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Metrizability of the Unit Ball of the Dual
of a Quasi-Normed Cone.

L. M. GARCÍA-RAFFI - S. ROMAGUERA - E. A. SÁNCHEZ-PÉREZ - O. VALERO (*)

Sunto. – Dimostriamo teoremi di metrizzabilità e di quasi metrizzabilità per alcune
topologie di tipo debole* sulla palla unitaria del duale di un cono quasi normato
separabile. Ciò è ottenuto grazie a un’opportuna versione del teorema di Alaoglu,
anch’essa dimostrata nel presente lavoro.

Summary. – We obtain theorems of metrization and quasi-metrization for several
topologies of weak* type on the unit ball of the dual of any separable quasi-normed
cone. This is done with the help of an appropriate version of the Alaoglu theorem
which is also obtained here.

1. – Introduction and preliminaries.

Throughout this paper the letters R1 and N will denote the set of nonneg-
ative real numbers and the set of positive integers numbers, respectively. Our
main references for quasi-pseudo-metric spaces are [3] and [8].

Recall that a monoid is a semigroup (X , 1) with neutral element 0.
According to [6], a cone (on R1 ) is a triple (X , 1 , Q) such that (X , 1) is an

Abelian monoid, and Q is a function from R13X to X such that for all x , y�X
and r , s�R1 : (i) r Q (s Qx) 4 (rs) Qx; (ii) r Q (x1y) 4 (r Qx)1 (r Qy); (iii) (r1s) Q
x4 (r Qx)1 (s Qx); (iv) 1 Qx4x .

A cone (X , 1 , Q) is called cancellative if for all x , y , z�X, z1x4z1y im-
plies x4y.

Obviously, every linear space (X , 1 , Q) can be considered as a cancellative
cone when we restrict the operation Q to R13X .

A quasi-norm on a cone (X , 1 , Q) is a function q : XKR1 such that for all
x , y�X and r�R1 :

(i) x40 if and only if there is 2x�X and q(x) 4q(2x) 40; (ii) q(r Qx) 4

rq(x); (iii) q(x1y) Gq(x)1q(y).

(*) The authors acknowledge the support of the Spanish Ministry of Science and Te-
chnology, Plan Nacional I1D1I, and FEDER, under grant BFM2003-02302.
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If the quasi-norm q satisfies: (i8) q(x) 40 if and only if x40, then q is
called a norm on the cone (X , 1 , Q).

Let us recall that a quasi-pseudo-metric on a set X is a nonnegative real-
valued function d on X3X such that for all x , y , z�X : (i) d(x , x) 40; (ii)
d(x , z) Gd(x , y)1d(y , z).

In our context, by a quasi-metric on X we mean a quasi-pseudo-metric d on
X that satisfies the following condition: d(x , y) 4d(y , x) 40 if and only if
x4y .

We will also consider extended quasi-(pseudo-)metrics. They satisfy the
three above axioms, except that we allow d(x , y) 41Q .

Each extended quasi-pseudo-metric d on a set X induces a topology t(d) on
X which has as a base the family of open d-balls ]Bd (x , r) : x�X , rD0(, where
Bd (x , r) 4 ]y�X : d(x , y) Er( for all x�X and rD0.

Observe that if d is an extended quasi-metric, then t(d) is a T0 topology.
The following well-known example will be useful later on. For each x , y�

R let u(x , y) 4 (y2x)S0. Then u is clearly a quasi-metric on R . Its restric-
tion to R1 will be also denoted by u .

A (n extended) quasi-(pseudo-)metric space is a pair (X , d) such that X is a
set and d is a (n extended) quasi-(pseudo-)metric on X .

In this paper we prove an analogue to the celebrated Alaoglu theorem for
topologies of weak* type defined on the (positive) dual of a quasi-normed cone,
and derive theorems of metrization and quasi-metrization for these topologies
when the quasi-normed cone is separable. These results extend important the-
orems on metrizablity of weak* topologies for separable normed linear spaces
(compare Chapter IIA of [13]).

It seems interesting to point out that quasi-normed cones and other relat-
ed «nonsymmetric» structures from topological algebra and functional analy-
sis, have been successfully applied, in the last years, to several problems in
theoretical computer science and approximation theory, respectively (see Sec-
tions 11 and 12 of [8], and also [1], [2], [4], [6], [10], [11], [12], etc.).

2. – Generating extended quasi-metrics from quasi-norms on cones.

If q is a quasi-norm on a cone (X , 1 , Q), then we can construct in a natural
way a topology on X , for which the collection of sets of the form x1 ]y�X :
q(y) Ee(, eD0, is a basis of neighborhoods of x , for all x�X .

Next we show that this topology can be induced by a subinvariant extended
quasi-pseudo-metric, where, similarly to [7], an extended quasi-metric d on a
cone (X , 1 , Q) is said to be subinvariant if for each x , y , z�X and rD0,
d(x1z , y1z) Gd(x , y) and d(rx , ry) 4rd(x , y).

Given a cone (X , 1 , Q), for each x�X we define x1X4]x1y : y�X(.
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PROPOSITION 1. – Let q be a quasi-norm on a cone (X , 1 , Q). Then the func-
tion eq defined on X3X by

eq (x , y) 4 inf ]q(a) : y4x1a( if y�x1X ,
eq (x , y) 41Q if y�x1X ,

is a subinvariant extended quasi-pseudo-metric on X .
Furthermore for each x�X , rD0 and eD0, rBeq

(x , e) 4rx1 ]y�X :
q(y) Ere(, and the translations with respect to 1 and Q are t(eq )-open.

PROOF. – For each x�X we obviously have eq (x , x) 4q(0) 40.
Next we show that for all x , y , z�X , eq (x , z) Geq (x , y)1eq (y , z).
Note that it suffices to consider only the case that y�x1X and z�y1X .

Choose an arbitrary eD0. Then, there exist a , b�X such that y4x1a , z4

y1b , q(a) Eeq (x , y)1e and q(b) Eeq (y , z)1e . Consequently z4x1a1b ,
and thus

eq (x , z) Gq(a1b) Gq(a)1q(b) Eeq (x , y)1eq (y , z)12e .

We conclude that eq is an extended quasi-pseudo-metric on X .
Now we show that eq is subinvariant.
Let x , y , z�X . If y�x1X , eq (x , y) 41Q . Otherwise, for each a�X

such that y4x1a we have y1z4x1z1a , so eq (x1z , y1z) Gq(a).
Therefore

eq (x1z , y1z) G inf ]q(a) : y4x1a( 4eq (x , y) .

On the other hand, it is easy to check that, for each x , y�X and rD0,
eq (rx , ry) 4req (x , y). We conclude that eq is subinvariant.

Finally note that for each x�X and rD0, eq (0 , x) 4q(x), so for each eD0,
we have Beq

(0 , e) 4 ]x�X : q(x) Ee( and rBeq
(0 , e) 4Beq

(0 , re). It immedi-
ately follows that for each x�X and each eD0

rBeq
(x , e) 4rx1Beq

(0 , re) ,

and thus the translations with respect to 1 and Q are t(eq )-open. r

EXAMPLE 1. – Let q : R1KR1 defined by q(x) 4x for all x�R1. Clearly q
is a (quasi-)norm on the cone R1 with eq (x , y) 4y2x if xGy , and eq (x , y) 4

1Q , otherwise. So eq is an extended quasi-metric on R1 that induces the Sor-
genfrey topology on R1.

REMARK 1. – Note that if q is a norm on a linear space (X , 1 , Q), then the
(extended) metric eq of the above theorem is the classical metric on X generat-
ed by q , i.e. eq (x , y) 4q(y2x) for all x , y�X .

In the light of the preceding facts we suggest the following notion.
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DEFINITION 1. – A quasi-normed cone is a pair (X , q) such that X is a cone
and q is a quasi-norm on X such that eq is a (n extended) quasi-metric on X . In
the case that q is a norm we will say that (X , q) is a normed cone.

Note that for the norm q of Example 1, (R1 , q) is a normed cone. Actually,
it is not hard to see that if X is a cancellative cone, then for any quasi-norm q
on X , eq is a (n extended) quasi-metric, so (X , q) is a quasi-normed cone.

In connection with Proposition 1 and Example 1 above, some results for
quasi-normed monoids may be found in [9].

3. – The dual space of a quasi-normed cone.

A mapping from a quasi-normed cone (X , q) to a topological space (Y , t)
will be called continuous if it is continuous from (X , t(eq ) ) to (Y , t).

Given a quasi-normed cone (X , q) let

X *4 ] f : (X , q) K (R1 , u) : f is linear and continuous( .

Obviously, X * is a cone for the usual pointwise operations. Note that
f : XKR1 is in X * if and only if it is a linear and upper semicontinuous non-
negative real-valued function on (X , q).

The next result is essentially known. For the sake of completeness we give
its easy proof.

PROPOSITION 2. – Let (X , q) be a quasi-normed cone and let f : XKR1 be
linear. Then f�X * if and only if there is MD0 such that f (x) GMq(x) for all
x�X .

PROOF. – Suppose that f�X *. Then there is dD0 such that f (Beq
(0 , d) ) ’

[0 , 1[. Put M42/d . Fix x�X. If q(x) 40, then f (x) 40 (indeed, if f (x) D0, we
have q(x/f (x) ) 40 but f (x/f (x) ) 41, a contradiction). If q(x) D0, then
x/Mq(x) �Beq

(0 , d) and thus f (x/Mq(x) ) E1. We conclude that f (x) GMq(x)
for all x�X .

Conversely, if eq (x , xn ) K0, there is a sequence (an )n�N in X such that
xn 4x1an for all n�N and q(an ) K0. Since f (xn ) 4 f (x)1 f (an ) G f (x)1

Mq(an ) for all n�N, it follows that u(f (x), f (xn ) ) K0, so f is continuous from
(X , t(eq ) ) to (R1 , u), i.e. f�X *. r

PROPOSITION 3. – Let (X , q) be a quasi-normed cone. For each f�X * set

q *( f ) 4 sup ] f (x) : q(x) G1( .

Then (X *, q *) is a quasi-normed cone.
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PROOF. – First observe that, by Proposition 2, there is MD0 such that
q *( f ) GM for all f�X *. So q * is well-defined. Furthermore q *(0) 40, and if
f�X * satisfies that 2f�X *, then ff0. Finally, it is clear that for each f , g�
X * and r�R1 we have q *(af ) 4aq *( f ) and q *( f1g) Gq *( f )1q *( g). Con-
sequently q * is a quasi-norm on X *. (Note also that q * is a norm on X * when-
ever q is a norm on X . )

By Proposition 1 eq * is an extended quasi-pseudo-metric on X *. It remains
to show that eq * is actually an extended quasi-metric. Let f , g�X * be such
that eq * ( f , g) 4eq * (g , f ) 40. Then there exist two sequences ( fn )n�N , ( gn )n�N

in X * such that g4 f1 fn, f4g1gn , q *( fn ) E1/n and q *( gn ) E1/n for all n�
N . So fn (x) E1/n and gn (x) E1/n whenever q(x) G1. Choose an arbitrary
point x�X . If q(x) G1 we have g(x) 4 f (x)1 fn (x) E f (x)11/n for all n�N ,
and thus g(x) G f (x). Similarly, we show that f (x) Gg(x). If q(x) D1, the above
argument shows that f (x/q(x) ) 4g(x/q(x) ), so f (x) 4g(x). Therefore f4g . The
proof is complete. r

The quasi-normed cone (X *, q *) will be called the positive dual quasi-
normed cone of (X , q), or simply the dual cone of (X , q).

4. – Weak topologies and the Alaoglu theorem.

We start this section with the definitions of the weak* topologies which will
be used to obtain our version of Alaoglu’s theorem.

DEFINITION 2. – We define the weak* topology for X * as the one that has
as a basis of neighborhoods of each f�X * the subsets of the form
Ve , x1 , R , xn

( f ), where n�N, x1 , R , xn , are points of X , e is a positive real num-
ber and

Ve , x1 , R , xn
( f ) 4 ] g�X *: Ng(x1 )2 f (x1 )NEe , R , Ng(xn )2 f (xn )NEe( .

Note that, as in the classical case of the dual of a normed linear space, the
weak* topology coincides with the topology of pointwise convergence on X *.

DEFINITION 3. – We define the weak* positive topology on X * as the one
that has as a basis of neighborhoods of each f�X * the subsets of the form
Ve , x1 , R , xn

1 ( f ), where n�N, x1 , R , xn , are points of X , e is a positive real num-
ber and

Ve , x1 , R , xn
1 ( f ) 4 ] g�X *: g(x1 )2 f (x1 ) Ee , R , g(xn )2 f (xn ) Ee( .

DEFINITION 4. – We define the weak* negative topology on X * as the one
that has as a basis of neighborhoods of each f�X * the subsets of the form
Ve , x1 , R , xn

2 ( f ), where n�N, x1 , R , xn , are points of X , e is a positive real num-
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ber and

Ve , x1 , R , xn
2 ( f ) 4 ] g�X *: f (x1 )2g(x1 ) Ee , R , f (xn )2g(xn ) Ee( .

The weak* topology, the weak* positive topology and the weak* negative
topology on X *, will be denoted by t weak* , t weak1* and t weak2* , respectively. The
following result is an immediate consequence of the above definitions.

PROPOSITION 4. – Let (X , q) be a quasi-normed cone. Then t weak1* S
t weak2* 4t weak* on X *.

PROPOSITION 5. – Let (X , q) be a quasi-normed cone. Then t weak1* (resp.
t weak2* ) is the coarsest topology on X * that makes upper (resp. lower) semi-
continuous the functionals x : X *KR1 , defined by x( f ):4 f (x) for all
x�X.

PROOF. – First let us show that every functional defined on X * by an ele-
ment x�X , is upper semicontinuous for t weak1* . Indeed, given rD0, consider
the open set [0 , r) in (R1 , u). Let f�x 21 ( [0 , r) ). Put e4r2 f (x). It is clear
that x(Ve , x

1 ( f ) ) ’ [0 , r), and hence the functional is upper semicontinuous. On
the other hand, let t be a topology on X * that makes upper semicontinuous the
functional x( f ):4 f (x). Thus x 21 ( [0 , r) ) �t for all rD0. Since for each f�X *,
x�X and eD0, we have f�x 21 ( [0 , f (x)1e) ) ’Ve , x

1 ( f ), it follows that t weak1* is
the coarsest topology that makes upper semicontinuous the functionals
x( f ):4 f (x) for all x�X. The parenthetical result is proved similarly. r

Combining Propositions 4 and 5 we immediately deduce the following.

COROLLARY. – Let (X , q) be a quasi-normed cone. Then t weak* is the coars-
est topology on X * that makes continuous the functionals x : X *KR1 , de-
fined by x( f ):4 f (x) for all x�X.

Let (X , q) be a quasi-normed cone. Denote by BX * the unit ball in the
quasi-normed cone (X *, q *), i.e. BX * 4 ] f�X *: q *( f ) G1(.

The next result provides an extension of the celebrated Alaoglu theorem to
our context. (A generalization of Alaoglu’s theorem to asymmetric normed lin-
ear spaces was obtained in [5]. Since each asymmetric normed linear space can
be considered as a quasi-normed cone, our result generalizes the correspond-
ing result of [5] to the case of linear and upper semicontinuous nonnegative re-
al-valued functions.)

THEOREM 1. – Let (X , q) be a quasi-normed cone. Then BX * is compact in
(X *, t weak* ).
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PROOF. – Let x�X and f�BX * . If q(x) 40, then f (x) 40 by Proposition 2.
If q(x) D0, then f (x/q(x) ) Gq *( f ) by Proposition 3. Since q *( f ) G1, we de-
duce that f (x) Gq(x). Therefore f (x) � [0 , q(x) ] for all x�X and f�BX * .

Now, consider the product space H4Px�X [0 , q(x) ] endowed with the
product topology. Identify each function f�BX * with its range ( f (x) )x�X �
H.

Clearly, the restriction of the product topology to the subset of H ,
]( f (x) )x�X : f�BX * (, coincides with the restriction of t weak* to it.

Since, by the Tychonoff theorem, the product space H endowed with the
product topology is compact, it will be suffices to prove that ]( f (x) )x�X : f�
BX * ( is a closed subset of H . To this end, fix x , y�X. Let us define the func-
tion C x , y : HKR1 by C x , y ( f ) 4 f (x)1 f (y)2 f (x1y) for all f�H .

This function is obviously continuous for the product topology, since its
definition only depends on two elements of X.

On the other hand, fix a�R1 and x�X. Define the function F a , x : HKR1

by F a , x ( f ) 4af (x)2 f (ax) for all f�H .
Clearly F a , x is also continuous for the product topology.
Then, the set A defined as

A4 g 1
x , y�X

C x , y
21 (]0()hOg 1

a�R1 , x�X
F a , x

21 (]0()h
is closed in H, since it is the intersection of a family of closed subsets. More-
over, A is clearly the representation of the unit ball BX * via the range
( f (x) )x�X of each function f. Therefore BX * is compact in (X *, t weak* ). r

5. – Metrizability and quasi-metrizability of the unit ball.

We say that a quasi-normed cone (X , q) is separable if (X , t(eq ) ) is a sepa-
rable topological space.

Let us recall that a topological space (X , t) is sub(quasi-)metrizable pro-
vided that there is a (quasi-)metric d on X such that t(d) ’t .

If d is a quasi-metric on a set X , then the function d 21 defined on X3X by
d 21 (x , y) 4d(y , x), is also a quasi-metric on X called the conjugate of d (see
[3]). Moreover, the function d s defined on X3X by d s (x , y) 4d(x , y)S
d 21 (x , y), is, obviously, a metric on X .

Our next result shows that if (X , q) is a separable quasi-normed cone, then
(X *, t weak1* ) is subquasi-metrizable via a quasi-metric d such that the topology
t(d 21 ) is weaker than t weak2* . We also prove that this quasi-metric induces
t weak1* on BX * and its conjugate induces t weak2* on BX * , and thus (BX * , t weak* ) is
metrizable via the metric d s.
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THEOREM 2. – Let (X , q) be a separable quasi-normed cone. Then,
there is a quasi-metric d on X * such that:

(1) t(d) ’t weak1* and t(d 21 ) ’t weak2* on X *.

(2) t(d) 4t weak1* and t(d 21 ) 4t weak2* on BX * .

PROOF. – Let A4 ]xn : n�N( be a (countable) subset of X that is dense in
(X , q). Define a nonnegative real-valued function d on X *3X * by

d( f , g) 4 !
n41

Q

22n []( g(xn )2 f (xn ) )S0(R1] .

We shall show that d is a quasi-metric on X * such that t(d) is weaker than
t weak1* and t(d 21 ) is weaker than t weak2* on X *.

Clearly d( f , f ) 40 for all f�X * and d satisfies the triangle inequality.
Now let f , g�X * such that d( f , g) 4d( g , f ) 40. Then f (xn ) 4g(xn ) for all n�
N. Choose an arbitrary point x�X and an eD0. Since f and g are continuous
functions from (X , q) to (R1 , u) and A is dense in (X , q), there exist dD0 and
xn �A such that eq (x , xn ) Ed and f (xn )2 f (x) Ee/2 and g(xn )2g(x) Ee/2 . Let
an �X be such that xn 4x1an and q(an ) Ed . Then f (xn ) 4 f (x)1 f (an ) and
g(xn ) 4g(x)1g(an ), so f (an ) Ee/2 and g(an ) Ee/2 . Since f (x)1 f (an ) 4g(x)1

g(an ), we deduce that f (x) Eg(x)1e/2 and g(x) E f (x)1e/2 . Therefore f (x) 4

g(x). We conclude that f4g, and thus d is a quasi-metric on X *.
Next, suppose that ( fl )l�L is a net in X * that converges to f�X * with re-

spect to t weak1* . Then, for each xn �A , fl (xn ) K f (xn ) in (R1 , u) which clearly
implies that d( f , fl ) K0. Consequently, the topology t(d) is weaker than
t weak1* on X *, so (X *, t weak1* ) is subquasi-metrizable. Similarly, we prove that
t(d 21 ) is weaker than t weak2* on X *.

Thus, statement (1) is proved. (Note that, in particular, t(d) ’t weak1* and
t(d 21 ) ’t weak2* on BX * . )

In order to prove (2) let ( fn )n�N be a sequence in BX * such that d( f , fn ) K0,
where f�BX *. We shall show that ( fn )n�N clusters to f with respect to
t weak1* .

Indeed, from our version of the Alaoglu theorem, the sequence ( fn )n�N

clusters to some g�BX * , with respect to t weak* . Since by (1), t(d s ) ’t weak* on
X *, it follows that ( fn )n�N also clusters to g with respect to the topology t(d s ).
Let ( fnm

)m�N be a subsequence of ( fn )n�N such that d s ( g , fnm
) K0. By the tri-

angle inequality d( f , g) 40, and thus g(xn ) G f (xn ) for all n�N.
Now fix x�X and let eD0. Then, there exists m0 �N such that Nfnm

(x)2

g(x)NEe/2 for all mFm0 . On the other hand, since A is dense in (X , q), there
exist dD0 and xk �A such that eq (x , xk ) Ed , f (xk )2 f (x) Ee/2 and g(xk )2

g(x) Ee/2 . Let ak �X such that xk 4x1ak and q(ak ) Ed . Since f and g are lin-
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ear functions, we deduce that f (ak ) Ee/2 and g(ak ) Ee/2 . Then

g(x) Gg(x)1g(ak ) 4g(xk ) G f (xk ) 4 f (x)1 f (ak ) E f (x)1e/2 .

Hence

fnm
(x)2 f (x) E fnm

(x)2g(x)1e/2 Ee ,

for all mFm0 . We conclude that (fnm
)m�N converges to f with respect to t weak1* .

Consequently (BX * , t weak1* ) is quasi-metrizable via the quasi-metric d. Similar-
ly we show that t(d 21 ) 4t weak2* on BX * . This concludes the proof. r

From the above result we deduce the following metrization theorem.

THEOREM 3. – Let (X , q) be a separable quasi-normed cone. Then there is a
quasi-metric d on X * such that t(d s ) ’t weak* on X *, and t(d s ) 4t weak* on
BX * . So (BX * , t weak* ) is metrizable.
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