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Bollettino U. M. I.
(8) 7-B (2004), 609-636

Local Dynamics of Holomorphic Diffeomorphisms.

FILIPPO BRACCI (*)

Sunto. – Questo è un sunto dello stato dell’arte della dinamica olomorfa complessa dai
tempi di Poincaré ai giorni nostri. Sono inoltre indicate alcune nuove idee per
mettere in relazione la dinamica discreta con la dinamica continua. È il testo della
conferenza tenuta dall’autore nel XVII Convegno dell’UMI a Milano.

Summary. – This is a survey about local holomorphic dynamics, from Poincaré’s
times to nowadays. Some new ideas on how to relate discrete dynamics to continu-
ous dynamics are also introduced. It is the text of the talk given by the author at the
XVII UMI Congress at Milano.

Prologue.

Let M be a complex manifold and f : MKM a holomorphic map. The study
of the behavior of the sequence of iterates of f , ] f 7k (, is what is nowadays
called holomorphic (discrete) dynamics. This subject has been studied since
the time of Schröder for local dynamics and Fatou and Julia in case of rational
mappings of the complex projective line. Much of this theory has been used
and improved later by people interested in the continuous dynamics of holo-
morphic foliations, relating dynamics of vector fields in C2 with the dynamics
of holomorphic mappings by means of the Poincaré time one map.

The study of holomorphic dynamics can be done both from the global and
the local point of view. From the global point of view one is interested in find-
ing invariant sets for the map and studying their properties. A simple type of
(forward) invariant set is given by a fixed point of the map. The forward orbit
of such a point is the point itself, but the backward orbit might be very compli-
cated. Trying to simplified the situation one can consider only the behavior of
points nearby the fixed point. This type of study is known as local dy-
namics.

Local dynamics thus uses a magnifying glass to understand what is going
on near the fixed point. Therefore, instead of considering maps of a manifold

(*) Comunicazione presentata a Milano in occasione del XVII Congresso U.M.I.
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we can just study germs of diffeomorphisms at the fixed point (the ambient
will usually be Cn , but one can also study singular ambient spaces). This has
the value that, contrarily to the global situation, one can often explicitly write
down examples on which figure out the theory.

The best situation one can hope to have is linearization of the germ. This
means that suitably changing coordinates the map becomes a linear transfor-
mation. If the change of coordinates used to linearize the germ is holomorphic
than the linear transformation obtained is the differential of the germ at the
fixed point (up to conjugation). However if the change of coordinates involved
is only continuous then the linear transformation might not be the differential.
Holomorphic linearization is the dream of people that study local holomorphic
dynamics, for one can really think of the map as a linear transformation. Even
topological linearization is useful (for instance it provides trajectories and be-
havior of orbits) and sometimes it may be useful also to have just formal line-
arization. Anyhow, the differential is the map which first approximates the
dynamics of the map, and thus it is natural to classify and study dynamics ac-
cording to the spectrum of the differential itself.

As we will see, a generic germ of holomorphic diffeomorphism is holomor-
phically linearizable. Unfortunately, the non-generic situation comes out often
in celestial mechanics and physical problems. Thus one is forced to understand
non-linearizable dynamical systems. These are not completely understood,
even if from the pioneeristic work of Fatou, Dulac and Poincaré much has been
done.

The aim of these notes is to provide a survey on the state of art about local
holomorphic dynamics, trying to face on the several ideas appeared on the
subject.

The notes are based on the talk I gave at the XVII Congress of UMI in Mi-
lano. I wish to thank the organizers for having invited me and for the opportu-
nity of writing these notes.

1. – Local dynamics in dimension one.

Let f be a germ of holomorphic diffeomorphism at the origin of C fixing 0 .
Thus we can expand f as f (z) 4lz1R where l�C0]0(.

As one can expect the number l discriminates the local dynamics.

1.1. Hyperbolic case: NlNc0, 1.

The main result is due to Königs in 1884 (see, e.g. [22]) who solved the so-
called Schröder equation

s i f4ls ,(1.1)
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in case NlNE1 (if NlND1 one can solve a similar functional equation for f 21).
This means that there exists a unique holomorphic diffeomorphism s such that
s(0) 40, s 8 (0) 41 which conjugates f to the function z O lz . Therefore the
dynamics of f can be read in these new coordinates, and one sees that for any
point z 0 near to 0 then f 7k (z 0 ) K0 as kKQ following a spiralizing or a linear
path according to whether l is complex or pure real.

It should be mention another interpretation of (1.1). Suppose that f is holo-
morphic on all the unit disc D4 ]z�C : NzNE1(. Let H p (D) be the p-Hardy
space on D . One can define a linear operator Cf : H p (D) KH p (D) as Cf (h) 4

h i f (see, e.g., [48]). By the Littlewood’s subordination lemma one can show
that Cf is actually continuous. Such an operator is called a composition opera-
tor. Then (1.1) is equivalent to Cf (s) 4ls . Namely s is an eigenvector of Cf .
The dynamics of f is strictly related to the functional analysis properties of Cf .
We invite the interested reader to read [48] for more on this subject.

From the point of view of holomorphic dynamics, having a holomorphic
linearization, as a solution of (1.1), is the best one can hope. In particular it is
not difficult to see that if l 1 cl 2 then f1 (z) 4l 1 z1R and f2 (z) 4l 2 z1R

are not holomorphic conjugated each other, and thus their dynamics is differ-
ent from a holomorphic point of view. In particular the space of holomorphic
parameters for hyperbolic germs is C0 []0(N¯D]. From the point of view of
topology however the situation is different: one can always find a topological
conjugation between any two hyperbolic germs with both derivatives at 0 of
modulo less than 1 (respectively, both with modulo greater than 1). Therefore
the space of topological parameters is reduced to only two points.

1.2. Parabolic case: NlN41, l k 41 for some k�N.

This case can be considered as the «resonant case», as it will be clear later.
Indeed, one first tries to linearize the germ using formal series, and then hope
to make them converging. However, the fact that l k11 4l prevents the possi-
bility to kill (even formally) all the terms. Indeed it is not difficult to show
that

PROPOSITION 1.1. – The map f is holomorphically conjugated to z O lz if
and only if f n (z) 4z for some n�N .

Thus, linearizable parabolic germs are not many. However the dynamics
can be still well understood, thanks to the work of Leau and Fatou (see, e.g.,
[22]). First we remark that f k (z) 4z1O(z 2 ). Thus essentially one can recover
the case lc1 from the case l41. In this case the Leau-Fatou theorem states
that it is possible to find invariant simply connected domains containing 0 on
the boundary such that on each domain the map is conjugated to a parabolic
automorphism of the domain itself and each point of such a domain is attracted
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to 0 . These domains are called petals and their existence is predicted by the
Leau-Fatou Flower Theorem. To give a simple statement of such a result, we
note that if f (z) 4z1ar z r 1O(z r11 ) with rD1 and ar c0, it is possible to
perform a holomorphic change of variables in such a way that f becomes conju-
gated to z O z1z r 1O(z r11 ). The number r is the order of f at 0 . With these
preliminary considerations at hand we have

THEOREM 1.2 (Leau-Fatou Flower Theorem). – Let f (z) 4z1z r 1O(z r11 )
with rD1. Then there exist (r21) domains called petals, Pj , symmetric with
respect to the r21 directions arg z42pq/(r21), q40, R , r22 such that
Pj OPk 4¯ for jck , 0 �¯Pj , each Pj is biholomorphic to the right-half plane
H , and for all z�Pj it follows f 7k (z) K0 as kKQ . Moreover for all j , the map
fNPj

is holomorphically conjugated to the parabolic automorphism z O z1 i
on H .

Now, f 21 (z) 4z2z r 1O(z r11 ). Thus, applying Theorem 1.2 to f 21 one
gets r21 attracting petals Qj for f 21 symmetric with respect to the r21 di-
rections arg z4 (2q11) pq/(r21), q40, R , r22. Notice that these direc-
tions are exactly the bisectrices of the angles between two consecutive attract-
ing directions for f . It is clear that the Qj’s are repelling petals for f , intersect-
ing the Pj’s and 0

j
Pj NQj N ]0( is an open neighborhood of 0 in C . Therefore

now the dynamics of f can be read easily.
If lc1 (and l k 41) then f acts as a permutation on the petals of f k , which

are thus a multiple of k . It should be notice however that if f(z)4lz1arz
r1R

with ar c0, then the number of petals might be different from r . Indeed it
may happen that f k has order Dr at 0 .

We saw that there is no hope to obtain a holomorphic linearization for
parabolic germs. However one may ask what happens from the topological
point of view, and more generally which are the classes of holomorphic conju-
gacy. Both questions have been answered. The topological classification is in
fact pretty simple (even if not easy to obtain) , and it is due to C. Camacho [18]
and, independently, to Shcherbakov [49].

THEOREM 1.3 (Camacho, Shcherbakov). – Let f (z) 4lz1O(z 2 ) be holomor-
phic, l n 41 for some n�N and, if nD1 assume l m

c1 for 1 GmEn .
Then

(i) either f n (z) 4z ,
(ii) or there exists k�N such that f is topological conjugate to

z O lz(11z nk ).

REMARK 1.4. – If f (z) 4z1ar z r 1O(z r11 ) with ar c0 then f is topological
conjugate to z O z1z r .
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The proof of the theorem shows actually that one can topologically conju-
gate f to an automorphism of a suitable Riemann surface. Camacho’s original
proof is itself very beautiful and provides some more hints on the dynamics of
the map. Therefore we provide some details of the proof, at least for the case
l41.

Sketch of the proof of Theorem 1.3 for l41.

Let f (z) cz be given by f (z) 4z1z m11 1O(z m12 ). By Theorem 1.2 the
union of petals 0

j
Pj NQj is an open set around 0 , and on each petal the germ f

is conjugated to an automorphism of such a petal.
The idea is now to consider each petal as a chart of a suitable Riemann sur-

face in such a way that the conjugations on each chart glue together to give a
global conjugation of f to an automorphism of the Riemann surface. More pre-
cisely, let Sm be the Riemann surface of the function z O z2m . The surface Sm

can be defined as Sm 4 ](z , w) �C*3C*: w4z 2m (. Let C*r 4 ]z�C*: NzNE

r( for a small rD0. Let Sm
r 4p 1

21 (C*r ), where p 1 (z , w) 4z . Then we can well
define a holomorphic injective map F : Sr

m K Sm as F4p 1
21

i f i p 1 . Now notice
that p 2 : Sm KC*, where p 2 (z , w) 4w , is a m-th covering. In particular p 2 is a
biholomorphism on p 1

21 (Pj )O Sm (and p 1
21 (Qj )O Sm), whose inverse, which

with some abuse of notation we denote by p 2
21 Np 1

21 (Pj ) , is given by (the appro-
priate branch of) z O z 21/m . If we use (p 2 Np 1

21 (Pj ) , p21
1 (Pj )O Sm ) as a local

chart on Sm , and take into account that by Theorem 1.2 the domain Pj is f-in-
variant, we get

p 2 Np 1
21 (Pj ) i F i p 2

21 Np 1
21 (Pj ) (z) 4p 2 i f (z 21/m ) 4

[ f (z 21/m ) ]2m 4z2m1cz 21/m 1R ,

where the branch of z 21/m is chosen so that i 21/m �Pj . We define an injective
holomorphic map G : Sm

r K Sm in the following way. If (z , w) �p 1
21 (Pj )O Sm

then

G(z , w) »4p 2
21 Np 1

21 (Pj ) (p 2 (z , w)2m).

Similarly if (z , w) �p 1
21 (Qj )O Sm . One can easily check that G is a well de-

fined holomorphic map which can be extended to all of Sm as an automor-
phism.

The upshot is to show that F is topologically conjugated to G on S r
m , which

will imply that f is topologically conjugated to g»4p 1 i G i p 1
21 on C*r . Since

also z O z(11z m ) is topologically conjugated to g this will prove the
theorem.

To this aim we define a C Q diffeomorphism K : Sr
m K Sm by gluing together

F and G in such a way that K4F outside some large compact subset of Sm and
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K4G on a open set contained in such compact subset. Notice that this is possi-
ble for NF(z , z 2m )2G(z , z 2m )N goes to zero as NzNKQ . It is now enough to
show that K is topologically conjugated to G .

The idea is to define a conjugation H on a set E , called exaggerated funda-
mental domain, such that for any p�Sm there exists a�Z such that G a(p)�E,
and then extend the conjugation by means of the relation H i G i H 21 4K .
The set E can be defined taking the set B of points where K4G union 2m se-
mi-strips from B to infinity delimited on each chart p21

2 (p 1 (Pj ) )O Sm by Lj 4

p21
2 (]Re z40() and G(Lj ). Then H can be defined on E by means of HNB 4 id ,

HNLj
4 id , HNG(Lj ) 4K(Lj ) and glue together as a C Q diffeomorphism on each

semi-strip. One can then check that E is absorbing iterates of G and thus H
can be extended as wanted. r

The above proof shows that, if f n (z) cz , then actually f is C Q-conjugated
to lz(11z kn ) outside 0 . One might suspect that with some more refinement it
would be possible to extend the conjugation in (at least) a C 1-way to 0 . How-
ever this is not the case, as shown by Martinet and Ramis [36]. In such a paper
they provide a differentiable classification of parabolic germs. In particular
they prove

THEOREM 1.5 (Martinet-Ramis). – Let f and g be two parabolic germs at 0.

1. If f and g are formally conjugated then they are topologically
conjugated.

2. If f and g are C 1-conjugated then they are holomorphically conjugated.

The first statement is not surprising after Theorem 1.3 and the formal clas-
sification due to Voronin [54]. However the second result is very impres-
sive!

Theorem 1.5 is actually a corollary of the holomorphic classification of
parabolic germs which is also provided in [36]. This latter is also due to
Voronin [54] and Ècalle [25], see also Il’yashenko [32]. Such a classification is
quite complicated. A parabolic germ f is associated to an orbits space Ff . Such
Ff is a complex Riemann surface given by the amalgamated sum of 2m Rie-
mann spheres. Each sphere represents a petals of f and the sum is defined by
means of the behavior of f on the intersection of two consecutive petals (one at-
tractive and the other repelling). The orbit spaces Ff provide the searched
holomorphic invariants. See [36] for details.

1.3. Elliptic case: NlN41, l4e iu for some u�R0Q.

This case can be considered as a big world by itself, formed by several
interesting problems-some still open-known as small divisors problems,
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related to physics and celestial mechanics. We only provide some small
survey on the basic results.

Firstly, from a formal point of view one can kill all the terms after the
linear one, so that f (z) 4lz1O(z 2 ) is always formally conjugated to
z O lz .

As for the holomorphic and topological linearization we have

THEOREM 1.6. – Let f be an elliptic germ. Then f is holomorphically conju-
gated to z O lz if and only if the sequence ] f 7k ( is uniformly bounded near 0.
In particular f is holomorphically linearizable if and only if it is topological-
ly linearizable.

PROOF. – One direction is clear. Conversely, assume that ]f 7k ( is uniformly
bounded near 0 . Let s n (z) 41/n !

j40

n21

l2j f 7j (z). Then s n i f4ls n11 1O(1 /n)

and ]s n ( is a normal family near 0 . Therefore, up to subsequences, s n con-
verges to a holomorphic map conjugating f to its differential. Finally, it is obvi-
ous that if f is topologically linearizable then ]f 7k ( is uniformly bounded near 0
and thus f is also holomorphically linearizable. r

The question is whether all elliptic germs are holomorphic linearizable.
The answer is known to be negative, and first examples where produced by
Cremer. Indeed we have

THEOREM 1.7 (Cremer). – Let u�R0Q . If lim sup
nKQ

N]nu(N21/n 4Q (where

]x( 4x2 [x] with [x] denoting the integral part of x) then there exists an el-
liptic germ f (z) 4e iu z1O(z 2 ) which is not linearizable.

A number u satisfying the condition of Theorem 1.7 is called a Cremer
number. Cremer’s number form a dense subset of R of zero Lebesgue mea-
sure. If an elliptic germ f is non-linearizable at 0 , we say that 0 is a Cremer
point for f .

On the other hand, sufficient arithmetic conditions on u for f(z)4e iuz1R

to be linearizable were first given by Siegel. Thus we say that 0 is a Siegel
point for f provided f is linearizable at 0 . However Siegel’s original conditions
were not sharp. Later Bryuno gave a better sufficient condition on u for f to be
linearizable, and Yoccoz showed the necessity of such a condition. We suggest
the interested reader to read, e.g., the notes [35]. Here we content ourselves to
state the result as follows:

THEOREM 1.8 (Bryuno-Yoccoz). – Let u�R0Q . Let ]pn /qn ( be the sequence
of rational approximation to u given by its continued fraction expansion.
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Then 0 is a Siegel point for all f (z) 4e iu z1O(z 2 ) if and only if

!
n41

Q log qn11

qn

EQ .

Notice that the numbers u for which the condition stated in Theorem 1.8 is
satisfied form a full Lebesgue measure subset of R .

For what dynamics concerns, Siegel points are easily understood. Instead
Cremer points are still quite mysterious, despite the remarkable work of R.
Perez-Marco (see [40] and [41]). To state some of his results, we recall that a
small cycle for f is a finite orbit of f , i.e., a set ]p1 , R , pn(%C* such that pjcpk

and f (pj)4pj11 modulo n . We say that a germ f has the small cycles property
if for any open neighborhood U of 0 there exists a small cycle for f contained
in U . If f has the small cycles property then small cycles accumulate at 0 .
Notice that an elliptic germ with the small cycles property is necessarily non-
linearizable.

THEOREM 1.9 (Perez-Marco). – There exist elliptic germs with the small cy-
cles property. Not all non-linearizable elliptic germs have the small cycle
property.

Actually Perez-Marco provides a precise arithmetic condition on u in order
to decide whether the non-linearizable germ has the small cycles property.
See [40] for details.

As far as we know, there is no topological nor holomorphic classification
available for elliptic germs at Cremer points.

2. – Local dynamics in higher dimension.

In higher dimension the situation is much more complicated than in dimen-
sion one. Let F : Cn KCn be a germ of holomorphic diffeomorphism at the ori-
gin O fixing O . Even in several variables the spectrum of dFO gives a first pic-
ture of the dynamics. However, several new phenomena may occur. First, dFO

may not be diagonalizable. This is mainly a technical problem which for sim-
plicity we do not discuss here, so from now on we assume dFO is diagonal with
eigenvalues l 1 , R , l n . Secondly the eigenvalues l 1 , R , l n might have
resonances.

DEFINITION 2.1. – We say that the eigenvalue l s with s� ]1, R , n( is reso-
nant if there exist m1 , R , mn �N such that m1 1R1mn F2 and

l s 4l 1
m1

R l n
mn .

The vector (m1 , R , mn ) is said the order of resonance.
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Notice that for the same eigenvalue there might be several order of reso-
nances. Roughly speaking the eigenvalue l s is resonant if the dynamics along
the other directions enter to disturb the dynamics along the eigendirection
relative to l s .

As we saw in the previous section, in dimension one the only resonant case
is the parabolic case and it is the only case where there is no formal lineariza-
tion. So we start to study linearization and resonances.

2.1. Resonances and linearization.

We begin with a definition. Write F4 (F1 , R , Fn ), with series expansion
Fj 4P j

1 1P j
2 1R with P j

k homogeneous polynomial in z1 , R , zn of degree k .
We denote by P j

h1 , R , hm
the monomial z1

h1
R zn

hn in P j
h11R1hn

. Assume dFO has
eigenvalues l 1 , R , l n .

DEFINITION 2.2. – If l s is a resonant eigenvalue with order of resonance
(m1 , R , mn ) we call P s

m1 , R , mn
a resonant monomial.

With these definition we have

THEOREM 2.3 (Poincaré-Dulac Normal Form). – Let F be a germ of holo-
morphic diffeomorphism of Cn fixing O . Assume that dFO is diagonal. Then
F is formally conjugated to a formal series F× 4dFO 1P×2 1R , where the P×j’s
are polynomial made only of resonant monomials of F . In particular if dFO

has no resonances then F is formally linearizable.

We note that the formal series provided by Theorem 2.3 is not unique in
general. Such a series is called a formal normal form of F .

PROOF OF THEOREM 2.3. – First we try to kill the terms in P2 using a trans-
formation of type T(z) 4z1H(z) with H a polynomial of degree 2 . Thus

T i F i T 21 (z) 4dFO (z)1P2 (z)1H i dFO (z)2dFO i H(z)1O(VzV

3 ).

To kill P2 one has to solve the so-called homological functional equation in H
given by

dFO i H2H i dFO 4P2 .

This can be always solved provided there are no resonances of order 2 . Other-
wise the resonant terms might survive. Keeping on solving homological equa-
tion of increasing degree one has the statement. r

The question is then when the formal change of variables provided by
Theorem 2.3 is actually convergent. The answer is provided by Poincaré
himself.
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DEFINITION 2.4. – We say that F belongs to the Poincaré domain at 0 if all
the eigenvalues of dFO have modulus strictly less than 1 or they all have modu-
lus strictly greater than 1 . Otherwise we say that F belongs to the Siegel do-
main at O .

Thus we have (see, e.g., [7] for a proof):

THEOREM 2.5 (Poincaré-Dulac). – If F belongs to the Poincaré domain at O
then F is holomorphically conjugated to a polynomial normal form. In partic-
ular if F has no resonances at O then it is holomorphically linearizable.

Using this result, Reich [44], [45] gave the holomorphic classification of
germs in the Poincaré domain at O .

If F belongs to the Siegel domain one may also ask for linearization or con-
vergence of the formal change of variables in Theorem 2.3. The first result in
this direction (and the reason for naming Siegel in this context) is due to
Siegel (see, e.g. [7]). We state it here as follows:

THEOREM 2.6 (Siegel). – Let F be a germ of holomorphic diffeomorphism
fixing O . Let denote by ]l 1 , R , l n ( the eigenvalues of dFO . If there exist
CD0 and n�N such that for all s41, R , n and m1 , R , mn �N such that
!mj F2 and Nl s 2l 1

m1
Rl n

mn Nc0 it holds

Nl s 2l 1
m1

R l n
mn NF

C

g!
j41

n

mjhn(2.1)

then F is holomorphically conjugated to a normal form. In particular if F
satisfies (2.1) and F is formally linearizable ( for instance if F has no reso-
nances at O) then F is holomorphically linearizable.

It is worth noticing that the condition in Theorem 2.6 is full Lebesgue mea-
sure for n sufficiently big. Thus, collecting all the previous results, roughly
speaking, we can say that almost all germs of holomorphic diffeomorphism fix-
ing O are holomorphically linearizable.

It should also be remarked that Bryuno [16] gave an improvement of
Siegel’s condition of Theorem 2.6.

In several variables it also makes sense to ask for partial linearization, or
linearization along some submanifold. Namely, the full germ F might not be
linearizable, but it may exist a complex submanifold M passing through O such
that F(M) %M and FNM is linearizable. Again, partial linearization depends on
small divisors.

THEOREM 2.7 (Pöschel). – Let F be a germ of holomorphic diffeomorphism
fixing O . Let denote by ]l 1 , R , l n ( the eigenvalues of dFO with eigenspaces
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E(l j ). Let kGn . If there exist CD0 and n�N such that for all s41, R , n
and m1 , R , mk �N such that !mj F2 it holds

Nl s 2l 1
m1

R l k
mk NF

C

g!
j41

k

mjhn(2.2)

then there exists an F-invariant complex submanifold M%Cn such that

TO M4 !
j41

k

E(l j ) and FNM is holomorphically linearizable.

Again, condition (2.2) can be improved, see [43].

2.2. Stable/unstable center manifolds.

Assume that F is linearizable by means of the conjugation W , i.e.,
W i F i W21 4dFO . If E is an eigenspace of dFO of dimension k then W(E) is a
complex submanifold of dimension k of Cn containing O and which is F-invari-
ant. Moreover the action of F on E is essentially determined by the eigenval-
ue-say l-associated to E . With obvious meaning, the manifold W(E) is called
stable if NlNE1, unstable if NlND1 and central if NlN41.

Now, linearizable germs are dense in the space of germs (with any decent
topology, for instance the compact-open topology). Thus one might hope to re-
cover stable/unstable and central manifolds even in the non-linearizable case.
This is however only partially true. To fix notations, let Es be the sum of
eigenspaces of dFO associated to eigenvalues of modulus strictly less than 1 .
Let Eu be the sum of eigenspaces of dFO associated to eigenvalues of modulus
strictly larger than 1 . Finally let Ec be the sum of eigenspaces of modulus 1 .
Then the stable/unstable center manifold is the following:

THEOREM 2.8 (Stable/Unstable Center Manifolds). – Let F be a germ of
holomorphic diffeomorphism at O fixing O .

1. There exists a unique F-invariant complex submanifold Ws %Cn of
dimension dimC Es such that O�Ws , TO Ws 4Es , and F7k (p) KO as kKQ for
all p�Ws .

2. There exists a unique F-invariant complex submanifold Wu %Cn of
dimension dimC Eu such that O�Wu , TO Wu 4Eu , and F72k (p) KO as kKQ

for all p�Wu .
3. There exists a (not unique) F-invariant C Q submanifold Wc %Cn of

dimension dimR Ec such that O�Wc and TO Wc 4Ec .

Notice that FNWs
and FNWu

are holomorphically conjugated to a polynomial
normal form by Theorem 2.5.

Theorem 2.8 is not the most general statement one can get. For instance,
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one can prove the existence of complex stable/unstable manifolds related to
any eigenspace associated to an eigenvalue of modulus strictly smaller/larger
than 1 . Moreover one can give several useful characterization of Ws , Wu , Wc .
For these and for proofs, we refer the interested reader to [31] or [3], where
also the non-invertible and non-local cases are considered. The theorem is
originally due to Pesin, Hadamard and Wu [56] for the complex category.

It is important to note that in general the non-uniqueness of Wc prevents
this latter to have a complex structure.

2.3. Hyperbolic case.

We say that O is a hyperbolic point for F if dFO does not have eigenvalues
of modulus 1 . In this case Theorem 2.8 gives a clear picture of the dynamics
near O , for no center manifolds appear.

If F is in the Poincaré domain at O (that is all the eigenvalues have modu-
lus either strictly smaller than 1 or strictly greater than 1) Theorem 2.8 as-
sures that all points in an open neighborhood of O are attracted to O by F or by
F 21 .

If F has some eigenvalues of modulus D1 and some of modulus E1 then
Theorem 2.8 gives two F-invariant complex submanifold Ws , Wu where the dy-
namics is attractive/repulsive. Any other point in a neighborhood of O escapes
from O both iterating forward and iterating backward, exactly as if F were
linearizable. Indeed hyperbolic germs are topologically linearizable:

THEOREM 2.9 (Gröbman-Hartman). – If F is a germ of hyperbolic holomor-
phic diffeomorphism at O fixing O then F is topologically linearizable at O .

Aside the original references, see [3] for a proof.

2.4. Parabolic cases.

A germ of diffeomorphism F at O fixing O is parabolic if at least one of the
eigenvalues of dFO is a root of unity. This terminology is not standard since
the study of holomorphic dynamics in several dimension is only at the begin-
ning. Also, some results are true for dimension two, while they are false or un-
known for dimension greater than 2 .

2.4.1. S e m i - a t t r a c t i v e c a s e . We say that a parabolic germ F is semi-at-
tractive if 1 is an eigenvalue of dFO and all the other eigenvalues have modulus
strictly less than 1 (if all the other eigenvalues have modulus strictly greater
than 1 we argue on F 21). There are essentially two cases to be distinguished
here: F has or not a submanifold of fixed points. In case F has a submanifold of
fixed points (of the right dimension) we have a result due to Nishimura [38]
which roughly speaking says that, in absence of resonances, F is conjugated
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along S to its action LF on the normal bundle NS to S in Cn . The precise result
is:

THEOREM 2.10 (Nishimura). – Let F be a parabolic germ at O and assume
there exists a submanifold S%Cn such that O�S and FNS 4 id . Let
]1, l 1 (p), R , l m (p)( be the eigenvalues of dFp at p�S . Assume that for any
p�S , Tp S is the eigenspace related to 1, Nl j (p)NE1 for j41, R , m and
there are no resonances among l 1 (p), R , l m (p). Then there exists an open
neighborhood U of S and a unique biholomorphic map W : NS KU such that
F i W4W i LF .

Other results of more global nature (obtained from the local situation by
means of blow-ups) are contained in [6], we come back on these later when
talking about germs tangent to identity.

In case F has no curves of fixed points there are results of Ueda [52], [53],
Hakim [29] and Rivi [46] which generalize older results of Fatou [27]. Such re-
sults essentially state that, under suitable generic hypotheses, there exist
«fatty petals» (called parabolic manifolds or basins of attraction when they
have dimension n) for F at O . To be more precise,

DEFINITION 2.11. – A parabolic manifold M for F at O is an F-invariant
complex submanifold of Cn containing O on the boundary such that for any
p�M the sequence of iterates ]F7k (p)( converges to O .

Roughly speaking, the number of parabolic manifolds is related to the «or-
der» of F2 id along the parabolic direction at O while their dimension is given
by the number of non-unimodular eigenvalues of dFO . Here we content our-
selves to state the following result:

THEOREM 2.12 (Hakim). – Let F be a semi-attractive parabolic germ at O ,
with 1 as eigenvalue of dFO of (algebraic) multiplicity 1. If O is an isolated
fixed point of F then there exist k disjoint basins of attraction for F at O ,
where k11 F2 is the «order» of F2 id at O .

It is worth noticing that if F is an automorphism of C2 then each basin of at-
traction provided by Theorem 2.12 is biholomorphic to C2 (the existence of
proper subsets of Cn biholomorphic to Cn for nD1 is known as the Fatou-
Bieberbach phenomenon).

Ueda, whose works hold in C2 , provided precise information on the shape
of the basin of attraction (in case the order of F2 id is exactly 2) and showed
that F is conjugated to (z , w) O (z11, w) on such a basin of attraction.

Rivi generalizes Theorem 2.12 under the hypothesis that 1 has algebraic
multiplicity greater than 1 , proving that generically there exist parabolic
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manifolds for F at O (here the word «generically» refers to the existence of
«non-degenerate characteristic directions» which we will discuss later for
germs tangent to the identity).

As for the topological classification of semi-attractive germs, we have the
following result in C2 due to Canille-Martins [20].

THEOREM 2.13 (Canille-Martins). – Let F be a semi-attractive germ of C2

fixing O . Then there exists k�N such that F is topologically conjugated to
the map (z , w) O (z1z k , 1 /2w).

SKETCH OF THE PROOF. – By Theorem 2.8 there exists a real differentiable
two dimensional F-invariant manifold M passing through O and tangent to the
eigenspace of 1 at O . Such M is not unique. However by the theory of normal
hyperbolic system of Palis and Takens [39] the dynamics from a topological
point of view of F near O depends only on the dynamics of F on M . If it hap-
pens that M is complex then FNM is topologically conjugated to z O z1z k by
Theorem 1.3. If M does not have a complex structure then the result is still
true using the theory of real diffeomorphisms of [24]. r

It is clear that if F is a parabolic germ such that F7k is semi-attractive for some
k�N then the previous results apply to F7k and from this one recovers infor-
mation on the dynamics of F . We left details to the reader.

2.4.2. N o n - a t t r a c t i v e c a s e . We say that a parabolic germ is non-at-
tractive if all eigenvalues of dFO have modulus 1 .

Let write the spectrum of dFO as RNI , where R contains the roots of unity
and I the other unimodular eigenvalues. The dynamics along the eigenspaces
related to I are described by Theorem 2.7 in absence of small divisors.

The present section deals with dynamics along the directions related to the
eigenvalues in R , and thus, up to replacing F with some higher iterate, along
the eigenspace relative to 1 . We start with the following lemma

LEMMA 2.14 (Hakim, Abate, Bracci-Molino). – Let F be a parabolic non-at-
tractive germ of C2 fixing O . If

F(z , w) 4 (z1z k 1O(z k11 , z k w), lw2dz k21 w1O(z k12 , z k w) )

with Re (dl) E0, then there exist k21 parabolic curves (i.e. parabolic mani-
folds of complex dimension 1) for F at O tangent to [1 : 0 ].

Here we say that a parabolic curve P is tangent to [a : b] whether the com-
plex span of the tangent cone of P at O is generated by (a , b).

The previous result is due (in more than two variables) to Hakim [30]
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and Abate [2] for l41, and to Molino and the author [11] for lc1 (and
NlN41).

Very rough sketch of the Proof of Lemma 2.14.

If the second component of F has no pure terms in z then the curve ]w40(

is F-invariant and the result follows from Theorem 1.2. In general, since the
pure terms in z in the second component have sufficiently high order, one can
infer that parabolic curves-if any-should not be too far (in an appropriate
topology) from the petals we would have in case the second component of F
were divisible by w , i.e., the petals of z O F1 (z , 0 ). Thus we may try to find the
parabolic curves among those of the form z O (z , z 2 u(z) ) for z belonging to a
petal of F1 (z , 0 ) and NuNQEQ . These curves form a Banach space (with norm
given by the L Q norm of u). Starting from F one can define an operator on
such a Banach space whose fixed points are exactly the searched parabolic
curves. Then one shows that such an operator is a contraction and the fixed
point theorem provides then the existence of a fixed point. r

In principle Lemma 2.14 is a powerful tool. Given a parabolic non-attractive
germ F of C2 , if it is possible to change coordinates in such a way that F has
the wanted form then F has a certain number of parabolic curves at O tangent
to the eigenspace of 1 . Moreover, one can allow also «meromorphic changes of
variables».

To be more precise, let p : C2A
KC2 be the blow-up (also called quadratic

transformation) at O . Then it is possible to define a germ of holomorphic dif-
feomorphism FA near the exceptional divisor D»4p21 (O) such that p i FA 4

F i p and FA ND ( [v] ) 4dFO ( [v] ), for all [v] �DCCP1 (see, e.g., [1]). It is clear
that if P is a parabolic curve for FA at a point [v] �D then p(P) is a parabolic
curve for F at O tangent to the direction v .

Then, if after changes of coordinates and/or blow-ups one finds that F (or
its blow-up) has the form required by Lemma 2.14 it follows that F has
parabolic curves.

In practice however it is almost impossible to explicitly perform holomor-
phic changes of coordinates or blow-ups in order to obtain that the germ has
the form required in Lemma 2.14. Nonetheless, what one does in practice is to
find some invariant, easily to be computed, attached to F which tells whether
F has the wanted form after changes of variables or blow-ups.

In [11] two (holomorphic and formal) invariants are defined for the case
lc1. To describe them the authors introduced a generalization of the
Poincarè-Dulac normal forms, called ultra-resonant normal forms. These lat-
ter are somewhat better than the usual Poincaré-Dulac normal forms because
the existence of a convergent ultra-resonant normal form is related to the ex-
istence of a curve of fixed points for F . However, for what the definition of in-
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variants concern, we can also use Poincaré-Dulac normal forms. So, let F× be a
Poincaré-Dulac normal form for F . Without loss of generality we can assume
that

F×(z , w) 4 gz1 !
j1kF2

pj , k z j w k , lw1 !
j1kF2

qj , k z j w kh .

We let

n(F) »4 min ] j�N : pj , 0 c0(, m(F , w) »4 min ] j�N : qj , 1 c0( .

If n(F) EQ , we let U(F) »4n(F)2m(F , w)21 (with the convention that
U(F) 42Q if m(F , w) 4Q). We say that F is dynamically separating if
n(F) EQ and U(F) G0.

One should prove that n(F) and being dynamically separating are defini-
tions well-posed, since as already remarked, Poincaré-Dulac normal forms are
by no means unique. This can be done as in [11]. Let us only note that n(F) can
be viewed as the «order» of F on the formal curve of its fixed points. Indeed,
the formal Poincaré-Dulac normal form has no pure terms in z in the second
component, and thus ]w40( is a «curve of fixed points» for F×.

We said before that invariants should be quite easy to be computed, while,
finding a Poincaré-Dulac normal form might not be so easy. Actually, to define
n(F) and see whether F is dynamically separating one needs only to solve
some homological equations as in the proof of Theorem 2.3 until the first non-
zero pure term in z in the second component of F has degree equal or greater
than the first non-zero pure term in z in the first component of F . For in-
stance, if

F(z , w) 4 (z1az 2 1O(z 3 , zw , w 2 ), lw1O(z 2 , zw , w 2 ) )

for some ac0 then n(F) 42 and F is dynamically separating. For dynamically
separating maps one can perform changes of coordinates and blow-ups to ob-
tain the form needed in Lemma 2.14. Thus we have:

THEOREM 2.15 (Bracci-Molino). – Let F be a parabolic germ of C2 at O such
that dFO has eigenvalues ]1, l( with NlN41 and lc1. If F is dynamically
separating at O then there exist n(F)21 parabolic curves for F at O tangent
to the eigenspace of 1.

It is likely that a result similar to Theorem 2.15 holds in Cn for
nD2.

We turn now our attention to the case of non-attractive germs tangent to
the identity, i.e., such that dFO 4 id . These are, up to now, the most studied for
some unexpected beautiful geometry that can be found inside.

In the preliminary work [55], Weickert constructs a family of automor-
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phisms of C2 tangent to the identity at O with a basin of attraction at O , biholo-
morphic to C2 on which the automorphisms are conjugated to the map
(z , w) O (z11, w).

In his huge work [25] (see also [26]), Écalle gives a (partial) formal classifi-
cation of germs tangent to the identity, proving as an intermediate step that
«generically» a germ tangent to the identity has a certain number of parabolic
curves. His proof is based on the theory of resurgence, a very elaborate tool.
Recently, Hakim [30] gave a complete analytic proof of such a result. To better
describe her approach we need some definitions. To avoid triviality, we always
suppose Fc id , even if not explicitly stated.

DEFINITION 2.16. – Let F be a germ of Cn fixing O and tangent to the iden-
tity at O . Let F(X) 4X1Ph (X)1R , hF2 be the expansion of F in homoge-
neous polynomials, Ph (X) c0. The polynomial Ph (X) is called the Hakim
polynomial and the integer h the order of F at O .

Let v�Cn be a nonzero vector such that Ph (v) 4av for some a�C . Then v
is called a characteristic direction for F . If moreover ac0 then v is said a
nondegenerate characteristic direction.

It can be proved that if P is a parabolic curve for F at O tangent to v then v
is a characteristic direction. However there exist examples of germs tangent
to the identity with a parabolic curve not tangent to a single direction (that is
with tangent cone spanning a vector space of dimension greater than one).
Hakim’s (and Écalle’s) result is the following:

THEOREM 2.17 (Écalle, Hakim). – Let F be a germ of holomorphic diffeo-
morphism of Cn fixing O and tangent to the identity at O with order h . If v is
a nondegenerate characteristic direction for F then there exist (at least) h21
parabolic curves tangent to v .

The proof is essentially the one given for Lemma 2.14: with a finite number
of blow-ups and changes of coordinates one obtain a «good form» for F (or its
blow-up)—just like the one written in Lemma 2.14—and then can argue simi-
larly. However it should be notice that in general (namely if one of the eigen-
values to be introduced in Theorem 2.18 is a natural number), the transforma-
tions involved are much more complicated!

Actually Hakim’s work provides the existence of basins of attraction or
parabolic manifolds according to other invariants related to any nondegener-
ate characteristic direction. Let v be a nondegenerate characteristic direction
for F and let Ph be the Hakim polynomial. We denote by A(v) »4d(Ph )[v] 2

id : T[v] CPn21 KT[v] CPn21 . Then we have

THEOREM 2.19 (Hakim). – Let F be a germ of holomorphic diffeomorphism
of Cn fixing O and tangent to the identity at O . Let v be a nondegenerate
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characteristic direction. Let b 1 , R , b n21 �C be the eigenvalues of A(v).
Moreover assume Re b 1 , R , Re b m D0 and Re b m11 , R , Re b n21 G0 for
some mGn21 and let E be the sum of the eigenspaces associated to
b 1 , R , b m . Then there exists a parabolic manifold M of dimension m11
tangent to Cv5E at O such that for all p�M the sequence ]F7k (p)( tends to
O along a trajectory tangent to v .

In particular if all the eigenvalues of A(v) have positive real part then
there exists a basin of attraction for F at O .

Hakim’s results, and the fact that there are examples of germs tangent to
the identity with no nondegenerate characteristic directions give rise to the
question: is it true that all germs tangent to the identity do have parabolic
curves?

The answer is positive in dimension two and it was solved by Abate [2],
while it is presently unknown in dimension greater than two. We have:

THEOREM 2.19 (Abate). – Let F be a germ of holomorphic diffeomorphism
of C2 , having O as an isolated fixed point, and tangent to the identity at O .
Then there exists at least one parabolic curve for F at O .

The original proof of Abate—while correct—is quite mysterious. In [9]
and [6] we gave a different explanation, based on the better known theory of
holomorphic foliations. Therefore, in order to provide details we need to recall
some basic facts on the local theory of holomorphic foliations.

Interlude on holomorphic foliations.

A local (one dimensional) holomorphic foliation F in Cn at O is roughly
speaking the data of a germ of a holomorphic vector field at O up to nonzero
multiples. More precisely, F is given by a holomorphic line bundle L near O
and a morphism of vector bundle W : LKTCn . If 1 is a base frame of L near O
then v4W(1) is a vector field. The singularities of F are defined to be the
points where W is zero, or, equivalently the points where v40. A leaf of F is an
integral curve of v , regardless of its parameterization. Namely, a (possibly sin-
gular) curve S is a leaf of F if the vector defining F belongs to the (Zariski)
tangent space of S at all points of S .

In case O is not a singularity of F then the well-known Cauchy-
Kowaleskaya Theorem provides a unique non-singular leaf for F at O . More-
over, since singularities are closed, one can choose local coordinates

]z1 , R , zn ( in such a way that F is generated by ¯

¯z1

(«linearization» of the
foliation).

The problem is when O is a singularity of F. We are mainly interested in
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the case where F has an isolated singularity at O . The constant «curve» O is
clearly a «leaf» of F. However it is not unique in general. For instance, if F is

generated by !
j41

n

zj
¯

¯zj

then all complex lines through O are leaves for F. The

study of the leaves of a holomorphic foliation is the subject of the holomorphic
continuous dynamics.

There are strict relations between continuous and discrete dynamics. A
first way is provided by associating to a vector field its time one flow, which is
a diffeomorphism of Cn . The problem with this is that the converse operation
is not always (actually seldom) possible in the holomorphic category. That is to
say, starting from a holomorphic vector field, the associated flow is holomor-
phic, but conversely, starting from a holomorphic diffeomorphism there are in
general no holomorphic vector fields whose time one flow coincides with the
given diffeomorphism. This operation can be done (locally) only in the formal
category, using the so called Campbell-Hausdorff formula. Nonetheless this is
the philosophical argument which provides a strict link between continuous
and discrete dynamics.

A second way to relate continuous and discrete dynamics is by means of the
holonomy or Poincaré return map. In our case, in presence of an isolated sin-
gularity for a germ of vector field of Cn at O and a nonsingular simply-connect-
ed leaf P passing through O , the holonomy is a germ of holomorphic diffeo-
morphism of Cn21 at O constructed as follows. Take a (germ of a) complex
(n21-dimensional) transverse T to P at a point p�P near to O . Let g be a
generator of the ciclic group p 1 (P0]0(; p) CZ . If q�T , following the leaf of
F starting from q which projects to g we finish at some point F(q) �T . The ap-
plication q O F(q) is a germ of holomorphic diffeomorphism of T at p (fixing p),
called the local holonomy of F (the holonomy can be defined more generally
for nonsingular foliations). The dynamical properties of F read the dynamics
of F. A custom result is that, in general, two foliations are the same from the
topological point of view if and only if their holonomies are topological conju-
gated. This is particular useful for foliations of C2 for then the holonomy is a
germ of diffeomorphism of C . It is known after Perez-Marco and Yoccoz [42]
that any germ of holomorphic diffeomorphism in C can be realized as the
holonomy of a suitable germ of holomorphic foliation in C2 .

There is a third way, much more easy to handle in practice, to relate a holo-
morphic germ of diffeomorphism to a (family of) holomorphic foliations, intro-
duced in [9] by the author for dimension two and generalized to higher dimen-
sion in [6]. This will be discussed later to solve our problem about existence of
parabolic curves.

Now, let F be a germ of holomorphic foliation with an isolated singularity
at O . We ask for existence of curves through O which are leaves of F. When
they exist they are called separatrices for they «separate» the dynamics.
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First we examine the case F is a germ of foliation in C2 with an isolated sin-
gularity at O . Using a process called «saturation» one can always assume that
the subvariety of singularities of a holomorphic foliation have codimension 2 ,
thus in dimension two it is not restrictive to impose that O is an isolated
singularity.

Let X4 (ax1by1O(x 2 , y 2 , xy) ) ¯

¯x
1 (gx1dy1O(x 2 , y 2 , xy) ) ¯

¯y
be a

holomorphic vector field representing F. One first looks at the linear part of X
defined by the linear transformation

(x , y) O J 1 X(x , y) »4 (x , y) Q ga

g

b

d
h .

This is not well defined in general for X is not uniquely attached to F. However
any other vector field associated to F is a (nonzero) multiple of X . Therefore, if
l 1 , l 2 are the eigenvalues of J 1 X , both are zero if and only if they are zero for
all the vectors associated to F. Moreover if l 2 c0 then the ratio l 1 /l 2 is inde-
pendent of the vector field chosen to represent F. Therefore we can well say

DEFINITION 2.20. – The singularity O of a holomorphic foliation in C2 is re-
duced if

(x1 ) either l 2 c0 and l 1 /l 2 �Q1N ]0(,

(x2 ) or l 2 c0 and l 1 40.

In the reduced cases normal simple forms were known since Poincaré and
Dulac (see, e.g., [37] or [17]). In particular from such normal forms we can
infer

THEOREM 2.21 (Poincaré-Dulac). – If O is a reduced (x1 ) singularity for F

then there exist exactly two complex separatrices for F, nonsingular at O ,
which intersect transversally at O .

If O is a (x2 ) reduced singularity for F then there exists one nonsingular
separatrix for F at O . There is also a second formal separatrix at O which
may or may not converge.

Therefore in the «generic» case of a reduced singularity Theorem 2.21 pro-
vides a positive answer to the question about the existence of other leaves.
Somehow, this result can be considered the analogous of Theorem 2.17 for
germs of diffeomorphisms tangent to the identity.

If O is not a reduced singularity one can try to blow-up the origin and blow-
up the foliation F. Thus, let p : CA2 KC2 be the blow-up at O . One can define a
foliation F

A
on CA2 near the exceptional divisor D4p21 (O). A way to define F

A
is

to consider a holomorphic one-form v such that v(X) f0, and say that F
A

is
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defined by the saturated of the pull-back p*(v) (in local coordinates one ob-
tains the saturated of p*(v) by dividing the coefficients by a defining equation
of D at the highest possible power in order to have such new form holomorphic
and with only isolated zeros).

If D is not a leaf of F
A

then we say that the singularity O is dicritical. It is
clear that, by the Cauchy-Kowaleskaya Theorem, for all but a finite number of
points of D , there exists a nonsingular leaf for F

A
which projects down to a leaf

of F. Therefore if O is dicritical there exist infinitely many separatrices
through O .

Now assume that O is not dicritical. Then F
A

has only finitely many singu-
larities on D . The idea is that if some of them is not reduced one can continue
the process of blow-ups to hope to reduce all the singularities. This is exactly
the case

THEOREM 2.22 (Saidenberg). – Let F be a germ of holomorphic foliation of
C2 at O with an isolated singularity at O . After a finite number of blow-ups
one obtains a holomorphic foliation with only reduced singularities.

A proof of Saidenberg theorem can be found in [17]. Notice that the theo-
rem applies also to dicritical singularities, even if, from the point of view of ex-
istence of separatrices is not very interesting.

Even with the Saidenberg resolution of singularities theorem one cannot
conclude that there always exists a separatrix for F. Indeed it could happen
that all the reduced singularities of type (x1 ) are corners of the exceptional di-
visor and singularities outside corners are all of type (x2 ) with non-convergent
formal separatrix. This is not the case, and the proof is based on the celebrated
Camacho-Sad index theorem. In [19] Camacho and Sad proved the following
theorem

THEOREM 2.23 (Camacho-Sad). – Let F be a holomorphic foliation on a
complex two dimensional manifold and let S%M be a nonsingular compact
curve which is a leaf of F. Then at all singularities of F on S it is possible to
associate a complex number Res (F, S ; p) such that

!
p�Sing(F)

Res (F, S ; p) 4S QS .

Residues are strictly related to dynamics, and decrease by one after blow-
ups. Using those properties, Camacho and Sad, with a complicated combina-
torics, showed that after having reduced all singularities with Theorem 2.22
then there must be a (x1 )-reduced singularity at a nonsingular point of the ex-
ceptional divisor, and thus the second separatrix given by Theorem 2.21 blows
down to a (possibly singular) separatrix for the original foliation.

The combinatorics part in Camacho-Sad argument can be very much sim-
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plified, as done by Toma, Sebastiani and Cano, see, e.g., [17] or [21] for details.
Theorem 2.23 itself gave rise to lots of researches on «index theorems» and
residues theory, especially by Lins Neto, Lehmann, Camacho, Suwa, Seade,
Brunella, Brasselet, Abate, Tovena and the author (see [50] for a good account
on residues theorems for foliations and, [6], [14], [13], [10] for residues theo-
rems for diffeomorphisms and generalizations).

For germs of holomorphic foliations in Cn with nD2 the existence of sepa-
ratrices is a much more involved problem. Indeed there are examples without
separatrices, due to Gomez-Mont and Luengo [28].

We go back to the problem of finding parabolic curves for germs of holo-
morphic diffeomorphisms tangent to the identity in C2 . There is a philosophi-
cal explanation on the reason why there should always exist parabolic curves
for holomorphic germs of diffeomorphisms. The argument goes like this. One
can consider the germ F as the time one flow of a vector field X . Unfortunate-
ly, such a vector field is not holomorphic in general, but it is only formal.
Nonetheless, one should argue as in the Camacho-Sad paper [19] in order to
obtain a «formal separatrix» for X . Pieces of such separatrix should converge
and give the searched parabolic curves for F . It is clear that there are several
problems for making this argument precise, and also, even if one makes it
work in this situation, such technique does not seem to be handleable in more
general situation (like for instance germs on singular surfaces or with singular
curves of fixed points). However it serves as a guide for what kind of results
one might expect.

In [9], [6], [12] we introduced another method to relate diffeomorphisms to
foliations, which seems to give interesting results. Let us roughly describe it.
Let F be a germ of holomorphic diffeomorphism at O in C2 . We consider a fam-
ily of holomorphic foliations given by

F z , w
F 4m(z i F2z)

¯

¯z
1 (w i F2w)

¯

¯w NdzO RdwO c0n .

Of course the foliation F z , w
F depends on z , w . However it can be proved that if O

is a singularity for one of such foliation it is so for all the others. Moreover, if O is
a singularity of F F

z , w , the linear part of F F
z , w is independent of z , w up to a non-

zero multiple. In particular if O is a singularity for F z , w
F one can define O as a

singularity of reduced or non-reduced type for F according to the kind of singu-
larity of F z , w

F regardless of the z , w chosen. In particular one can define a dicrit-
ical point of F to be a point which is dicritical for F z , w

F . Also, Theorem 2.22, pro-
vides a theorem of reduction of singularities for F (already proved by direct
methods in [2]). Therefore if we had a «residue theorem» like Theorem 2.23 for
the blow-up of F on the exceptional divisor, with residues reading the dynamics,
then we could argue as in [19] to prove the existence of parabolic curves.
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We give here a version of the residue theorem needed, as obtained in [6].
Let M be a complex manifold of dimension n , F : MKM be a holomorphic

map having a nonsingular compact hypersurface S as fixed points locus. It is
possible to define a morphism, called the canonical section, of vector
bundle

XF : NS
7n F KTMNS ,

where n F is the «order of vanishing» of F2 id on S . For instance if n F 41 then
XF is defined by dFNS 2 id , since this latter is a nonzero morphism from TMNS

to TMNS which vanishes on TS and thus passes to the quotient NS .

DEFINITION 2.24. – We say that F is tangential to S if XF (NS
7n F ) ’TS .

We define the set Sing (F) of singularities of F to be the set of points of S
where XF is zero.

For a germ F of diffeomorphism at O in C2 tangent to the identity, O is di-
critical if and only if the blow-up FA of F is non-tangential on the exceptional di-
visor of the blow-up of C2 at O .

It is worth noticing that being tangential is actually a local condition (if S is
connected). That is to say, if p�Sing (F), then F is tangential to S if and only if
there exists an open neighborhood U of p such that XF , q (NS , q

7n F ) ’Tq S for all
q�U0]p(.

For tangential germs we do have residues theorems:

THEOREM 2.25 (Abate, Bracci, Tovena). – Let M be a complex manifold of
dimension n , F : MKM be a holomorphic map having a nonsingular com-
pact hypersurface S as fixed points locus. Assume that F is tangential to S .
Let Sing (F) 40

l
S l be the connected components decomposition. Then there

exist complex numbers Res (F , S ; S l ) such that

!
l

Res (F , S ; S l ) 4s
S

c1
n21 (NS ) .

The residues Res (F , S ; S l ) are computed in terms of Grothendieck’s
residues in case S l is a single point. Theorem 2.25 was proved first by
Abate [2] in case n42, then generalized to the case S is singular in [14]. A
proof in terms of foliations in the optic explained before (and for n42) is
in [9]. Finally in [6] the theorem has been proved for any n , for S of any codi-
mension and possibly singular, and also some other indices theorems are pro-
vided in case F is non-tangential (but S satisfies some suitable embeddability
conditions).
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The canonical section reads the dynamics outside singularities. Indeed we
have

THEOREM 2.26 (Abate, Bracci, Tovena). – Let M be a complex manifold of
dimension n , F : MKM be a holomorphic map having a nonsingular hyper-
surface S as fixed points locus. Assume that p�S is such that p�Sing (XF ).
Then

1. If F is tangential to S then there exists a open neighborhood U of p
such that for all q�U0S there exists k0 4k0 (q) such that F7k (q) �U0S for
kDk0 .

2. If F is non-tangential to S , XF , p (NS , p
7n F )5Tp S4Tp M and n F D1

then there exists at least one parabolic curve for F at p tangent to
XF , p (NS , p

7n F ).
3. If F is non-tangential to S , XF , p (NS , p

7n F )5Tp S4Tp M and n F 41,
then there exists «almost always» an F-invariant curve through p on which
F is linearizable.

Notice that the hypothesis XF , p (NS , p
7n F )5Tp S4Tp M for F non-tangential

to S is a generic condition: if F is non-tangential to S then XF , p (NS , p
7n F ) ’Tp S

only for a discrete set of points.
The «almost always» in part (3) of Theorem 2.26 refers to the action of F on

the normal bundle. This action is essentially a number, the only eigenvalue of
dFp not 1 in this case, and the condition is fulfilled if this number has modulus
E1 or D1, or if it satisfies some Bryuno-like condition, thus «almost
always».

Theorem 2.26 can be used to show that the point O is dicritical for a germ F
in C2-but actually in Cn for any n , providing the natural definition of dicritical
point-fixing O and tangent to the identity at O if and only if for all but a finite
number of directions there exists at least one parabolic curve for F tangent to
such a direction.

Now we have all the ingredients to give the proof of Theorem 2.19.

Sketch of the Proof of Theorem 2.19.

If O is dicritical, blowing C2 up, the blow-up map FA is non-tangential on the
exceptional divisor D . A direct calculation shows that the action of F on the
normal bundle of D in CA2 is the identity and thus necessarily n FA D1. Thus The-
orem 2.26 (2) provides a Zariski open set of points in D where there exists at
least one parabolic curve for FA. Such curves project down to form parabolic
curves for F tangent at almost all directions. Thus we may assume that O (and
all further singularities) is not dicritical. By the version of Theorem 2.22 for
diffeomorphisms discussed above, after a finite number of blow-ups all the sin-
gularities of the blow-up FA of F are reduced. Using Theorem 2.25 and combi-
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natorics as in [19] (or some other simplified combinatorics as in [9]) one comes
up with a (x1 )-reduced singularity at a nonsingular point of the exceptional di-
visor. But a (x1 )-reduced singularity on a nonsingular curve of fixed points
have (up to some changes of coordinates) a form as in Lemma 2.14, and thus
one gets parabolic curves for FA and then for F . r

The hidden part in the previous proof is the rôle of the residues. We do not
want to enter into details here, however, the residues play the same rôle as in
the theory of foliations. In particular, Camacho-Sad or Cano’s argument im-
plies that if F is tangential to a nonsingular curve S of fixed points, p�S is
such that Res (F , S ; p) �Q1N ]0( then there exists a parabolic curve for F
at p. This argument has been pushed forward by the author [9] and F. degli
Innocenti [23] who obtained the following result:

THEOREM 2.27 (Bracci, degli Innocenti. – Let F be a germ of holomorphic
diffeomorphism of C2 at O . Assume that the fixed points locus of F at O is a
locally irreducible curve S . If F is tangential to S and Res (F, S; O)�Q1N]0(

then there exists a parabolic curve for F at O .

The previous result is due to the author in case S is a cusp, while it was
proved by degli Innocenti in full generality. The proof is quite involved for one
has to follow the variation of the residue according to the process of desingu-
larization of S .

It should also be remarked that Brochero-Martinez [15] made a very de-
tailed study on dicritical points. In particular he proved

THEOREM 2.28 (Brochero-Martinez). – Let F be a germ of holomorphic dif-
feomorphism of C2 fixing O , tangent to the identity at O . Assume that O is
dicritical for F , let FA be the blow-up of F and let D be the exceptional divisor.
Then there exist two open sets U 1 , U 2 in CA2 such that U 1NU 2 is a neigh-
borhood of D0Sing (FA) and

1. for all p�U 1 the sequence F7k (p) converges to a point of D , as
kK1Q ,

2. for all p�U 2 the sequence F72k (p) converges to a point of D , as
kK1Q .

In particular Theorem 2.28 gives information also on the existence of
basins of attraction for F (and F 21) in the dicritical case. Also, in the same pa-
per [15] Brochero-Martinez gives a (semi-)formal classification of dicritical
germs.

In dimension greater than two it is presently unknown whether all germs
tangent to the identity have parabolic curves. Surprisingly enough, a similar
construction to the one presented by Gomez-Mont and Luengo [28] for giving
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an example of holomorphic foliation in C3 without separatrices, performed
in [5] by Abate and Tovena, does not produce the expected counterexample.
Indeed, if one calls robust the parabolic curves which survive blow-ups, the
construction made in [5] produces example of germs tangent to the identity in
C3 with no robust parabolic curves. Nonetheless such examples do have (non-
robust) parabolic curves.

We end up this survey by recalling a recent work by Suwa and the au-
thor [12] where it is proved the existence of parabolic curves for germs of holo-
morphic diffeomorphisms tangent to the identity at a singular point of a two
dimensional subvariety (under some condition on the type of singularity).
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