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Bollettino U. M. I.
(8) 7-B (2004), 519-528

Bifurcation of Free Vibrations
for Completely Resonant Wave Equations (*).

MASSIMILIANO BERTI - PHILIPPE BOLLE

Sunto. – Dimostriamo l’esistenza di soluzioni di piccola ampiezza, 2p/v-periodiche
nel tempo, per equazioni delle onde nonlineari completamente risonanti, per
frequenze v in un insieme di Cantor di misura positiva e per un insieme generico
di nonlinearità. La dimostrazione si basa su una opportuna decomposizione di
Lyapunov-Schmidt e su una variante dei teoremi di funzione implicita alla Nash-
Moser.

Summary. – We prove existence of small amplitude, 2p/v-periodic in time solutions of
completely resonant nonlinear wave equations with Dirichlet boundary conditions
for any frequency v belonging to a Cantor-like set of positive measure and for a ge-
neric set of nonlinearities. The proof relies on a suitable Lyapunov-Schmidt de-
composition and a variant of the Nash-Moser Implicit Function Theorem.

1. – Introduction and main result.

We outline in this note recent results obtained in [4] on the existence of
small amplitude, 2p/v-periodic in time solutions of the completely resonant
nonlinear wave equation

.
/
´

utt 2uxx 1 f (x , u) 40

u(t , 0 ) 4u(t , p) 40
(1)

where the nonlinearity f (x , u) 4ap (x) u p 1O(u p11 ) with pF2 is analytic
with respect to u for NuN small. More precisely, we assume

(H) There is rD0 such that ((x , u) � (0 , p)3 (2r , r), f (x , u) 4

!
k4p

Q

ak (x) u k , pF2, where ak �H 1 ( (0 , p), R) and !
k4p

Q

Vak VH 1 r k EQ

for any r� (0 , r).

(*) Supported by M.I.U.R. Variational Methods and Nonlinear Differential Equa-
tions.
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We look for periodic solutions of (1) with frequency v close to 1 in a set of posi-
tive measure.

Equation (1) is an infinite dimensional Hamiltonian system possessing an
elliptic equilibrium at u40 with linear frequencies of small oscillations v j 4 j ,
(j41, 2 , R satisfying infinitely many resonance relations. Any solution
v4 !

jF1
aj cos( jt1u j ) sin ( jx) of the linearized equation at u40,

.
/
´

utt 2uxx 40

u(t , 0 ) 4u(t , p) 40
(2)

is 2p-periodic in time. For such reason equation (1) is called a completely reso-
nant Hamiltonian PDE.

Existence of periodic solutions of finite dimensional Hamiltonian systems
close to a completely resonant elliptic equilibrium has been proved by Wein-
stein, Moser and Fadell-Rabinowitz. The proofs are based on the classical
Lyapunov-Schmidt decomposition which splits the problem in two equations:
the so called range equation, solved through the standard Implicit Function
Theorem, and the bifurcation equation solved via variational arguments.

For proving existence of small amplitude periodic solutions of completely
resonant Hamiltonian PDEs like (1) two main difficulties must be overcome:

(i) a «small denominators» problem which arises when solving the ran-
ge equation;

(ii) the presence of an infinite dimensional bifurcation equation: which
solutions v of the linearized equation (2) can be continued to solutions of the
nonlinear equation (1)?

The appearance of the small denominators problem (i) is easily explained:
the eigenvalues of the operator ¯tt 2¯xx in the space of functions u(t , x), 2p/v-
periodic in time and such that, say, u(t , . ) �H 1

0 (0 , p) for all t , are 2v 2 l 2 1 j 2 ,
l�Z , jF1. Therefore, for almost every v�R , the eigenvalues accumulate to
0. As a consequence, for most v , the inverse operator of ¯tt 2¯xx is unbounded
and the standard Implicit Function Theorem is not applicable.

The first existence results for small amplitude periodic solutions of (1) have
been obtained in [8] for the specific nonlinearity f (x , u) 4u 3 and periodic
boundary conditions in x , and in [1] for f (x , u) 4u 3 1O(u 4 ), imposing a
«strongly non-resonance» condition on the frequency v satisfied in a zero
measure set. For such v’s the spectrum of ¯tt 2¯xx does not accumulate to 0
and so the small divisor problem (i) is bypassed. The bifurcation equation (pro-
blem (ii)) is solved proving that, for f (x , u) 4u 3 , the 0th-order bifurcation
equation possesses non-degenerate periodic solutions.

In [2]-[3], for the same set of strongly non-resonant frequencies, existence
and multiplicity of periodic solutions has been proved for any nonlinearity
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f (u). The novelty of [2]-[3] was to solve the bifurcation equation via a variatio-
nal principle at fixed frequency which, jointly with min-max arguments, ena-
bles to find solutions of (1) as critical points of the Lagrangian action
functional.

Unlike [1]-[2]-[3], a new feature of the results we present in this Note is
that the set of frequencies v for which we prove existence of 2p/v-periodic in
time solutions of (1) has positive measure.

Existence of periodic solutions for a positive measure set of frequencies
has been proved in [5] in the case of periodic boundary conditions in x and for
the specific nonlinearity f (x , u) 4u 3 1 !

4 G jGd
aj (x) u j where the aj (x) are tri-

gonometric cosine polynomials in x. The nonlinear equation utt 2uxx 1u 3 40
with periodic boundary conditions possesses a continuum of small amplitude,
analytic and non-degenerate periodic solutions in the form of travelling waves
u(t , x) 4 dp0 (vt1x). With these properties at hand, the small divisors pro-
blem (i) is solved in [5] via a Nash-Moser Implicit function Theorem adapting
the estimates of Craig-Wayne [6].

Recently, existence of periodic solutions of (1) for frequencies v in a positi-
ve measure set has been proved in [7] using the Lindstedt series method for
odd analytic nonlinearities f (u) 4au 3 1O(u 5 ) with ac0. The need for the do-
minant term au 3 in the nonlinearity f relies, as in [1], in the way the infinite di-
mensional bifurcation equation is solved. The reason for which f (u) must be
odd is that the solutions are obtained as a sine-series in x , see the comments
before Theorem 1.1.

In [4] we present a general method to prove existence of periodic solutions
of the completely resonant wave equation (1) with Dirichlet boundary condi-
tions, for not only a positive measure set of frequencies v , but also for a gene-
ric nonlinearity f(x , u) satisfying (H) (we underline we do not require the odd-
ness assumption f (2x , 2u) 4 f (x , u)), see Theorem 1.1.

Let’s describe accurately our result. Normalizing the period to 2p , we look
for solutions u(t , x), 2p-periodic in time, of the equation

.
/
´

v 2 utt 2uxx 1 f (x , u) 40

u(t , 0 ) 4u(t , p) 40
(3)

in the real Hilbert space (which is actually a Banach algebra for 2sD1)

Xs , s »4mu(t , x) 4 !
l�Z

e ilt ul (x) Nul �H 1
0 ( (0 , p), C), ul(x) 4u2l (x) (l�Z ,

and VuVs , s
2 »4 !

l�Z
e 2sNlN (l 2s 11)Vul V

2
H 1 E1Qn .

For sD0 the space Xs , s is the space of all 2p-periodic in time functions
with values in H 1

0 ( (0 , p), R) which have a bounded analytic extension in the
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complex strip NIm tNEs with trace function on NIm tN4s belonging to
H s (T , H0

1 ( (0 , p), C) ).
The space of the solutions of the linear equation vtt 2vxx 40 that belong to

Xs , s is

V»4mv(t , x) 4 !
lF1

(e ilt ul 1e 2ilt ul) sin (lx) Nul �C

and VvVs , s
2 4 !

l�Z
e 2sNlN (l 2s 11) l 2 NulN

2 E1Qn .

Let e»4
v 2 21

2
. Instead of looking for solutions of (3) in a shrinking

neighborhood of 0 it is a convenient devise to perform the rescaling uKdu
with d»4NeN1/p21 , obtaining

.
/
´

v 2 utt 2uxx 1eg(d , x , u) 40

u(t , 0 ) 4u(t , p) 40

where

g(d , x , u) »4s *
f (x , du)

d p
4s *(ap (x) u p 1dap11 (x) u p11 1R)

with s * »4sign (e), namely s *41 if vF1 and s *421 if vE1. To fix the
ideas, we shall consider here periodic solutions of frequency vD1, so that
s *41 and v4k2d p21 11.

If we try to implement the usual Lyapunov-Schmidt reduction, i.e. to look
for solutions u4v1w with v�V and w�W»4V » , we are led to solve the bi-
furcation equation (sometimes called the (Q)-equation) and the range equation
(sometimes called the (P)-equation)

.
/
´

2Dv4P V g(d , x , v1w)

Lv w4eP W g(d , x , v1w)

(Q)

(P)
(4)

where

Dv»4vxx 1vtt , Lv »42v 2 ¯tt 1¯xx

and P V : Xs, sKV, P W : Xs, sKW denote the projectors respectively on V and W.
Since V is infinite dimensional a difficulty arises in the application of the

method of [6] in presence of small divisors: if v�VOXs 0 , s then the solution
w(d , v) of the range equation, obtained with any Nash-Moser iteration scheme
will have a lower regularity, e.g. w(d , v) �Xs 0 /2 , s . Therefore in solving next
the bifurcation equation for v�V , the best estimate we can obtain is v�VO
Xs 0 /2 , s12 , which makes the scheme incoherent. Moreover we have to ensure
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that the 0th-order bifurcation equation (1), i.e. the (Q)-equation for d40,

2Dv4P V (ap (x) v p )(5)

has solutions v�V which are analytic, a necessary property to initiate an ana-
lytic Nash-Moser scheme (in [6] this problem does not arise since, dealing with
nonresonant or partially resonant Hamiltonian PDEs like utt 2uxx 1

a1 (x) u4 f (x , u), the bifurcation equation is finite dimensional).
We overcome this difficulty thanks to a reduction to a finite dimensional

bifurcation equation (on a subspace of V of dimension N independent of v).
This reduction can be implemented, in spite of the complete resonance of
equation (1), thanks to the compactness of the operator (2D)21.

We introduce a decomposition V4V1 5V2 where

.
/
´

V1 »4mv�VNv(t , x) 4 !
l41

N

(e ilt ul 1e 2ilt ul) sin (lx), ul �Cn
V2 »4 mv�VNv(t , x) 4 !

lFN11
(e ilt ul 1e 2ilt ul) sin (lx), ul�Cn

Setting v»4v1 1v2 , with v1 �V1 , v2 �V2 , (4) is equivalent to

.
/
´

2Dv1 4P V1
g(d , x , v1 1v2 1w)

2Dv2 4P V2
g(d , x , v1 1v2 1w)

Lv w4eP W g(d , x , v1 1v2 1w)

(Q1 )

(Q2 )

(P)

(6)

where P Vi
: Xs , s KVi (i41, 2), denote the orthogonal projectors on Vi

(i41, 2).
Our strategy to find solutions of system (6) is the following. We solve first

(Step 1) the (Q2 )-equation obtaining v2 4v2 (d , v1 , w) �V2 OXs , s by a standard
Implicit Function Theorem provided we have chosen N large enough and s
small enough -depending on the nonlinearity f but independent of d.

Next (Step 2) we solve the (P)-equation obtaining w4w(d , v1 ) �WOXs/2 , s

by means of a Nash-Moser Implicit Function Theorem for (d , v1 ) belonging to
some Cantor-like set of parameters. A major role is played by the inversion of
the linearized operators. Our approach – outlined in the next section – is much
simpler than the ones usually employed and allows to deal nonlinearities
which do NOT satisfy the oddness assumption f (2x , 2u) 42f (x , u). For this
we develop u(t , Q) �H 1

0 (0 , p) in time-Fourier expansion only. Let us remark
that H 1

0 (0 , p) is the natural phase space to deal with Dirichlet boundary con-

(1) We assume for simplicity of exposition that the right hand side P V (ap (x) v p ) is
not identically equal to 0 in V. If not verified, the 0th-order non-trivial bifurcation equa-
tion will involve the higher order terms of the nonlinearity, see [2].
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ditions instead of the usually employed spaces

mu(x) 4 !
jF1

uj sin ( jx)N!
j

e 2aj j 2r NujN
2 E1Qn ,

which force the nonlinearity f to be odd. We hope that the applicability of this
technique can go far beyond the present results.

Finally (Step 3) we solve the finite dimensional (Q1 )-equation for a gene-
ric set of nonlinearities obtaining v1 4v1 (d) �V1 for a set of d’s of positive
measure.

In conclusion we prove:

THEOREM 1.1 ([4]). – Consider the completely resonant nonlinear wave
equation (1) where the nonlinearity f (x , u) 4ap (x)u p 1O(u p11 ), pF2, sati-
sfies assumption (H).

There exists an open and dense set Ap in H 1 ( (0 , p), R) such that, for all
ap � Ap , there is sD0 and a C Q-curve [0 , d 0 ) �dKu(d) �Xs , s with the follo-
wing properties:

l (i) There exists s *�]21, 1( and a Cantor set Cap
%[0, d 0) satisfying

lim
hK01

meas (Cap
O (0 , h) )

h
41(7)

such that, for all d� Cap
, u(d) is a 2p/v-periodic in time solution of (1) with

v4k2s * d p21 11;
l (ii) Vu(d)2du0 Vs , s 4O(d 2 ) for some u0 �V0]0(OXs , s where

uA(d)(t , x) 4u(d)(t/v , x).
The conclusions of the theorem hold true for any nonlinearity f (x , u) 4

a3 u 3 1 !
kF4

ak (x)u k , a3 c0, with s *4sign (a3 ).

2. – Sketch of the proof.

Step 1: solution of the (Q2 )-equation. The 0th-order bifurcation equation (5)
is the Euler-Lagrange equation of the functional F 0 : VKR

F 0 (v) 4
VvVH1

2

2
2s

V

ap (x)
v p11

p11
dxdt , V4 (0 , 2p)3 (0 , p) .(8)

Assume for definiteness there is v�V such that s
V

ap (x) v p11

p11
D0 (if the inte-

gral is E0 for some v we have to substitute 2ap to ap). Then F 0 possesses by
the Mountain-pass Theorem a non-trivial critical set K0»4]v�VNF 08 (v)40,
F 0 (v) 4c( which is compact for the H1-topology, see [2]. By a direct bootstrap
argument any solution v�K0 of (5) belongs to H k (V), (kF0 and therefore is
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C Q. In particular the Mountain-Pass solutions of (5) satisfy the a-priori esti-
mate sup

v�K0

VvV0, s11 ER for some 0 ERE1Q.

Solutions of the (Q2 )-equation are the fixed points of the nonlinear opera-
tor 8(d , v1 , w , Q) : V2 OXs , s KV2 OXs , s defined by 8(d , v1 , w , v2 ) »4

(2D)21 P V2
g(d , x , v11w1v2 ). Using the regularizing property of (2D)21 P 2

we can prove that 8 is a contraction and then solve the (Q2)-equation in the
space V2 OXs , s for N large enough and for 0 EsE s (N and s depend on R
but not on d).

LEMMA 2.1 (Solution of the (Q2)-equation). – There exist s D0, N�N1 ,
d 0 D0 such that, (0 EsE s, (Vv1 V0, s11 G2R , (VwVs , s G1, (NdNGd 0 , there
exists a unique v2 4v2 (d , w , v1 ) �Xs , s with Vv2 (d , w , v1 )Vs , s G1 which solves
the (Q2 )-equation. Moreover v2 (d , w , v1 ) �Xs , s12 .

Lemma 2.1 implies, in particular, that any solution v�K0 of equation (5) is
not only C Q but actually belongs to Xs , s and therefore is analytic in t (and hen-
ce in x).

Step 2: solution of the (P)-equation. By the previous step we are reduced
to solve the (P)-equation with v2 4v2 (d , v1 , w), namely

Lv w4eP W G(d , v1 , w)(9)

where G(d , v1 , w)(t , x) »4g(d , x , v1 (t , x)1w(t , x)1v2 (d , v1 , w)(t , x) ).
The solution w4w(d , v1 ) of the (P)-equation (9) is obtained by means of a

Nash-Moser Implicit Function Theorem for (d , v1 ) belonging to a Cantor-like
set of parameters.

Consider the orthogonal splitting W4W (p) 5W (p) » where

W (p) 4{w�WNw4 !
l42Lp

Lp

e ilt wl (x)}, W (p) »4 ]w�WNw4 !
NlNDLp

e ilt wl (x)(

and Lp 4L0 2p for some large L0 �N. We denote by Pp : WKW (p) , P »
p : WK

W (p) » the orthogonal projectors onto W (p) , W (p) ». Define s 0 »4 s, the «loss of
analyticity at step p» g p »4g 0 /(p 211) and s p114s p2g p , (pF0, with g 0D0
small enough, such that the «total loss of analyticity» !

pF0
g p4g 0 !

pF0
1/(p 211)G

s /2.

PROPOSITION 2.1 (Nash-Moser iteration scheme). – Let w0 40 and A0 »4

](d, v1)NNdNEd 0 , Vv1V0, s11G2R(. There exist e 0 , L0D0 such that (NeNEe 0,
there exists a sequence ]wp (pF0 , wp 4wp (d , v1 ) �W (p) , of solutions of

Lv wp 2ePp P W G(d , v1 , wp ) 40,(Pp)

defined for (d , v1 ) �Ap ’Ap21 ’R’A1 ’A0 . For (d , v1 ) �AQ »4OpF0 Ap ,
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wp (d , v1 ) totally converges in Xs /2 to a solution w(d , v1 ) of the (P)-equation
(9) with Vw(d , v1 )Vs /2 , s 4O(e).

Moreover it is possible to define w(d , v1 ) in a smooth way on the whole A0 :
there exists a function wA(d , v1 ) �C Q (A0 , W) and a Cantor-like set BQ%AQ

such that, if (d , v1 ) �BQ%AQ then wA(d , v1 ) solves the (P)-equation (9).

Of course, the above proposition does not mean very much if we do not spe-
cify AQ or BQ . We refer to (12) for the definiton of Ap and just say that the set
BQ is sufficiently large for our purpose.

The real core of the Nash-Moser convergence proof – and where the analy-
sis of the small divisors enters into play – is the proof of the invertibility of the
linearized operator

Lp (d , v1 , w)[h] »4Lv h2ePp P W Dw G(d , v1 , w)[h]

4Lv h2ePp P W (¯u g(d , x , v1 1w1v2 (d , v1 , w) )[h1¯w v2 (d , v1 , w)[h] ] ) ,

where w is the approximate solution obtained at a given stage of the Nash-Mo-
ser iteration. We do not follow the approach of [6] which is based on the
Fröhlich-Spencer techniques.

To invert Lp (d , v1 , w), we distinguish a «diagonal part» D. Let

.
`
/
`
´

a(t , x) »4¯u g(d , x , v1 (t , x)1w(t , x)1v2 (d , v1 , w)(t , x) )

a0 (x) »4 (1 /2p)s
0

2p

a(t , x) dt

a(t , x) »4a(t , x)2a0 (x).

We can write

Lp (d , v1 , w)[h] 4Dh2M1 h2M2 h ,

where D , M1 , M2 : W (p) KW (p) are the linear operators

.
/
´

Dh»4Lv h2ePp P W (a0 h)

M1 h»4ePp P W (ah)

M2 h»4ePp P W (a¯w v2 [h] ).

(10)

We next diagonalize the operator D using Sturm-Liouville spectral theory.
We find out that the eigenvalues of D are v 2 k 2 2l k , j , (NkNGLp , jF1,



BIFURCATION OF FREE VIBRATIONS ETC. 527

jck , and l k , j satisfies the asympotic expansion

l k , j4l k , j (d , v1 , w)4j 21eM(d , v1 , w)1Og eVa0 VH 1

j
h as jK1Q ,(11)

where M(d , v1 , w) »4 (1 /p) s
0

p

a0 (x) dx.

Assuming, for some gD0 and 1 EtE2, the Diophantine condition (first
order Melnikov condition)

(12) (d , v1 ) �Ap »4

{(d , v1 ) �Ap21NNvk2 jNF
g

(k1 j)t
, Nvk2 j2e

M(d , v1 , w)

2 j N F
g

(k1 j)t
,

(k�N , jF1 s.t. kc j ,
1

3NeN
Ek , jGLp}%Ap21 ,

all the eigenvalues of D are polynomially bounded away from 0 , since a k »4

min
jck , jF1

Nv 2 k 2 2l k , jNFg/k t21 , (k. Therefore D is invertible and D 21 has suf-

ficiently good estimates for the convergence of the Nash-Moser iteration.
It remains to prove that the perturbative operators M1 , M2 are small enough

to get the invertibility of the whole Lp . The smallness of M2 is just a conse-
quence of the regularizing property of v2 : Xs , s KXs , s12 stated in Lemma 2.1.
The smallness of M1 requires, on the contrary, an analysis of the «small divi-
sors» a k . For our method it is sufficient simply to prove that

a k a l Fcg 2 NeNt21 D0, (kc l with Nk2 lNG [max ]k , l(]22t/t .

We underline again that this approach works perfectly well for NOT odd non-
linearities f.

Step 3: solution of the (Q1 )-equation. Finally we have to solve the
equation

2Dv1 4P V1
G(d , v1 )(Q1)

where G(d , v1 )(t , x)»4g(d , x , v1 (t , x)1wA(d , v1 )(t , x)1v2 (d , v1 , wA(d , v1 ) )(t , x) )
and to ensure that there are solutions (d , v1 ) �BQ for d in a set of posi-
tive measure (recall that if (d , v1 ) �BQ%AQ , then wA(d , v1 ) solves the (P)-
equation (9)). Note that if v4 (112d p21 )1/2 belongs to the zero measure
set of «strongly non-resonant» frequencies used in [2]-[3] then (d , v1 ) �BQ ,
(v1 �V1 small enough.

The finite dimensional 0th-order bifurcation equation, i.e. the (Q1)-equation
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for d40,

2Dv1 4P V1
G(0 , v1 ) 4P V1

(ap (x)(v1 1v2 (0 , v1 , 0 ) )p ) ,

is the Euler-Lagrange equation of the functional F
A

0 : V1 KR where F
A

0 »4

F 0 (v1 1v2 (0 , v1 , 0 ) ) and F 0 : VKR is the functional defined in (8).
It can be proved that if ap belongs to an open and dense subset Ap of

H 1 ( (0 , p), R), then F
A

0 : V1 KR (or the functional that one obtains when sub-
stituting 2ap to ap ) possesses a non-trivial non-degenerate critical point
v1 �V1 and so, by the Implicit function Theorem, there exists a smooth curve
v1 (Q) : (2d 0 , d 0 )KV1 of solutions of the (Q1 )-equation with v1 (0)4v1 .

The smoothness of dKv1 (d) then implies that ](d , v1 (d) ); dD0( inter-
sects BQ in a set whose projection on the d coordinate is the Cantor set Cap

of
Theorem 1.1-(i), satisfying the measure estimate (7). Finally u(d) 4du0 1

O(d 2 ) where u0 »4 v1 1v2 (0 , v1 , 0 ) �V is a (non-degenerate, up to time tran-
slations) solution of the infinite dimensional bifurcation equation (5).
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