&,) =0 and E|&,|*=b, < » for all neN.

We denote by X(n, k), n =k = 0 the random evolution operator associated
with the linear system @) ie X(k,k)=I1 and Xn,k)=@A,_{+
E,_1B,_1)...(A, + &, B,,) for all n>k.

If x,=x,(k, x) is the solution of the system (3) with the initial condi-
tion

@) =1,

then it is unique and «,(k, ) = X(n, k) x.

It is easy to see that if n >k, then there exists a continuous function
F:R"*—>H (F is dependent of u, k, x) such that x,(w)=F(,(w),...,
&, 1(w)), we Q. Thus, it follows that «x, is a H valued random variable.

From the independence of &,,, m =0, 1, 2, ... and by using the properties
of the independent random variables it results that «, and &, are independent,
too. In the case n =k the last statement is obviously true.

Using the induction, we can prove that x, e L? for all neN, n=k.

Since x,eL? and (2) holds we deduce that E(x, ®x,) is a nuclear, non-
negative operator and

(5) 1B, @x,) |, = Ell, P

We consider the linear operator A,: N — N, A4,(Y) =A, YA, which is
well-defined because N is a (left and right) ideal of the space L(H). Since
14, D) <[4, [P[[Y]; we deduce that A, e L(N).

By analogy, we deduce that B,: N — N, B,(Y) = B, YB,* is an element of
L(N). We associate to (3) the deterministic system defined on N:

(6) Yn+1= Zw Yn + bnEn Yn»s

where A,, B,, neN are the linear operators defined as above.
We consider the bounded linear operator

(M Uy:N—>N,U,(Y)=4,Y)+b,B,).

If Y(n, k) is the evolution operator associated with the system (6) then
Yn,k)=U,_1U,_5...U,if n—1=k and Y(k, k) =1, where [ is the identity
operator on N. Since, U, € L(N) it follows that Y(n, k) e L(N) for all n=k=0.
Let us denote by ¥, =¥, (k, R) the solution of (6) with ¥, = R e N} it is clear
that it is unique and ¥, (k, R) = Y(n, k)(R) for all n, keN, n=k, Re N.

REMARK 4. — It is a simple exercise to verify that U,(X;)C X, and
Y(n, E) X)X, for all n=k, n, keN.
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The following theorem gives a representation of the covariance operator
associated to the solution of (3) by using the evolution operator Y(n, k).

THEOREM 5. — If x, = x, (k, x) is the solution of (3), (4), then E(x,Qux,) is
the solution of the system (6) with the initial condition ), =x @ x.

PROOF. - Since «, € L* and {x,, &,} are independent random variables for
all n=k=0, we have successively:

(E(x, ®ux,) u, v) = E{u, x, Xx,, v) =
E(u, Ay 12, 1+ &, 1By 1@ 1 XA 1@ 1+ E0 1By 1@, 1, 0) =
E{u, A, 12, 1 XA, 12,1, V) + &, _1{u, Ay 12, 1 XB,_1%,_1, v)+
&, 1(u, By 17, 1 XA, 12, 1, v)+EL_(u, B, 12, _1XBy _1%,_1, V).
and
(E(x, @x,)u, v) =
EQu, A, 12, (XA, 12, _1,v)+b, (E{u, B, 1%, 1XB,_1%,_1, V) =
E(AF qu, 2y 1 X, 1, AF 10) + b, 1 E(BF 1w, €y 1 X®,_1, B 1) =
B, -1 @, (A7 yu), AF 1v) + b, 1(x, 1 ®x, (B u), B 1v)) =
(A, _E(x,_ 1®x,_1)+b, B, 1E(,_1®x,_1))(u), v)

for all u, ve H. In order to obtain the last equality we have used the possibili-
ty to commute the inner product and the expectation. Thus we have
E(x,®u,)=A,_1E(t,_Qx, 1)+ b, 1B, 1 E(x,_, ®x,_,) and E(x, Q) =
x@x. The conclusion follows from the uniqueness of the solution of (6) with
the initial condition y;, =x@x. =

From the above proposition it follows E(x, ®x,) = Y(n, k)(x Qx). By (6), we
have

Ele,(k, 2)|F = B, @)l = ly.(k, © @)
We get
€) E|X(n, k)| =|Y(n, k)xQx)|;

for all n=k=0 and xeH.
We consider the mapping Q,: 3 — I,

9 Qn(s) = A?ik SAn + anW;k SBnr

where A,, B, and b, =FE|&,|*<  are defined as above.
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It is easy to see that @, is a linear and bounded operator.
Let us define the operator T(n, k) by T(n, k) = Q. Q) 41 --- @, — 1 € L(I) for
all n—1=k and T(k, k) =1, where I is the identity operator on IC.

THEOREM 6. — If X(n, k) is the random evolution operator associated with
the system (3), then we have

(10) (T(n, k)S) x, y) = E(SX(n, k) x, X(n, k) y)

forall n=k=0, Sed and x, yeH.

ProOF. — Let SedCand «, ye H. Since ¢, _;=X(n—1,k)x and &, _; are
independent random variables, we deduce that &,_; and (AX(n -1, k),
BX(n—1,k)y) (resp. £2_, and (AX(n —1, k) x, BX(n — 1, k) y)) are inde-
pendent, too on (2, F, P) for all A, Be L(H). Computing, we get

E(SX(n, k) x, X(n, k) y) =E(SA, 1 X(n—-1,k)x, A, 1 X(n -1, k)y)
+&, 1(SA, 1 X(n—-1,k)x, B, X(n—-1,k)y)
+&, 1(SB, 1 X(n—-1,k)x, A, X(n—-1,k)y)
+&%_(SB,_1X(n—1,k)x, B,_1X(n—1,k)y))
=FEAF (SA, (X(n—1,k)x, X(n—1,k)y)
+b, (E(BF SB, X(n—1,k)x, X(n—1,k)y).

It follows

(11) E(SX(n, k) x, X(n, k) y) = E(Q, -1(S) X(n — 1, k) x, X(n — 1, k) y)

for all &, y e H. Let us consider the operator V(n, k): 3C— I,

(12) (Vin, k)S) ¢, y) = E(SX(n, k) x, X(n, k) y)

for all Se I and x, ye H.

It is easy to see that V(n, k) is well defined because the right member of
this equality is a symmetric bilinear form, which also defines a unique linear,
bounded and self-adjoint operator on H.

From (11) and (12) we obtain V(n, k)(S)=V(n—-1,k)Q,_1(S) if
n—1=kand V(k, k) =1. Now it is easy to see that V(n, k) = T(n, k) and it
follows (10). m

Since Q,(X)c X for all pe N we deduce that T(n, k)(X) c X.
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4. — Theorems which characterize exponential and uniform exponential
stability.

We need the following definitions.

DEFINITION 7. — We say that the system (3) is uniformly exponential
stable if there exist =1, ae (0, 1) and nyeN such that we have

(13) E|X(n, k) alf < Ba™ " |«

for all n=k=ny and xe H.

DEFINITION 8. — The system (3) is exponentially stable if there exist f =1,
ae (0, 1) and nyeN such that we have

(14) E|X(n, 0) «|? < Ba™ " E||X(k, 0) x|

for all n=k=ny and xe H.

First, we establish a necessary and sufficient condition for the uniform ex-
ponential stability (resp. exponential stability) of system (3) by using the evo-
lution operator Y(n, k) e L(N).

THEOREM 9. — The system (3) is uniformly exponential stable if and only if
the system (6) is uniformly exponential stable on N or equivalently if and
only if there exist =1, ae (0, 1) and nye N such that

(15) [YCn, By < pa” ="
for all n=k=mny, where |[Y(n, k)|,= sup ||Y(n, kXT)|.
TeN, [T =1

PrOOF. — From (8) and the Definition 7 it follows that the uniform exponen-
tial stability of system (3) is equivalent with the following assertion: there
exist =1, ae (0, 1) and nye N such that we have

(16) [Y(n, k)@ Q)| < Ba™ F|x @,

for all n=k=mny, and xeH.
Because the implication «<» is obviously true, we only prove the
converse. w
«>» Let Te N, [T, =1.If T = _21/11-@1-@)@1- is the Hilbert-Schmidt (Theo-
=

rem 1) decomposition of 7', where {e;};.y+CH, is an orthonormal basis, then
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we use Corollary 3 and the boundedness of Y(n, k) and we have

HY(n,k) 2/1 e;Qe; H

Y(n, k)e;Qe;)

| = 2 1all¥en, be@el.

Since the system {e;};.y+ is orthonormal we deduce from the hypothesis
and (16) that there exist =1, ae (0, 1) and ny,e N such that

[Y(n, k)e; ®e)ly < fa”*

for all n =k =mn,. Thus |[Y(n, k)(T)|; < pa™" ]”Z |2:] -

By Proposition 2 we get ||[Y(n, k)(T)|; $ﬁa" ’“||T||1 pa""*. Now we ob-
tain the conclusion. =

THEOREM 10. — The system (3) is exponentially stable if and only if there
exist f=1, ae(0,1) and nge N such that we have

(17) [Y(r, 0X(D)I|y < pa™~*|[Y(k, 0X(D) |y

for all n=k=ny, and T e X,.

PrOOF. - «=» We consider (17) for T=x®x and we have
[Y(n, )@@, <pa” *||Y(k, 0)(x®x)|,. By (8 and Definition 8 we obtain
the conclusion.

«=>» Let Te X, and T = E Ai(e; ®e;) be its Hilbert-Schmidt decomposi-

tion. Then ;=0 foralli =1, 2 .... It follows from the definition of | . ||; that if
T,, Ts €X; and ¢, d are real, nonnegative numbers, then |[cT; + dTs|;, =
e[ Ty [l + df Tl

Thus, if the system (3) is exponentially stable, we use Corollary 3, the
boundedness of Y(n, k) and the above property of ||.|; and we have:

[Y(n, 0)(D)|, =

| S 2
=1

_21/11‘”17(”, 0)e;®e)| < 'leiﬁa“*kHY(k, 0)(e;®e): =

pa"~* 3 2, ¥(k, 0)e;®@epl = a0k, 0X(D)]|
for all n =k =n,. The proof is finished. =

The following lemma is known (see [10]).
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LEMMA 11. — Let T e L(90). If T(RX) c X then ||T||=||T)||, where I is the
identity operator on H.

PRrooF. — It is obviously true that ||T(1)| < ||7]| and we only will prove the
converse.
Let S e ICsuch as [|S|| < 1. Then ||S|| = sup |(Sw, x)| and —I <S <. Since

llef = 1

—TI) <T(S) <T(), we have |(T(S) x, x)| <(T() x, x) for all xe H. Thus,
1T < ||TD)|| for all Se I such as ||S|<1 and we deduce that ||T] <
iTnf.

The following theorem establishes a relation between the operator T'(n, k)
and the evolution operator Y(n, k).

THEOREM 12. — If H is a real Hilbert space then

(18) |Y(n, k)Xax @), = (T(n, k)UI) x, x)
and

where |[Y(n, K)|[;= sup  [Y(n, kXD, and I is the identity operator on H.
TeN, [T =1

Proor. — From Theorem 6 we have
(T(n, k)I) x, x) = E|X(n, k) 2|
Now we use (8) and we obtain (18). From (18) we deduce

[T, XDl = _sup (TCn, XD, 2) =

xrer,

sup  [[Y(n, k)2 @),

weH, [d =1

sup Y, k)2 @x)|; <

rQrelN, k@l =1

I\

sup  [[¥Cn, YD)l =¥, B)ll;.

TeN, |7l =1

Now, we prove the opposite inequality. Let Te N and T= > 1;¢;Qe; be
i=1

its Hilbert-Schmidt decomposition (Theorem 1). Arguing as in the proof of
Theorem 9 we get
8

S ¥, k)e;®e;)

=1

[¥(n, )= sup  [[Y(r, kXD = sup

TeN,|Tlh=1 TeN, |Tlh=1
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From (18), Lemma 11 and Proposition 2 we obtain

[¥(n, )l < sup 21 12: ¥ Ce, k)e; @ ey

TeN,|Th=1"=

= swp S (T, D) e, e)

TeN,|T;=1 =1

< sup 2 |A4i|ITOu, B le: P

TeX,|rh=1¢=1

— [T, XD sup S |A4]

TeN, |Tl=1 t=1
=17Cn, EXDT], = |TCn, RXDI = |TCn, K.
The proof is complete. ®

The results from above allow us to give characterizations of the exponential
and uniform exponential stability of system (3) by using both operators
Y(n, k) and T(n, k).

THEOREM 13. — The following statements are equivalent:
a) the system (3) is uniformly exponential stable;
b) there exist f =1, ae (0, 1) and nye N such that

(20) [Y(n, k)|, < pa”*

Sfor all n=k=ng;
¢) there exist =1, ae (0, 1) and nyeN such that

21) IT(n, k)| <pa™*
for all n=k=mn,.

Proor. — The equivalence between a) and b) is given by Theorem 9 and the
equivalence «b) <> ¢)» follows from the above theorem. m

THEOREM 14. — The following statements are equivalent:
a) the system (3) is exponentially stable;
b) there exist f =1, ae(0,1) and nye N such that we have

(22) [Y(r, 0)(D)|; < Ba~*[|Y(k, 0)(T)||

for all n=k=ny and T e X;
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¢) there exist =1, ae (0, 1) and nyeN such that we have
(23) (T(n, 0)I) 2, x) < Ba" *(T(k, 0)I) x, )

for all n=k=ny and xe H, where I e L(H) s the identity operator.

ProoF. — The equivalence between a) and b) is a consequence of the Theo-
rem 10 and the equivalence «a) < ¢)» follows from the Definition 8 and from
(10). The proof is complete. =

The following remark is a consequence of theorems T.14 and T.13.

REMARK 15. — If the system (3) is uniformly exponential stable, then it is
exponentially stable.

PrOOF. — Since (3) is uniformly exponential stable, we deduce from Theo-
rem 13 b) that there exist =1, ae(0,1) and nyeN such that
|Y(n, B)XT)| < Ba™ *||T|; for all n =k = ny and T e N. Taking T = Y(k, 0)(S),
where Se X; is arbitrary we obtain (22) and it follows the conclu-
sion. =

5. — The uniform exponential stability and the Lyapunov equations.

On the space IC we consider the Lyapunov equation
(24) Pn:A;;kPn-FlAn+an7'szn+1Bn+Wn’

where {W, } is a sequence in IC with the property that there are u, v > 0 such
that we have

(25) ullel? < (W, %, ) < of|«?

for all n e N and x € H. It is easy to see that if (25) holds, then ||W,, || < v for all
neN. Now we can prove the following theorem:

THEOREM 16. — The system (3) is uniformly exponential stable if and only
if the equation (24) has a unique solution P = (P,), .y with the property that
there exist m, M >0 such that

(26) mlf|? < (P, w, x) < Mla|f

for all neN and xe H.
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ProOF. — Let us prove the implication «=>». If @, is the linear bounded ope-
rator given by (9) then we introduce the linear operator

P,= k:EHQn... Q-1 (W) +W, = ,E T(k, n)(W,).

Since the series 2, ||T(k, n)(W,)| converges in R, it follows that P, is
well-defined. k=
Indeed, if n = ny, we deduce from Theorem 13 and the hypothesis that there
exist #=1, ae (0, 1) and nyeN such that
vp

STk, YWY < S pa* "Wl <v X pak "= —— < oo,
k=mn k=mn k=—n 1-a

If n <mny, we use again the Theorem 13 and we have

S 17, )Wl < v (kz I, |+ 1710, ] S ﬂak-no) <.

k=n =1y

The conclusion follows. More, if

o
M = max {max{ STk, m)| + [Tt )] —2— } p }
n<mn|k=n 1-a 1-a
then we have ||P, || < M. Since T(n, k) € L(3) and W, e I for all n =k =0, we
deduce P, € IC; hence (P,x, x) < M|lz|? for all n=k=0 and xeH.
By (25) and since T(n, k)(X) c X, we get (P, x, x) = (W, x, x) = ullz|?. We
take m =u and we deduce that (26) holds. Computing we have

Q?L(Pn+1) + Wn: E ZQHQn**l"'Qk*l(Wk) + Q;z(Wn+1)+Wn:

k=n+

E Qn Qk—l(Wk) + anpw
k=n+1
Therefore P, is a solution of (24).

Now we prove the umniqueness of the solution. Let us assume that R,
is another solution of (24), which satisfies (26). Then we have P, — R, =
Qn(Pn+1 - Rn+1) and, by induction, Pn - Rn = T(n + ky n)(P7z+k - Rn+k)~

By (26), we have

(27) HPn - Rn” S ||T(7’L + k7 n)” ”Pn+k - Rn+k|| = 2M||T(7’L + k; n)“

From the hypotheses and from Theorem 13 it follows sup ||T(n+k, n)||=0
k— oo

for all neN. As k— o in (27) we get P, =R, for all neN.
«=» If P, is the solution of the equation (24) which satisfies (26), then
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P,=Tn+1,n)P, )+ W,. Thus
E(P,X(n, k)x, X(n, k) x) =
E(Tn+1, n)(P, 1) X(n, k) x, X(n, k) ) + E(W, X(n, k) x, X(n, k) )

for all »=k. From Theorem 6 we obtain

E(Tn+1,n)(P, 1) X(n,k)x,X(n, k) x)y={(Tn, k) T(n+1,n)(P, ) x,x)
=(T(n+1, k)P, 1) x, x)
=FE(P, 1 X(n+1,k)x, X(n+1, k) x).

By (25) and (26) we obtain

E(P,X(n, k)x, X(n, k) x) =

E(P,  X(n+1,k)w, Xn+1, k) )+ %E(anm, k) x, X(n, k) ).

From (24), (25), (26) and since P, is nonnegative we deduce % <1. dIf

% =1 we obtain the trivial case). We have

(1 — %) EP,X(n, k)x, X(n, k)x)=2E(P, 1 X(n+1,k)x, X(n+1, k) x)
and, by induction

n+1—k
(1— %) (Prx, x)y = E(P, 1 X(n+1,k)x, X(n+1, k) x).

n+1l-k
From (26) it follows mE|X(n + 1, k)| < M (1 - LA;) |2 Tf we take

p= M 1, a=1- % and n,=0 we obtain the conclusion. The proof is
m

complete. m®

6. — The time-invariant case.

Now, we consider the time-invariant case when A,=A, B,=B and b, =b.
In this case the operators U, and @, given by (7) and (9) become U,(Y) =
UY)=AYA* +bBYB*, for all Ye N and Q,(Y)=Q(Y)=A*YA + bB*YB
for all Ye IC. Thus we have

(28) Y(n, k)(Y) =Y(n—k, 0)(Y) and Y(n, k)Y) = U""X(Y)



770 VIORICA MARIELA UNGUREANU

for all Ye N and respectively

for all Ye J(.

The following theorem gives necessary and sufficient conditions for the
uniform exponential stability of the system (3) in the time-invariant case and
also, establishes the equivalence between the exponential stability and the
uniform exponential stability in this case.

THEOREM 17. — The following assertions are equivalent:
a) the system (3) is uniformly exponential stable;
b) there exist f =1 and ae (0, 1) such that we have

(30) |Y(n, 0|, <pa™ or equivalently |U"|; < pa™
for all neN;

¢) there exist f =1 and ae (0, 1) such that we have
(31) |T(n, 0)|| < pa™ or equivalently |Q"| < Ba™
for all neN;

d) o(U) <1;

e) 0@ <L

f) nngOE||X(n, 0)x|? = 0 uniformly for xeH, ||| =1;
g lim [Y(n, 0)(x®x)|} =0 uniformly for xeH, || =1;

h) the system (3) is exponentially stable.
We denote by o(U) (respectively o(Q)) the spectral radius of U (respecti-
vely Q).

ProOF. — From Theorem 13, (28) and (29) it results the equivalences «a) <
b)» and «a) <> c)». We will prove b) < d).
«b) = d)». From (30) we have |[U" |, < Ba" and by using T.2.38 from [3] we

see that o(U) = lim "V[[U" |, <a<1.
«d)=>b)>. Let o(U) = lim “VIU"|l; =s <1 and let ¢ > 0 be such that s +
¢ = a < 1. Then, there exists k, e N such that for all n = k, we have |[U" |, <a".

If we take ﬁ=max{1, max N7l
peN,p<k a”

we can show that «c) < e)». The equivalence «f) < g)» is a consequence of (8).

The implication «b) = g)» is obviously true and, since a) < b) and f) < g),

we obtain a) = f).

}, we obtain the conclusion. Analogously,
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Conversely, from f) and (10) we deduce sup (T(n, 0)UI) x, x) =0, uniform-
ly for xe H, ||| = 1. Thus it exists kye N such that (T(k,, 0)(I) x, x) <3 ! for
all xe H, ||| =1. Since T(k,, 0)(I) =0 and ||T(ky, 0)I)|| = ||T(k,, 0)| we get
|7y, 0Ol < 2.

From (29) we deduce that there exits k, e N such that ||Q*|| <3 .LetneN.
We have n =kyc +», where ¢, reN, 0 <r<ky, and Q"= (QkO)CQ“”

Now we obtain Q"] <[QUIIQ7. Taking o= ()" ana p-
. max kO{Z’"/’“O [Q7|}, it follows «f) = ¢)». Since a) <> ¢) we obtain «f) = a)» and

the equivalence a) < f) is proved.

Finally, we show that a) < h). The implication «a)=>h)» follows from Re-
mark 15. Let us assume that h) holds. From Theorem 14 we see that there
exist =1, ae(0,1) and nyeN such that we have (T(n, 0)I)x, x) <
Ba" ¥(T(k, 0)D)x, x) for all n=k=n, and xeH. By Lemma 11 we get
IT(n, 0)|| < Ba™ *||T(k, 0)| for all n=k = n,.

Now we use (29) and we obtain [|Q"|| < Ba™ *|Q*|. We take k = n, and we
have "V/[|Q" | < a ™" "\/p|Q™ || for all n = ny. As n—> o in the last inequal-
ity we obtain (@) < a <1 and e) holds. Now we use the implication «e) = a)»
and the proof is finished. =

We consider the Lyapunov algebraic equation
(32) P=QP)+J

on the space J(, where @ is the operator introduced above and J € J( is a positi-
ve operator. (J € I is a positive operator if there exists y > 0 such that J > yI,
where [ is the identity operator on H.)

In the time-invariant case the Theorem 16 has the following corollary:

COROLLARY 18. — If A, =A, B,=B and b, =10, then the solution of (3) is
uniformly exponential stable if and only if the equation (32) has a unique po-
sitive solution.

Proor. - If (32) has a positive solution P then the equation (24) with W, =J
has a solution P, = P which satisfies (26). By Theorem 16 it follows that (3) is
uniformly exponential stable.

Conversely, if (3) is uniformly exponential stable then the Lyapunov

equation (24) with W, =J has a unique solution P, = E Q"*(J) such as (26)

holds. From Theorem 17 we deduce o(Q) <1 and consequently P, =
I-Q) L(NHE 'P. Since P, doesn’t depend on # it is clear that P, is the positi-
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ve solution (P, =J) of (32). If P; is another positive solution of (32) then it is
also a solution of (24) which satisfy (26). By Theorem 16 it follows P; = P. The
proof is complete. =
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