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Bollettino U. M. 1.
(8) 7-B (2004), 483-492

Metrizability of the Unit Ball of the Dual
of a Quasi-Normed Cone.

L. M. GARCIA-RAFFI - S. ROMAGUERA - E. A. SANCHEZ-PEREZ - O. VALERO (¥)

Sunto. — Dimostriamo teoremi di metrizzabilita e di quasi metrizzabilita per alcune
topologie di tipo debole® sulla palla unitaria del duale di un cono quasi normato
separabile. Cio ¢ ottenuto grazie a un’opportuna versione del teorema di Alaoglu,
anch’essa dimostrata nel presente lavoro.

Summary. — We obtain theorems of metrization and quasi-metrization for several
topologies of weak™ type on the unit ball of the dual of any separable quasi-normed
cone. This is done with the help of an appropriate version of the Alaoglu theorem
which is also obtained here.

1. — Introduction and preliminaries.

Throughout this paper the letters R* and IN will denote the set of nonneg-
ative real numbers and the set of positive integers numbers, respectively. Our
main references for quasi-pseudo-metric spaces are [3] and [8].

Recall that a monoid is a semigroup (X, +) with neutral element 0.

According to [6], a cone (on R") is a triple (X, +, -) such that (X, +)is an
Abelian monoid, and - is a function from R* X X to X such that for all x, y e X
and 7, seR": (1) r(s-x) = (rs)-ax; (i) - (x+y) = (r-x)+ (ry); (i) (r+s)-
x=(rx)+ (sx); (v) 1-x =2x.

A cone (X, +, -)is called cancellative if for all ¢, y, ze X, 2z + x =z + y im-
plies x =y.

Obviously, every linear space (X, +, -) can be considered as a cancellative
cone when we restrict the operation - to R* x X.

A quasi-norm on a cone (X, +, -) is a function ¢ : X — R™* such that for all
x,yeX and reR*:

(i) x =0 if and only if there is —x e X and q(x) = q(—x) =0; (i) q(r-x) =
rq(x); (i) g(x +y) < q(®) + q(y).

(*) The authors acknowledge the support of the Spanish Ministry of Science and Te-
chnology, Plan Nacional I+ D+1, and FEDER, under grant BFM2003-02302.
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If the quasi-norm ¢ satisfies: (') q(x¢) =0 if and only if x =0, then q is
called a norm on the cone (X, +, ).

Let us recall that a quasi-pseudo-metric on a set X is a nonnegative real-
valued function d on X X X such that for all x, y, ze X: () d(x, ) =0; (i)
d(x, z) <d(x, y) +dy, z).

In our context, by a quasi-metric on X we mean a quasi-pseudo-metric d on
X that satisfies the following condition: d(x, y) = d(y, ) =0 if and only if
x=1y.

We will also consider extended quasi-(pseudo-)metrics. They satisfy the
three above axioms, except that we allow d(x, y) = + .

Each extended quasi-pseudo-metric d on a set X induces a topology z(d) on
X which has as a base the family of open d-balls {B;(«x, r): x e X, r > 0}, where
By(x,r)={yeX: dx,y) <r} for all xeX and r>0.

Observe that if d is an extended quasi-metric, then 7(d) is a 7 topology.

The following well-known example will be useful later on. For each x, y e
R let w(x, y) = (y — ) \V 0. Then u is clearly a quasi-metric on R. Its restric-
tion to R will be also denoted by u.

A (n extended) quasi-(pseudo-)metric space is a pair (X, d) such that X is a
set and d is a (n extended) quasi-(pseudo-)metric on X.

In this paper we prove an analogue to the celebrated Alaoglu theorem for
topologies of weak* type defined on the (positive) dual of a quasi-normed cone,
and derive theorems of metrization and quasi-metrization for these topologies
when the quasi-normed cone is separable. These results extend important the-
orems on metrizablity of weak™® topologies for separable normed linear spaces
(compare Chapter ITA of [13]).

It seems interesting to point out that quasi-normed cones and other relat-
ed «nonsymmetric» structures from topological algebra and functional analy-
sis, have been successfully applied, in the last years, to several problems in
theoretical computer science and approximation theory, respectively (see Sec-
tions 11 and 12 of [8], and also [1], [2], [4], [6], [10], [11], [12], etc.).

2. — Generating extended quasi-metrics from quasi-norms on cones.

If q is a quasi-norm on a cone (X, +, -), then we can construct in a natural
way a topology on X, for which the collection of sets of the form x + {yeX:
q(y) <e}, e>0, is a basis of neighborhoods of x, for all xeX.

Next we show that this topology can be induced by a subinvariant extended
quasi-pseudo-metric, where, similarly to [7], an extended quasi-metric d on a
cone (X, +,-) is said to be subinvariant if for each x, y,z€X and >0,
d(x+z,y+z)<dx,y) and d(rx, ry) = rd(x, y).

Given a cone (X, +,-), for each xeX we define x+X={x+y:yeX}.
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PROPOSITION 1. — Let q be a quasi-norm on a cone (X, +, -). Then the func-
tion e, defined on X X X by

e,(x, y) =inf{g(a): y=x+a} if yex + X,

e,(x,y) =+ if yexr+X,
18 a subinvariant extended quasi-pseudo-metric on X.

Furthermore for each xeX,r>0 and >0, rB, (v, &) =rv+ {yeX:
q(y) <re}, and the translations with respect to + and - are ©(e,)-open.

PRrOOF. — For each xeX we obviously have e,(x, x) = ¢(0) = 0.

Next we show that for all x, y, zeX, e¢,(x, 2) <e,(x, y) +¢,(y, 2).

Note that it suffices to consider only the case that yex + X and z ey + X.
Choose an arbitrary ¢ > 0. Then, there exist a, be X such that y=x+a, z =
y+0b, qa) <ey (x, y)+ e and q(b) <e,(y, z) +e. Consequently z=x+a+0,
and thus

e,(x, 2) S qla+b) <qla)+qb) <e (x,y) +e,y,z) +2e.

We conclude that ¢, is an extended quasi-pseudo-metric on X.

Now we show that e, is subinvariant.

Let v,y,zeX. If yex+X, e,(x, y) = + ©. Otherwise, for each aeX
such that y=x+a we have y+z=w+z2+a, so ¢(x+z,y+2) sqa)
Therefore

e,(x+z,y+tz)<inf{gla):y=x+a} =¢,(x,y).

On the other hand, it is easy to check that, for each x, y e X and r >0,
eq(rx, ry) = re,(x, y). We conclude that e, is subinvariant.

Finally note that for each x € X and » > 0, ¢,(0, x) = q(x), so for each ¢ >0,
we have Beq(O, e)={xeX: q(x) <e} and TBeq(O, €) =Beq(0, re). It immedi-
ately follows that for each x e X and each ¢ >0

rB, (x, &) =re + B, (0, re),
and thus the translations with respect to + and - are z(e,)-open. ®

EXAMPLE 1. - Let ¢ : R* = R* defined by ¢(x) = x for all x e R*. Clearly ¢
is a (quasi-)norm on the cone R* with e, y) =y —xifw<y,and ¢, (x, y) =
+ o, otherwise. So e, is an extended quasi-metric on R™ that induces the Sor-
genfrey topology on R*.

REMARK 1. — Note that if ¢ is a norm on a linear space (X, +, -), then the
(extended) metric e, of the above theorem is the classical metric on X generat-
ed by q, ie. e,(x, y) =q(y —x) for all x, yeX.

In the light of the preceding facts we suggest the following notion.
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DEFINITION 1. — A quasi-normed cone is a pair (X, ¢) such that X is a cone
and q is a quasi-norm on X such that ¢, is a (n extended) quasi-metric on X. In
the case that g is a norm we will say that (X, q) is a normed cone.

Note that for the norm ¢ of Example 1, (R*, ¢) is a normed cone. Actually,
it is not hard to see that if X is a cancellative cone, then for any quasi-norm ¢
on X, ¢, is a (n extended) quasi-metric, so (X, ¢) is a quasi-normed cone.

In connection with Proposition 1 and Example 1 above, some results for
quasi-normed monoids may be found in [9].

3. — The dual space of a quasi-normed cone.

A mapping from a quasi-normed cone (X, q) to a topological space (Y, 1)
will be called continuous if it is continuous from (X, z(e,)) to (Y, 7).
Given a quasi-normed cone (X, q) let

X*={f:(X,q—R",u): fis linear and continuous}.

Obviously, X* is a cone for the usual pointwise operations. Note that
f: X—R" is in X* if and only if it is a linear and upper semicontinuous non-
negative real-valued function on (X, q).

The next result is essentially known. For the sake of completeness we give
its easy proof.

PROPOSITION 2. — Let (X, q) be a quasi-normed cone and let f : X—R* be
linear. Then fe X* if and only if there is M > 0 such that f(x) < Mq(x) for all
reX.

PRrOOF. — Suppose that fe X*. Then there is 6 >0 such that f(B, (0, 9)) c
[0, 1[. Put M =2/0. Fix x e X. If q(x) = 0, then f(x) = 0 (indeed, if f(x) > 0, we
have q(x/f(x)) =0 but f(x/f(x)) =1, a contradiction). If q(x) >0, then
x/Mq(x) eBeq(O, 0) and thus f(x/Mq(x)) <1. We conclude that f(x) < Mq(x)
for all xeX.

Conversely, if e,(x, x,) =0, there is a sequence (a,),.~ in X such that
x,=x+a, for all nelN and q¢(a,)—0. Since f(x,) =f(x)+ f(a,) <f(x)+
Mq(a,,) for all n e N, it follows that u(f(«x), f(x,)) —0, so fis continuous from
X, 1(e))) to (R™, u), ie. feX*. m

PropPoSITION 3. — Let (X, q) be a quasi-normed cone. For each fe X* set
q*(f) =sup {f(x): qlx) <1}.

Then (X*, q*) is a quasi-normed cone.
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ProoF. — First observe that, by Proposition 2, there is M > 0 such that
q*(f) <M for all fe X*. So q* is well-defined. Furthermore ¢ *(0) =0, and if
fe X* satisfies that —fe X*, then f= 0. Finally, it is clear that for each f, g e
X*and re R* we have ¢*(af) = aqg*(f) and ¢*(f+¢) < q¢*(f) + ¢*(g). Con-
sequently ¢ * is a quasi-norm on X *. (Note also that ¢* is a norm on X * when-
ever q is a norm on X.)

By Proposition 1 e,« is an extended quasi-pseudo-metric on X *. It remains
to show that e,« is actually an extended quasi-metric. Let f, ge X™ be such
that e,«(f, g) = e,+(g, f) = 0. Then there exist two sequences (f, )y e, (gu)nen
in X*suchthat g =f+f,f=9+9., ¢*(f,) <1/mand ¢g*(g,) <1/nforallne
N. So f, () <1/n and g, (x) <1/n whenever g(x) <1. Choose an arbitrary
point x € X. If q(x) <1 we have g(x) =f(x) + f,(x) <f(x) + 1/n for all nelN,
and thus g(x) < f(«). Similarly, we show that f(x) < g(«). If g(x) > 1, the above
argument shows that f(x/q(x)) = g(a/q(x)), so f(x) = g(x). Therefore f=g. The
proof is complete. =

The quasi-normed cone (X*, ¢*) will be called the positive dual quasi-
normed cone of (X, q), or simply the dual cone of (X, q).

4. — Weak topologies and the Alaoglu theorem.

We start this section with the definitions of the weak* topologies which will
be used to obtain our version of Alaoglu’s theorem.

DEFINITION 2. — We define the weak™ topology for X* as the one that has
as a basis of neighborhoods of each feX* the subsets of the form
Ve o, 2, (), Wwhere ne N, uy, ..., x,, are points of X, ¢ is a positive real num-
ber and

Ve,xl,u.,xn(f) = {gEX*: |g(961) _f(xl) | <& ..., |g(mn) _f(xn) | < 8}‘

Note that, as in the classical case of the dual of a normed linear space, the
weak™® topology coincides with the topology of pointwise convergence on X*.

DEFINITION 3. — We define the weak™ positive topology on X* as the one
that has as a basis of neighborhoods of each fe X* the subsets of the form
Veta e, (f), where ne N, a4, ..., x,, are points of X, ¢ is a positive real num-
ber and

V&’J,rxl,..‘,xn,(f) = {QEX*: g(xl) _f(xl) <& ..., g(xn) _f(xn) < 8} .

DEFINITION 4. — We define the weak™ negative topology on X* as the one
that has as a basis of neighborhoods of each fe X* the subsets of the form
Ve e 2, (f), Wwhere ne N, xy, ..., x,, are points of X, ¢ is a positive real num-



488 L. M. GARCIA-RAFFI - S. ROMAGUERA - E. A. SANCHEZ-PEREZ - 0. VALERO

ber and
Ve:‘vl,,xn(f) = {gEX*f(xl) _g(xl) <é& ... )f(xn) _g(xn) < 8}-

The weak™ topology, the weak™ positive topology and the weak* negative
topology on X*, will be denoted by 7 yeu+, Twearr aNd Tyeqx: , respectively. The
following result is an immediate consequence of the above definitions.

PRrROPOSITION 4. — Let (X, q) be a quasi-normed cone. Then T e V
T weakr = Tweak* 010 X *.

PROPOSITION 5. — Let (X, q) be a quasi-normed cone. Then 7o (resp.
Tweak ) 18 the coarsest topology on X* that makes upper (resp. lower) semi-
continuous the functionals x:X*—R™, defined by x(f):=f(x) for all
reX.

ProoF. — First let us show that every functional defined on X* by an ele-
ment ¥ € X, is upper semicontinuous for 7., . Indeed, given r >0, consider
the open set [0, ) in (R™, u). Let fex ([0, 7). Put e = » — f(x). It is clear
that «(V.7,(f)) c[0, r), and hence the functional is upper semicontinuous. On
the other hand, let 7 be a topology on X * that makes upper semicontinuous the
functional 2(f): = f(x). Thus « ~*([0, 7)) e 7 for all > 0. Since for each fe X *,
xeXand e >0, we have fex "1([0, f(x) + £)) cV.r.(f), it follows that T weal 18
the coarsest topology that makes upper semicontinuous the functionals
2(f):=f(x) for all x e X. The parenthetical result is proved similarly. =

Combining Propositions 4 and 5 we immediately deduce the following.

COROLLARY. — Let (X, q) be a quasi-normed cone. Then T e+ 1S the coars-
est topology on X* that makes continuous the functionals x : X*—R™, de-
fined by x(f): =f(x) for all xeX.

Let (X, q@) be a quasi-normed cone. Denote by By« the unit ball in the
quasi-normed cone (X*, ¢*), i.e. Bxys= {feX*: ¢*(f) <1}.

The next result provides an extension of the celebrated Alaoglu theorem to
our context. (A generalization of Alaoglu’s theorem to asymmetric normed lin-
ear spaces was obtained in [5]. Since each asymmetric normed linear space can
be considered as a quasi-normed cone, our result generalizes the correspond-
ing result of [5] to the case of linear and upper semicontinuous nonnegative re-
al-valued functions.)

THEOREM 1. — Let (X, q) be a quasi-normed cone. Then By« is compact in
(er ) Tweak*)'
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PrOOF. — Let x € X and fe By-. If q¢(x) =0, then f(x) = 0 by Proposition 2.
If g(x) > 0, then f(x/q(x)) < q*(f) by Proposition 3. Since ¢ *(f) <1, we de-
duce that f(x) < q(x). Therefore f(x) € [0, g(x)] for all xe X and fe By.

Now, consider the product space H =1Il,.x[0, g(x)] endowed with the
product topology. Identify each function fe By: with its range (f(x)),.xe€
H.

Clearly, the restriction of the product topology to the subset of H,
{(f(®))yex: fe Bx+}, coincides with the restriction of 7 ey to it.

Since, by the Tychonoff theorem, the product space H endowed with the
product topology is compact, it will be suffices to prove that {(f(x)),cx: fe
Byx+} is a closed subset of H. To this end, fix «, y € X. Let us define the func-
tion ¥, ,: H—>R" by ¥, ,(f) =f(x) + f(y) — f(x +y) for all feH.

This function is obviously continuous for the product topology, since its
definition only depends on two elements of X.

On the other hand, fix e R* and x € X. Define the function @, ,: H—>R"
by @, .(f) =af(x) — f(ax) for all fe H.

Clearly @, . is also continuous for the product topology.

Then, the set A defined as

A= (x’gqu/;}y({O})) n ( n

. L({0})

RT,xeX

is closed in H, since it is the intersection of a family of closed subsets. More-
over, A is clearly the representation of the unit ball By: via the range
(f(x)),<x of each function f. Therefore By: is compact in (X*, T yee). W

5. — Metrizability and quasi-metrizability of the unit ball.

We say that a quasi-normed cone (X, q) is separable if (X, t(e,)) is a sepa-
rable topological space.

Let us recall that a topological space (X, 7) is sub(quasi-)metrizable pro-
vided that there is a (quasi-)metric d on X such that z(d) cr.

If d is a quasi-metric on a set X, then the function d ~! defined on X X X by
d 1(x, y) =d(y, x), is also a quasi-metric on X called the conjugate of d (see
[3]). Moreover, the function d® defined on X X X by d*(x, y) =d(x, y) V
d (x, y), is, obviously, a metric on X.

Our next result shows that if (X, q) is a separable quasi-normed cone, then
(X™, T yeaxs ) is subquasi-metrizable via a quasi-metric d such that the topology
7(d 1) is weaker than 7.y-. We also prove that this quasi-metric induces
Tyweak: ON By« and its conjugate induces 7 e on By«, and thus (By«, Tyeax+) is
metrizable via the metric d°.
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THEOREM 2. — Let (X, q) be a separable quasi-normed cone. Then,
there is a quasi-metric d on X* such that:

(1) T(d) g‘[weakﬁ and T(d _1) C T yweak: ON X,

2) 7(d) = T weak?; and T(d _1) = Tyeakr O BX*'

ProoF. — Let A = {x,: ne N} be a (countable) subset of X that is dense in
(X, q). Define a nonnegative real-valued function d on X* X X* by

d(f, ) = 22*”[«9(%)—f(xn»vow\l].

n=

We shall show that d is a quasi-metric on X * such that 7(d) is weaker than
Tyearr and 7(d 7') is weaker than 7, on X*.

Clearly d(f, f) =0 for all fe X* and d satisfies the triangle inequality.
Now let f, g € X * such that d(f, g) =d(g, f) =0. Then f(x,) = g(x,) for all n e
N. Choose an arbitrary point x € X and an ¢ > 0. Since f and g are continuous
functions from (X, ¢) to (R", %) and A is dense in (X, ¢), there exist 6>0 and
x, € A such that e (x, x,) <9 and f(x,) — f(x) < &2 and g(x,) — g(x) < &/2. Let
a,€X be such that x, =2+ a, and g(a,) <d. Then f(x,) = f(x) + f(a,) and
g(x,) = g(x) + g(a,), so fla,) < &2 and g(a,) < &/2. Since f(x) + f(a,) = g(x) +
g(a,), we deduce that f(x) < g(x) + /2 and g(x) < f(x) + /2. Therefore f(x) =
g(x). We conclude that f=g, and thus d is a quasi-metric on X*.

Next, suppose that (f;); .4 is a net in X* that converges to fe X * with re-
spect to Tyearr . Then, for each x, e A, f;(x,) —f(x,) in (R™, u) which clearly
implies that d(f, f;) —0. Consequently, the topology 7(d) is weaker than
Tyeakr 0N X™, 80 (X, 70 ) is subquasi-metrizable. Similarly, we prove that
7(d ~1) is weaker than 7 .- on X*.

Thus, statement (1) is proved. (Note that, in particular, 7(d) C 7 yey+ and
7(d ™) C Tyyear ON Bye.)

In order to prove (2) let (f,),<x be a sequence in By such that d(f, f,,) =0,
where fe Byx:. We shall show that (f,),.~ clusters to f with respect to
Tweak’i .

Indeed, from our version of the Alaoglu theorem, the sequence (f;,),cn
clusters to some g € By+, with respect to 7 yeu+. Since by (1), ©(d*) C T year ON
X *, it follows that (f,,), < also clusters to g with respect to the topology 7(d®).
Let (f,, )m <~ be a subsequence of (f,), <~ such that d*(g, f, ) —0. By the tri-
angle inequality d(f, g) =0, and thus g(x,) < f(x,) for all nelN.

Now fix x € X and let ¢ > 0. Then, there exists m,e N such that |f, (x)—
9(x) | < &/2 for all m = m,. On the other hand, since A is dense in (X, ¢), there
exist 0 >0 and x, €A such that e (x, x;) <0, f(x,) — f(x) < &2 and g(x,) —
g(x) < ¢&/2. Let a;, € X such that &, = x + a;, and ¢(a;,) < d. Since f and ¢ are lin-
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ear functions, we deduce that f(a;) < #/2 and g(a;) < /2. Then
g(x) < g(@) + glay) = glae) < fy,) = fla) + flay,) < flx) +&/2.
Hence
fo, (@) —f®) <f, (©) —glx)+e2<e,

for all m = m,. We conclude that (f,, ),, .~ converges to f with respect to 7 e -
Consequently (Byx+, Tyeas ) is quasi-metrizable via the quasi-metric d. Similar-
ly we show that 7(d ') = T eue+ On By-. This concludes the proof. m

From the above result we deduce the following metrization theorem.

THEOREM 3. — Let (X, q) be a separable quasi-normed cone. Then there is a
quasi-metric d on X* such that 7(d*) CTyear 01 X*, and 7(d*) = T yeqex ON
By:. So (Bx+, Tyear) 1S metrizable.
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