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Bollettino U. M. I.
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Almost Symplectic Structures and Harmonic Morphisms.

JEAN-MARIE BUREL

Sunto. – In questo articolo, introduciamo la nozione di applicazione armonica sim-
plettica fra varietà addomesticate e otteniamo qualche proprietà. Nel caso in cui le
varietà siano quasi hermitiane, otteniamo un nuovo metodo per costruire applica-
zioni armoniche con fibre minimali. In fine, presentiamo un esempio di tali appli-
cazioni fra spazi proiettivi.

Summary. – In this paper, we introduce the notion of symplectic harmonic maps be-
tween tamed manifolds and establish some properties. In the case where the mani-
folds are almost Hermitian manifolds, we obtain a new method to contruct har-
monic maps with minimal fibres. We finally present examples of such applications
between projectives spaces.

1. – Introduction.

The study of minimal submanifolds is an important question in differential
geometry. Useful tools for constructing such submanifolds are harmonic mor-
phisms which are solutions of an overdetermined system of partial differential
equations. More precisely, they are smooth maps f : (M m , g) K (N n , h) be-
tween Riemannian manifolds which preserve Laplace’s equation in the sense
that if f : U%NKR is a harmonic function with f21 (U) non-empty then
f i f : f21 (U) %MKR is a harmonic function. Equivalently, [6], [8], they have
been characterized as harmonic maps which are semi-conformal, where f se-
mi-conformal means that for any x�M (df(x) c0), the restriction of df(x) to
the orthogonal complement of ker df(x) in Tx M is conformal and surjective.
The conformal factor is called the dilation and denoted by l(x)(D0). We ex-
tend the function l over critical points by giving it the value 0. The semi-con-
formal property is equivalent to:

h(df(X), df(Y) ) 4l 2 g(X , Y)

for any horizontal vector fields X and Y . In [1], Baird and Eells gave a crucial
geometric characterisation of harmonic morphisms. Introducing the stress-
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tensor energy for harmonic maps,

Sf4ef g2f* h

where ef is the energy density, they establish that, if dim N42, a semi-confor-
mal map is harmonic and so a harmonic morphism if and only if the regular fi-
bres are minimal. If dim NF3, a harmonic morphism of dilation l has minimal
fibres if and only if it is horizontally homothetic i.e. gradH l 2 (x) 40 with
x� M 4M0Cf where gradH l 2 (x) denotes the orthogonal projection of
grad (l 2 (x) ) onto the horizontal space H 4 (ker df)» .

So we see that, in different situations, looking for a harmonic morphism is
equivalent to finding a semi-conformal map with minimal fibres. It has been
observed that the property of a map being a harmonic morphism is invariant
under certain biconformal changes in the metric (cf. [9], [10]). A certain flexi-
bility of the structure appears and so we can imagine that there exists a less
rigid structure with respect to which it is possible to define a harmonic mor-
phism. We therefore introduce the notion of symplectic harmonic map: this
notion only needs an almost symplectic form v , i.e. a non-degenerate 2-form
not necessarily closed on a 2m-dimensional manifold, and an almost complex
structure J . The interesting fact of this definition is that it is the missing ele-
ment for a holomorphic map between almost Hermitian manifolds to have min-
imal fibres. We recall that a map f : (M 2m , J M ) K (N 2n , J N ) between almost
complex manifolds is called holomorphic when J N

i df4df i J M . This ap-
proach in terms of almost symplectic structure and almost complex structure
allows us to construct new families of harmonic maps with minimal fibres be-
tween almost Hermitian manifolds.

2. – Preliminaries.

Throughout this paper, we assume that all our objects such as manifolds,
maps, etc., are smooth. We use the notation G(E) to denote the space of smooth
sections of a bundle EKM . The natural framework for these ideas is the one
of tamed manifolds, terminology due to Gromov [7], i.e. a smooth 2m-dimen-
sional manifold M endowed with an almost symplectic 2-form v and an almost
complex structure J such that

v(X , JX) D0 (Xg0 �G(TM) .

The property that v(X , JX) D0 can be interpreted geometrically by saying
that the orientation of the manifold given by v coincides with that given by J .
If (M 2m , v , J) is a tamed manifold, then (g , J) is an almost Hermitian struc-
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ture where

g(X , Y) 4
1

2
(v(X , JY)1v(Y , JX)), X , Y�G(TM)(1)

and the associated 2-form V is defined by

V(X , Y) 4g(JX , Y), X , Y�G(TM) .(2)

The structure J is tamed by v if and only if the metric defined by (1) is positive
definite. We first note.

LEMMA 1. – If (M 2m , v , J) is a tamed manifold and V denotes the associ-
ated 2-form defined by (2), then the following are equivalent:

i) v4V ;

ii) v is compatible with J;

iii) v(X , Y) 4g(JX , Y), X , Y�G(TM);

iv) g(X , Y) 4v(X , JY), X , Y�G(TM).

In this case, the manifold M is said to be almost Hermitian.

3. – Symplectic harmonicity.

In this section we introduce the new notion of symplectic harmonicity. We
reformulate the minimality of the fibres of a holomorphic map in terms of dif-
ferential form. Throughout this section, we shall assume that mFn .

DEFINITION 1. – Let (M 2m , v M , J) be a tamed manifold and let
f : (M 2m , v M , J) K (N 2n , J N ) be a holomorphic map, then f is (m2n)-sym-
plectic harmonic along a regular fibre F4f21(y), y�N if, at any point x of F ,

d(v M )m2n (e1 , R , e(m2n) , J M e1 , R , J M e(m2n) , . ) 40(3)

where (v M )m2n denotes the (m2n)-fold exterior product of V and
]ei , J M ei (i41, R , m2n are tangent to the fibres.

When f is (m2n)-symplectic harmonic along any regular fibre, we will
call f a symplectic harmonic map.

Note that the definition is independent of the choice of the frame. Consider
]u1 , R , um , J M u1 , R , J M um (, for i41, R , m

.
/
´

ui

J M ui

4Bij ej 1Cij J M ej

42Cij ej 1Bij J M ej

(4)
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where the coefficients Bij , Cij satisfy:

.
/
´

Bik Bil 1Cik Cil

Bik Cil 2Bil Cik

4d kl

40 .
(5)

Substituing in (3) and applying (5), we deduce the independence by linearity of
the forms.

As an example we have that any holomorphic map from an almost Kähler
manifold to an almost complex manifold, is symplectic harmonic.

PROPOSITION 1. – Any holomorphic map from a (1 , 2 )-symplectic tamed
manifold (M 2m , v , J) to an almost complex manifold (N 2m22 , J N ), is sym-
plectic harmonic.

PROOF. – Let (M 2m , v , J) be a (1 , 2 )-symplectic tamed manifold and let f
be a holomorphic map. A manifold is (1 , 2 )-symplectic if (˜X J)Y1

(˜JX J) JY40 for all X , Y�G(TM) or equivalently dv(A , B , C) 40 for any
A�T 1, 0 M 2m , B , C�T 0, 1 M 2m where T C M 2m 4T 1, 0 M 2m 5T 0, 1 M 2m is the
decomposition of the complexified tangent bundle into 6i-eigenspaces. Let
A4X2 iJX , B4Y1 iJY , C4Z1 iJZ . Then the real and imaginary parts of
dv(A , B , C) 40 vanish if and only if

(6) dv(X , Y , Z)2dv(X , JY , JZ)1dv(JX , Y , JZ)1dv(JX , JY , Z) 40 .

Interchanging X and Y in (6) and combining the two, we have that
dv(A , B , C) 40 is equivalent to dv(X , JY , Z) 4dv(JX , Y , Z).

Setting Y4X in dv(X , JY , Z) 4dv(JX , Y , Z) yields dv(X , JX , Z) 40.
On the other hand if dv(X , JX , Z) 40 is satisfied, replacing X by X1Y then
X by X2Y , and combining the two equations so obtained, we deduce that
dv(X , JY , Z) 4dv(JX , Y , Z). Thus we obtain the equivalence between M be-
ing (1 , 2 )-symplectic and dv(X , JX , . ) 40. Let ]e1 , J M e1 ( be a local frame
for the vertical space V 4 ker df , then we have dv(e1 , J M e1 ) 40 i.e. f is a
symplectic harmonic map. r

EXAMPLE 1. – Let P be a holomorphic polynomial

P : C2

(z , w)

K

O

C

P(z , w)

The vector field Z42Pw ¯z 1Pz ¯w is in the kernel of dP , and so is Z. Let
F : U%R2KR and let u4NzN2, v4NwN2. Define the non-degenerate 2-form v by

v4F(NzN2 , NwN2 )(dzRdz1dwRdw) 4F(u , v)(dzRdz1dwRdw) .

The polynomial P is symplectic harmonic with respect to v if and only if
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dv(Z , Z, . ) 40 i.e.

.
/
´

Fu zPz1Fv wPw 40

Fu zPz 1Fv wPw 40

system which has a solution given by F(u , v) 4a(u2v) with a a function of u
and v only. r

When M and N are both almost Hermitian, the notion of symplectic har-
monicity can be expressed as follows.

THEOREM 1. – Let f : (M 2m , V M , J M ) K (N 2n , V N , J N ) be a holomorphic
map between almost Hermitian manifolds, then f is symplectic harmonic if
and only if the regular fibres of f are minimal.

PROOF. – Denote by V M 4v M (cf. Lemma 1) the associated 2-form on M .
We can locally choose ]ei , J M ei (i41, R , m2n as a local orthonormal frame
which spans the vertical space. Denote by ]u i , J M u i ( be the dual frame.

We have d(V M )m2n 4 (m2n)(V M )m2n21 RdV M ; locally V M is character-
ized as the form

VM 4 !
i41

m2n

u i RJ M u i 1A(7)

where A is a 2-form which vanishes on V 4 ker df . We denote by ˜M the Levi-
Civita connection on M. Since u i ( .) 4g(ei , . ), we deduce that du i (ei , X) 42

g(ei , [ei , X] ) i.e. du i (ei , X) 4g(X , ˜M
ei

ei ). For any X�G(H 4 V» ), since V is in-
tegrable, we have

d(V M )m2n (e1 , R , J M em2n , X) 4

4

4

6(m2n) ! !
i41

m2n

dV M (ei , J M ei , X)

6(m2n) ! !
i41

m2n

du i (ei , X)1dJ M u i (J M ei , X)

6(m2n) ! !
i41

m2n

g M (X , ˜M
ei

ei 1˜M
J M ei

J M ei ) .

But the right-hand-side represents 2(m2n)-times the mean curvature of the
fibres of f in the direction of X , thus the result follows. r

The above proposition shows that the notion of symplectic harmonic maps
is closely related to the one of p-harmonic maps. A p-harmonic map is a natu-
ral generalisation of the one of harmonic (or 2-harmonic) map. We remind that
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a p-harmonic map is a critical point of the p-energy functionnal i.e.

Ep (f) 4
1

p
s

M

NdfNp vg .

We refer to [2] and the references therein for details. We deduce

THEOREM 2. – Let f : (M 2m , V M , J M ) K (N 2n , V N , J N ) be a semi-confor-
mal holomorphic submersion between almost Hermitian manifolds. Then the
following relations are equivalent

(i) f is (m2n)-symplectic harmonic,

(ii) f is 2n-harmonic

(iii) f has minimal fibres.

Applying Lemma 1.2 in [2], we have that a symplectic harmonic submersion
between almost Hermitian manifolds, there exists a metric in the conformal
class of the associated metric with respect to which the map can be rendered
harmonic.

PROOF. – The equivalence between (ii) and (iii) is a direct consequence of
Theorem 2.5 in [2]. Moreover from Theorem 1, f being symplectic harmonic, is
equivalent to the minimality of the fibres, and the result follows. r

Just as the rendering problem for harmonic maps is interesting – that is,
given a smooth map, when can we find metrics with respect to which it is ei-
ther harmonic or at least homotopic to a harmonic map? [5] – similarly we can
pose an analogeous question concerning symplectic harmonic maps.

Given a holomorphic map from an almost complex manifold to a tamed
manifold, when can we find an almost symplectic form v such that J is
tamed by v , with respect to which the map is symplectic harmonic?

The following result shows that this can always be done locally.

PROPOSITION 2. – Let f : (M 2m , J M ) K (N 2n , v N , J N ) be a holomorphic
submersion from an almost complex manifold to a tamed manifold. At any
point x�M , there exists a neighbourhood U%M of x and a non-degenerate 2-
form v defined on U such that (U , v , J M ) is a tamed manifold and such that
the map fNU is symplectic harmonic.

PROOF. – Let x�M and let U%M be an open neighbourhood of x .
We define locally, a system of coordinates (x1 , R , x2m ) such that
]¯x1 , R , ¯x2(m2n) ( generates the vertical space Vy with y�U . This is possible
since f is a submersion and is therefore locally equivalent to a projection of
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the form (W%N) W3FKW . Now define a 2-form v on U by

v4dx1 Rdx2 1R1dx2(m2n)21 Rdx2(m2n) 1f* v N .

This 2-form v is clearly non-degenerate. Furthermore, we can suppose the co-
ordinates suitably chosen, so that, on a possibly smaller neighbourhood, v
tames J M . Given a frame ]v1 , R , v2(m2n) ( of Vx , we may assume that ¯xj (x) 4

vj with j41, R , 2(m2n). At the point x , we can now choose a basis of the
form:

]v1 , J M v1 , R , v(m2n) , J M v(m2n) ( .

Thus at x , J M is tamed by v , by continuity it must also be tamed in a neigh-
bourhood of x . With this choice of v , the map fNU is (m2n)-symplectic
harmonic. r

4. – Symplectic minimal submanifold.

In this section, we extend the notion to immersions and introduce the one
of symplectic minimal submanifolds. The following lemma is elementary.

LEMMA 2. – Any holomorphically immersed submanifold (M 2m , J M ) %K
f

(N 2n , v N , J N ) of a tamed manifold is also a tamed manifold with respect to
the induced structure

v M 4f* v N and J M 4J N NTM .

From now on, we assume that any holomorphically immersed submani-
fold of a tamed manifold is endowed with this induced structure. By analogy
with the case for Riemannian manifolds, it is natural to introduce the
following.

DEFINITION 2. – A holomorphically immersed submanifold (M 2m , J M ) %K
f

(N 2n , v N , J N ) of a tamed manifold is called symplectic minimal if

d(v N )m (df(e1 ), J N df(e1 ), R , df(em ), J N df(em ), . ) 40(8)

with ]ei , J M ei (i41, R , m a local frame of TM .

A first example is that any regular pseudo-holomorphic map ([7]) in a sym-
plectic tamed manifold (i.e. dvN 40) is a symplectic minimal surface.

The notions of symplectic minimal submanifolds and symplectic harmonic
maps are related as follows.
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THEOREM 3. – Let f : (M 2m , v M , J M ) K (N 2n , v N , J N ) (mFn) be a holo-
morphic map what is submersive almost everywhere between tamed mani-
folds, f is symplectic harmonic if and only if f has regular symplectic mini-
mal fibres.

PROOF. – Let F4f21 (y), y�N be a regular fibre, we have dim F4

2(m2n) 42k . Since f is holomorphic, we can define an almost complex struc-
ture J F 4J M NTF . Let ]ei , J M ei (i41, R , k be a local frame tangent to F . The
canonical inclusion i : F %KM is a holomorphic immersion. From now on, we
identify F with its image in M . If f is symplectic harmonic along F , we
have

d(v M )k (e1 , J F e1 , R , ek , J F ek , . ) 40 .

This is equivalent to

d(v M )k (di(e1 ), J M di(e1 ), R , di(ek ), J M di(ek ), . ) 40 .

This relation means that F is symplectic harmonic for i . The converse is
obvious. r

When M is an almost Hermitian manifold, we have

THEOREM 4. – An isometrically and holomorphically immersed submani-
fold of an almost Hermitian manifold is symplectic minimal if and only if it
is minimal.

PROOF. – Let f : (M 2m , V M , J M ) %K(N 2n , V N , J N ) be a holomorphic iso-
metric immersion between almost Hermitian manifolds with associated 2-
forms V M and V N . The structure (g M , J M ) is induced by the structure
(g N , J N ) where g N (X , Y) 4V N (X , J N Y). We identify M with its image by f .
Denote by ˜N (resp. ˜M ) the Levi-Civita connection on N (resp. on M). Let
]ei , J M ei (i41, R , m be a local orthonormal frame of TM . We complete by
2(n2m) linearly independent vector fields ]ej , J N ej : j4m11, R , n(. For
any X�G(TM), since X is a linear combinaison of (ek , Jek ), k41, R , m , we
have

d(V N )m (e1 , J M e1 , R , em , J M em , X) 40 .

Denote by TM » the normal bundle of M with respect to g N and ˜N the Levi-
Civita connection on N . We have d(V N )m 4m(V N )m21 RdV N . Locally we can
write V N in the form:

V N 4 !
i41

m

u i RJ M u i 1A
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where A is a 2-form which vanishes on TM and u i ( .) 4g N (ei , . ). For any X�
G(TM » ), a similar computation as in the proof of Theorem 1, gives

d(V N )m (e1 , R , J M em , X) 46m! g N (X , t(f) )

where t(f) represents the tension field of f . It follows that the submanifold M
is symplectic minimal if and only if it is minimal. r

5. – Symplectic harmonic maps to a surface.

According to the geometric characterisation of Baird and Eells [1], A case
of particular interest is when the dimension of the codomain equals to 2. The
notion of symplectic harmonicity greatly simplifies the problem of finding har-
monic morphisms reducing the second order equation of harmonicity to two
first order conditions related respectively to the almost symplectic structure
and the almost complex structure. From now on, we assume that dimN42. In
the case where the domain is an almost Hermitian manifold, we have a new
method to construct harmonic morphisms to surfaces.

THEOREM 5. – Let f be a holomorphic map from an almost Hermitian
manifold (M 2m , V , J) to a surface, f is symplectic harmonic if and only if f
is harmonic. Moreover, in this case, the map f is a harmonic mor-
phism.

PROOF. – From Theorem 3, the map f is symplectic harmonic if and only if
the regular fibres are minimal. The geometric interpretation of harmonic mor-
phisms [1] implies that f is harmonic if and only if the regular fibres are mini-
mal. It follows that f is symplectic harmonic if and only if it is harmonic. The
rank of df is, at a point x�M , 0 or 2. Let x be a point of M with rank df(x) 4

2. If X� ker df(x) then df i(JX) 4J N
i df(X) 40, so JX is in ker df(x) and

ker df can be identified with Cm21 . So we obtain that (ker df(x) )»
`C and

dfN(ker df(x) )» commutes with J and is homothetic. In particular f is horizontal-
ly weakly conformal. Since f is harmonic and semi-conformal, f is a harmonic
morphism. r

Applying our method, we can contruct new examples of harmonic maps
with minimal fibres. In [4], we prove that the standard conformal class of S4

contains a family of metrics gk , l parametrized by a pair of positive integers
(k , l) such that for each pair, there exists a non-constant harmonic morphism
from (S4 , gk , l ) to the Riemann sphere S2 . When M4CP 2 , there is no globally
defined harmonic morphism from CP 2 to CP 1 when CP 2 is endowed with the
Fubini-Study metric [11]. We prove.



JEAN-MARIE BUREL502

THEOREM 6. – There exist non-constant harmonic morphisms with respect
to a family of metrics ]gk , l ( conformally equivalent to the Fubini-Study met-
ric parametrized by pairs of positive integers (k , l) from CP 2 0CP 1 to
CP 1 .

PROOF. – The complex projective space CP 2 can be parametrized in the
form S3 3 [0 , p/2 ] so that each point has for homogeneous coordinate
[ cos s , sin sy] in C3 where y�S3 %C2 and s� [0 , p/2 ]. The Fubini-Study metric
on CP 2 is given by

ds 2 1g s
S3

where g s
S3 is the metric on S3 obtained by rescaling the Euclidean metric on the

fibre direction of the Hopf fibration with factor sin2 s cos2 s and on its orthogo-
nal complement by factor sin2 s . If y4 ( cos te ia , sin te ib ) with t� [0 , p/2 ],
a , b� [0 , 2p[, the Fubini-Study metric on CP 2 is given by

ds 2 1sin2 s]cos2 s( cos2 tda2sin2 tdb)2 1cos2 t sin2 t(da1db)2 1dt 2 (

i.e. gCP 2 4ds 2 1sin2 s cos2 sg V 1sin2 sg H . We construct a semi-conformal map
F k , l from CP 2 to CP 1 from the composition of two semi-conformal maps, f
from CP 2 to S3 4S0 ˜S2 and f k , l from S3 4S1 ˜S1 to S2 . To make possible
such a composition we will define a new system of coordinates on an open
dense subset of CP 2 , to identify the joint of S0 ˜S2 with the joint S1 ˜S1 . Con-
sider f : CP 2 KS3 defined by

f( [ cos s , sin sy] ) 4 ( cos a(s), sin a(s) H(y) )(9)

where H is the Hopf map: S3 KS2 and a a smooth function of s chosen such
that the map f is semi-conformal i.e. a(s) 42 arctan (A tan2 s/2 ). Without loss
of generality, we may take A41. Critical set occurs when s40. We now make
a change of coordinates u(s , t), c(s , t) setting

cos a(s)1 i sin a(s) cos 2 t4cos u(s , t) e ic(s , t)

sin a(s) sin 2 t4sin u(s , t) .

Let b : [0 , p/2 ] K [0 , p/2 ] be a smooth function of u such that b(0) 40 and
b(p/2 ) 4p/2 . In the new system of coordinates, we define the map f k , l : S3 K

S2 by

f k , l ( cos ue ic , sin ue i(a1b) ) 4 ( cos b(u), sin b(u) e i(kc1 l(a1b) ) )
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where b(u) is chosen such that f k , l is semi-conformal i.e. (cf. [3] Example
4.10)

b(u) 42 arctang l2p

l1p
hl/2g k1p

k2p
hk/2

with p(u) 4kk 2 sin2 u1 l 2 cos2 u .
When k4 l41, the map f k , l is the Hopf map. The map F k , l is a globally

defined continuous map from CP 2 to CP 1 with smooth and semi-conformal
with respect to the Fubini-Study metric. We now render the map F k , l har-
monic, so a harmonic morphism with respect to a conformal metric to gCP 2 . On
M 4 4CP 2 0(]s40, p/2(N ]u40( ) , we define the following frame

Y1 4

Y2 4

X1 4

X2 4

2

sin 2s
(¯a 2¯b )

2 sin a

sin skk 2 sin2 u1 l 2 cos2 u
((k( sin2 t¯a 1cos2 t¯b )2 l¯c )

2 sin a

sin s
¯u

4 sin a

sin s sin 2ukk 2 sin2 u1 l 2 cos2 u
(k sin2 u1 l cos 2 u( sin2 t¯a 1cos2 t¯b ) ) .

The map F k , l determines an almost complex structure J defined as follows: J
preserves V, is orthogonal with respect to the standard conformal class of
CP 2 , and induces the natural orientation on CP 2 . The almost complex struc-
ture J is given by JY1 4Y2 and JX1 4X2 . We then introduce a non-degenerate
2-form v defined by

v4 f 2 (u , c)]2 sin a cos s[l cos2 udcR ( cos2 tda2sin2 tdb)1

k sin2 udaRdb]1sin u cos u(kduRc1 lduR (da1db) )(

where f is an unknown function to determine. Note that sin a , cos t , sin t de-
pend on u , c .

Since the form v and the almost complex structure J are compatible, M 4 is
an almost Hermitian manifold. The map F kl is symplectic harmonic (so a har-
monic morphism) if and only if

dv(Y1 , JY1 , . ) 40 .
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The last condition gives the following system

2
f 8c

f
42

( sin a cos s)8c
sin a cos s

2
f 8u

f
42

l 2 ( sin a cos s cos2 u)8u 1k 2 ( sin a cos s sin2 u)8u
sin a cos s(l 2 cos2 u1k 2 sin2 u)

which has a solution given by

f 2 (u , c) 4
1

cos s sin a(k 2 sin2 u1 l 2 cos2 u)
.

The associated metric is thus expressed by

g4
2

cos sk(k 2 sin2 2 t1 l 2 cos2 2 t)( sin4 s) /41 l 2 cos2 s
gCP 2 .

This metric is singular when s4p/2 . The value s4p/2 corresponds to the fo-
cal manifold ][0 , y]Ny�S3 (: copy of CP 1 . Thus we obtain a family of harmon-
ic morphisms with respect to g from CP 2 0CP 1 to CP 1 . r

In higher dimensions, the technique still applies. We give a simplest proof
of Theorem 4.11 in [3].

THEOREM 7. – There exists a family of harmonic morphisms from S3 3

S3 0(T 2 NT 2 ) to S2 parametrized by quadruples of non-zeros integers
(k , l , m , n).

REMARK 1. – The 2-form v cannot be extended over all S3 3S3 , the notion
of symplectic harmonicity is defined almost everywhere. However, the asso-
ciated metric g defined by (1) is smooth.

PROOF. – Consider the manifold S3 3S3 parametrized in the form

(( cos se ia , sin se ib ), (cos te ic , sin te id ) ) ,

where s , t� [0 , p/2 ] and a , b , c , d� [0 , 2p[. Consider the map f : S3 3S3 K

S2 defined by:

f((cos se ia, sin se ib), (cos te ic, sin te id))4(cos a(s, t), sin a(s, t) e i(ka1lb1mc1nd)) ,

where a(s , t) is chosen such that f is semi-conformal i.e. (cf. [3] example
4.10)

1

sin2 a
(a

.
s
2 1a

.
t
2 )4

k 2

cos2 s
1

l 2

sin2 s
1

m 2

cos2 t
1

n 2

sin2 t
.
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Complementary critical and singular sets occur on the union of tori (s4 t4

0)N (s4 t4p/2 ) and (s40, t4p/2 )N (s4p/2 , t40) respectively.
Define a frame on M 6 4S3 3S3 0(]s40, p/2(N ]t40, p/2()

Y1 4
1

oa
.

s
2 1a

.
t
2

(a
.

t ¯s 2a
.

s ¯t )

Y2 4
1

kl 2 cos2 s1k 2 sin2 s
(l¯a 2k¯b )

Y3 4
1

kn 2 cos2 t1m 2 sin2 t
(n¯c 2m¯d )

Y4 4
1

B
[ (n 2 cos2 t1m 2 sin2 t)(k sin2 s¯a 1 l cos2 s¯b )2

(l 2 cos2 s1k 2 sin2 s)(m sin2 t¯c 1ncos2 t¯d ]

X1 4
1

oa
.

s
2 1a

.
t
2

(a
.

s ¯s 1a
.

t ¯t )

X2 4
1

A
k sin t cos t

sin s cos s
(k sin2 s¯a 1 l cos2 s¯b )1

sin s cos s

sin t cos t
(m sin2 t¯c 1n cos2 t¯d )l

A4kcos2 s sin2 s(n 2 cos2 t1m 2 sin2 t)1cos2 t sin2 t(l 2 cos2 s1k 2 sin2 s) and B4

Akl 2 cos2 s1k 2 sin2 s kn 2 cos2 t1m 2 sin2 t .
The map f determines an almost complex structure J defined by JY1 4Y3 ,

JY24Y4 and JX14X2 . We then introduce a non-degenerate 2-form v on M 6 .

v4 f 2 (s , t){ (a
.

t ds2a
.

s dt)R (n cos2 tdc2m sin2 tdd)

oa
.

s
2 1a

.
t
2kn 2 cos2 t1m 2 sin2 t

1

A

C
(l 2 cos2 s1k 2 sin2 s) daRdb2

A

C
(l cos2 sda2k sin2 sdb)R (mdc1ndd)1

sin 2 t sin 2s

4Aoa
.

s
2 1a

.
t
2

(a
.

s ds1a
.

t dt)R (kda1 ldb1mdc1ndd)}
where C42(l 2 cos2 s1k 2 sin2 s) kn 2 cos2 t1m 2 sin2 t and f is an unknown
function to determine.
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Since v and J are compatible, M 6 is an almost Hermitian manifold. The
map f is symplectic harmonic so a harmonic morphism with respect to the as-
sociated metric (1) provided

d(vRv)(Y1 , JY1 , Y3 , JY3 , . ) 40 .(10)

Let h 4 (s , t) 4 f 4 (s , t) A

2oa
.

s
2 1a

.
t
2(l 2 cos2 s1k 2 sin2 s)(n 2 cos2 t1m 2 sin2 t)

.

Condition (10) is satisfied if and only if

[h 4 (n 2 cos2 t1m 2 sin2 t)(l 2 cos2 s1k 2 sin2 s) a
.

t ]t81

[h 4 (n 2 cos2 t1m 2 sin2 t)(l 2 cos2 s1k 2 sin2 s) a
.

s ]s840 .

A solution is thus given by

h 4 (s , t) 4
sin s sin t cos s cos t

sin a(s)[ (n 2 cos2 t1m 2 sin2 t)(l 2 cos2 s1k 2 sin2 s) ]3/2
.

Applying the semi-conformal equation, we deduce that

f 2 (s , t) 4
k2

(n 2 cos2 t1m 2 sin2 t)1/4 (l 2 cos2 s1k 2 sin2 s)1/4
.

The associated metric takes the form

g4
k2

(n 2 cos2 t1m 2 sin2 t)1/4 (l 2 cos2 s1k 2 sin2 s)1/4
gS33S3 r
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