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On Multivalued Martingales, Multimeasures
and Multivalued Radon-Nikodym Property.

MOHAMED ZOHRY

Sunto. – Sia X uno spazio di Banach reale, separabile e Kc (X) la classe dei sottoinsie-
mi non vuoti, chiusi, limitati e convessi di X. Si dimostra un risultato di rappre-
sentazione per martingale essenzialmente limitate a valori in Kc (X). Quindi rivol-
giamo la nostra attenzione al legame tra misure multivoche e rappresentazioni di
Riesz a valori multivoci. Infine, diamo la versione multivoca del teorema di
Radon-Nikodym.

Summary. – In this paper we prove a representation result for essentially bounded
multivalued martingales with nonempty closed convex and bounded values in a
real separable Banach space. Then we turn our attention to the interplay between
multimeasures and multivalued Riesz representations. Finally, we give the multi-
valued Radon-Nikodym property.

1. – Introduction.

Let (V , A, m) be a probability measure space and X a real separable Ba-
nach space with norm V QV and the dual space X *. For each Y’X , cl(Y) denotes
the norm-closure of Y. Let K(X) (resp. Kc (X)) denote the family of all
nonempty closed and bounded (resp. nonempty closed bounded and convex)
subsets of X. For Y and Z en K(X), the distance d(x , Y) of x�X and Y , the
Hausdorff distance h(Y , Z) of Y and Z , the norm VYV of Y , and the support
function d*(.NY) of Y are defined by

d(x , Y) 4 inf ]Vx2yV : y�Y( ,

h(Y , Z) 4 max ]sup
y�Y

d(y , Z), sup
z�Z

d(z , Y)( ,

VYV4h(Y , ]0() 4 sup ]VyV : y�Y( ,

d*(x *NY) 4 sup ]ax * Nyb : y�Y( , x *�X *.
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It is easy to check that for Y and Z in Kc (X),

h(Y , Z) 4 sup ]Nd*(x * NY)2d*(x * NZ)N : x *�X *, Vx * VG1(.

In the sequel we will frequently use the well known result; see for instance
[4].

THEOREM 1. – There is a one-to-one correspondence between nonempty
closed convex sets and sublinear s (X *, X) lower semi-continuous functions
on X * (with values in ]2Q , Q]) which maps A into d*(QNA). r

With Y and Z in K(X), the closure sum of Y and Z is the element of K(X)
defined by Y1

.
Z»4cl (Y1Z). It is well known that for Y and Z in Kc (X),

d*(QNY1
.

Z) 4d*(QNY)1d*(QNZ). It is not difficult to verify that the operation
1
.

is associative and commutative on K(X). Given a sequence ]Yn (nF1 of mem-

bers of K(X), we say that the serie !
n41

QQ

Yn converges to Y if lim
n

h(Y , Sn ) 40,

where Sn 4Y1 1
.

Y2 1
.

R1
.

Yn 4 !
k41

Qn

Yk .

Let BX be the Borel s-field on X and BK(X) the s-field on K(X) generated
by the sets ]Y� K(X) : YO O c¯( taken for all open subsets O of X. A multi-
valued (set-valued) function G : VK K(X) is said to be measurable if G is A 2

BK(X) measurable, i.e., G2 (O) 4 ]v�V : G(v)O O c¯( � A for every open O ’
X. Such a function G is called a multivalued random variable. It is known that
a multivalued function G from V to K(X) is measurable if and only if there
exists a sequence ] fn (nF1 of measurable functions fn from V to X such that
G(v) 4cl (] fn : n�N() for almost surely all v�V. Such a sequence ] fn (nF1 is
called a representation by selections of G. The proofs of these results could be
found in [4] and [15]. By L 1 (V , A; X) we mean the Banach space of all (equi-
valence classes of) A-measurable functions f from V to X such that the norm
V f V1 4 s

V
V f (v)Vdm is finite, and L 1 (V , A; R) is denoted by L 1 (A). We shall also

consider L Q (V , A; X), the Banach space of (equivalence classes of) essential-
ly bounded A-measurable functions f from V to X with the norm V f VQ4

ess sup ]V f (v)V : v�V(, and L Q (V , A; R) will be denoted by L Q (A).
For a multivalued random variable G from V to K(X), let

S 1
G (A) 4 ] f�L 1 (V , A; X) : f (v) �G(v) a.s.(

which is closed subset of L 1 (V , A; X) and is nonempty if and only if d(0 , G(. ))
is in L 1 (A). If S 1

G (A) c¯ , its elements are called selections of G , then there
exists a representation by selections of G contained in S 1

G (A). If S 1
G (A) is

nonempty and bounded in L 1 (V , A; X), we say that G is integrably bounded.
Let L1 (V , A; X) denote the space of all integrably bounded multivalued ran-
dom variables from V to K(X). Moreover, we denote by Kcc (X) the family of all



ON MULTIVALUED MARTINGALES, MULTIMEASURES ETC. 455

compact convex subsets of X. We consider the following subspaces of
L1 (V , A; X) as follows:

L1
c (V , A; X) 4 ]G� L1 (V , A; X) : G(v) � Kc (X) a.e.( ,

L1
cc (V , A; X) 4 ]G� L1 (V , A; X) : G(v) � Kcc (X) a.e.( .

The Radstrom theorem as cited by Hiai-Umegaki [13, Theorem 3.6] states the
following.

THEOREM 2. – There exists a real (separable) Banach space Y such that
L1

cc (V , A; X) can be embedded as a convex cone in L 1 (V , A; Y) in such a way
that

(i) the embedding is isometric,

(ii) addition in L 1 (V , A; Y) induces addition 1
.

in L1
cc (V , A; X),

(iii) multiplication by nonnegative real L Q functions in L 1 (V , A; Y)
induces the corresponding operation in L1

cc (V , A; X). r

The integral of G is defined by s
V

Gdm4 ]s
V

fdm : f�S 1
G (A)(, where s

V
fdm is

the usual Bochner integral. This multivalued integral was introduced by Au-

mann [1]. For A� A, let s
A

Gdm be the integral of G restricted on A. Given a sub-

s-field B of A and a B-measurable multivalued function G from V to K(X), be-
sides S 1

G (A) and s
V

Gdm taken on (V , A, m), we define on the measure space

(V , B, m) the sets

S 1
G (B) 4 ] f�L 1 (V , B; X) : f (v) �G(v) a.s.(, and

s
V

(B)

Gdm4m s
V

fdm : f�S 1
G (B)n .

For f�L 1 (V , A; X), the conditional expectation of f relative to B is given (see
Chatterji [5], [6] and [7]) as a function E B ( f ) �L 1 (V , B; X) such that

s
B

E B ( f ) dm4s
B

fdm for all B� B .

If G is a multivalued random variable from V to K(X) with S 1
G (A) c¯ , then it is

seen (cf. [13, Theorem 5.1.]) that there exists a unique (in the a.s. sense) B-
measurable multivalued function, noted E B (G), from V to K(X) satisfying

S 1
E B (G) (B) 4cl (]E B ( f ) : f�S 1

G (A)(), the closure in L 1 (V , A; X).

We call E B (G) the (multivalued) B-conditional expectation of G relative to B
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or simply the conditional expectation of G. This conditional expectation
E B (G) has the properties analogous to those of the usual conditional expecta-
tion (see [13, § 5.]). For example, we have

clu s
B

(B)

E B (G) dmv4clg s
B

Gdmh, (B� B,[*]

and if G(v) � Kc (X) a.s., then

clg s
B

E B (G) dmh4clg s
B

Gdmh, (B� B .[**]

Note that E B (G)(v) 4cl gs
V

Gdmh for all v�V when B 4 ]¯ , V(.

It is known (cf. [13, Theorem 5.4.]) that when X * is separable and G is a
multivalued random variable from V to Kc (X), then E B (G) is uniquely deter-
mined as the B-measurable multifunction taking values in Kc (X) satisfying
the condition [*] or [**]. In [19] the author shows that the assumption X * is
separable may be removed for multivalued random variable G essentially
bounded, that is VG(.)V�L Q (A) by using convex analysis arguments, namely
the concept of convex normal integrand and a duality theorem of integrand
functionals for separable Banach spaces, to characterize the multivalued inte-
gral. This result establishes the following.

THEOREM 3 [19]. – Let G be an essentially bounded A-measurable multi-
valued random variable from V to Kc (X) and B a sub-s-field of A. Then
E B (G) is the unique (in the a.s. sense) B-measurable multivalued random
variable from V to Kc (X) such that

clg s
B

E B (G)dmh4clg s
B

Gdmh (B� B . r

Throughout this work, we will be dealing with an increasing sequence
]An (nF1 of sub-s-fields of A such that s g 0

nF1
Anh4 A. For E in A, we will de-

note by x E the characteristic function of E.

2. – Multivalued martingales.

Continuously studied since its introduction more than sixty years ago, mar-
tingale theory is one of the central components of Probability theory. Today
martingale theory has become recognized as an important tool in a diversity of
topics in mathematical analysis namely optimal control, statistics and mathe-
matical economy. At this stage, martingale theory is having an increasingly
important impact particularly in statistics and Banach space theory. Multivalu-
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ed random variables and multivalued martingales have been studied by many
authors. We refer to the interesting work of Caponetti [3], Chatterji [8], Coste
[9], Ezzaki [12], Hiai-Umegaki [13, 14], Luu [17] and Neveu [18]. Furthermore,
the theory of multivalued martingales is the natural tool in the study of certain
problems in the theory of information systems (see [11]) and in mathematical
economics.

Let ]G n (nF1 be a sequence of Kc (X)-valued random variables adapted to
]An (nF1 such that

S 1
G n

(An ) 4cl (] f�L 1 (V , An ; X) : f (v) �G n (v) a.s.()c¯ .

We say that ]G n , An (nF1 is a multivalued martingale, if for every nF1, it
verifies

E An (G m ) 4E n (G m ) 4G n for all n and m�N such that mFn .

If, in addition, S 1
G n

(An ) is bounded in L 1 (V , An ; X) (for sufficiently large n),
the multivalued martingale is said to be integrably bounded.

The next result is crucial in our study of multivalued martingales. The first
proof was given in [16] for multivalued random variables which selections are
Pettis-integrables. We state it here with a new proof for integrably bounded
multivalued functions.

PROPOSITION 1. – Let G be a multivalued random variable from V to
Kc (X). If S 1

G (A) is nonempty, then

(A� A, (x *�X *: d*gx *Ns
A

Gdmh4s
A

d*(x * NG(v) ) dm .

PROOF. – Let A� A and x *�X *.

First case. – If d*(x * Ns
A

Gdm) 41Q , then for each MD0, there exists f in

S 1
G (A) such that ax *Ns

A
fdmb DM. Thus

s
A

d*(x *NG(v) ) dmFs
A

ax * Nf (v)b dm4 ox *Ns
A

fdmpDM ,

hence s
A

d*(x * NG(v) ) dm41Q.

Second case. – If d*(x * Ns
A

Gdm) is finite, then for each eD0, fixed in the

rest of the proof, there exists f in S 1
G (A) such that

d*gx *Ns
A

GdmhE ox *Ns
A

fdmp1e4s
A

ax * Nf (v)b dm1e .
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Let’s define D(v) 4 ]x�G(v) : d*(x * NG(v) ) G ax * Nxb1e(, which is
nonempty, since G(v) is bounded and let W : V3XKR be defined by
W(v , x) 4d*(x * NG(v) )2 ax * Nxb. It is easy to see that W(v , x) is A-measu-
rable in v for each x and continuous in x for each v. Then W is A 7 BX-measu-
rable (cf. Himmelberg [15, Theorem 6.1.]), and hence S 1

D (A) is nonempty. Then
there exists f�S 1

G (A) such that

d*(x * NG(v) ) G ax * Nf (v)b1e a.s. ,

then taking integral over A , we obtain

s
A

d*(x * NG(v) ) dmGs
A

ax * Nf (v)b dm1e4 ox *Ns
A

fdmp1e ,

it follows that

s
A

d*(x * NG(v) ) dmGd*gx *Ns
A

Gdmh1e ,

thus, combining with a previous inequality and letting e go to zero, we obtain
the result. r

As a consequence, we immediately obtain the following result.

COROLLARY 1. – If ]G n , An (nF1 is an integrably bounded multivalued
martingale valued in Kc (X), then (d*(x * NG n (Q) ), An )nF1 is an L 1 (A)-mar-
tingale for x *�X *. r

If ]G n , An (nF1 is a martingale taking its values in K(X), a sequence
] fn (nF1 in L 1 (V , A; X) such that ] fn , An (nF1 is a martingale and for each
nF1, fn is a selection of G n , is said to be a martingale selection of
]G n , An (nF1 . When the sequence ]G n (nF1 is Kc (X)-valued and integrably
bounded, a result of [17] shows that the set of martingale selections of
]G n , An (nF1 is nonempty. In the next result, we obtain [13, Theorem 6.5.]
imposing additional hypotheses on the random variables G n but without any
separability of the dual space X *. First, let us recall that a set M of measu-
rable functions f : VKX is A-decomposable if for any f1 , f2 �M and A� A, the
function x A f1 1x V0 A f2 lies in M.

The next result, see [13, Theorem 3.1], is fundamental for much of what will
follow.

LEMMA 1. – Let M be a nonempty closed subset of L 1 (V ; X). Then there
exists a multivalued random variable G : VKX such that M4S 1

G (A) if and
only if M is A-decomposable. r
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THEOREM 4. – Let ]G n , An (nF1 be a martingale of essentially bounded
multifunctions taking its values in Kc (X) such that:

1) )MD0 : VG n VQGM for all nF1.

2) (A� 0
nF1

An : lim
m(A) K0

s
A

VG n V dm40 uniformly in n.

If X has the Radon-Nikodym Property, then there exists an A-measurable
essentially bounded multifunction G valued in Kc (X), which is the unique A-
measurable (in the a.s. sense) Kc (X)-valued multifunction verifying

E n (G) 4G n for all nF1 .

PROOF. – Let M S(G n ) denote the family of martingale selections of
]G n (nF1 and consider the subset of L 1 (V , A; X)

H 4 ] f�L 1 (V , A; X) : E n ( f ) �S 1
G n

(An ) for all nF1( .

Arguing as in [13, Theorem 6.5.], we show that H is a closed, convex, bounded
and A-decomposable subset of L 1 (V , A; X). Then combining Lemma 1 and
Corollary 1.6 of [13], we get an A-measurable integrably bounded multifunc-
tion G from V to Kc (X) such that

H 4S 1
G (A) 4 ] f�L 1 (V , A; X) : f (v) �G(v) a.s.( .

From Luu [17], we know that

S 1
G k

(Ak ) 4cl (] fk : ] fn , An (nF1 � M S(G n )(), kF1.

If f�S 1
G (A), then ]E n ( f ), An (nF1 is a martingale selection of ]G n , An (nF1 ,

which implies that

S 1
E n (G) (An ) 4cl (]E n ( f ) : f�S 1

G (A)() ’S 1
G n

(An ).

On the other hand, given a martingale selection ] fn , An (nF1 of ]G n , An (nF1 ,
since X has the Radon-Nikodym Property, there exists f�L 1 (V , A; X) such
that E n ( f ) 4 fn for all nF1. Thus f� H 4S 1

G (A) and S 1
G n

(An ) ’S 1
E n (G) (An ).

Therefore we conclude that E n (G) 4G n for all nF1 a.s.
For each f� H, there exists a sequence ] fn (nF1 in M S(G n ) such that

lim
n

V f2 fn V1 40 and since ] fn , An (nF1 is a martingale,

lim
n

V f (v)2 fn (v)V40 a.s.

Then, for any v�V , let n0 (depending on v) be an integer such that

V f (v)VGV fn0
(v)V11 a.s.,
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thus,

V f (v)VGVG n0
(v)V11 GVG n0

VQ11 a.s.

This shows that f�L Q (V , A; X) with V f VQGM11. Therefore we conclude
that G is essentially bounded. Consider a Kc (X)-valued and A-measurable
multifunction D such that

E n (D) 4G n for all nF1 .

For f�S 1
D (A), E n ( f ) �S 1

G n
(An ) for all nF1. Since we have

lim
n

V f (v)2E n ( f )(v)V40 a.s. ,

let n0 be an integer such that V f (v)VG11VE n0 ( f )(v)V. Hence

V f (v)VG11VG n0
(v)VG11VG n0

VQ a.s. ,

then V f VQG11M , which implies that D is essentially bounded.
Now for all A� 0

nF1
An , choose an integer n1 F1 such that A� An1

,
then

clg s
A

Ddmh4clg s
A

E n1 (D) dmh4clg s
A

G n1
dmh4clgs

A

Gdmh .

In light of Proposition 1 and the fact that for any A� A, there exists a se-
quence ]Ak (kF1 in 0

nF1
An such that lim

k
Vx A 2x Ak

V1 40, one obtain the identity

clg s
A

Ddmh4clg s
A

Gdmh for all A� A .

We complete the proof using Theorem 3. r

3. – Multimeasures and Riesz Representations.

A multifunction M from a field F of subsets of V to K(X) is called additive
if M(ENF) 4M(E) 1

.
M(F) whenever E and F are disjoint members of F. If,

in addition,

Mg 0
n41

Q

Enh4 !
n41

.Q

M(En )

in the Hausdorff topology of K(X) for all sequences ]En (nF1 of pairwise dis-
joint members of F such that 0

nF1
En � F, then M is termed a multimeasure. If

this occurs, then the serie !
nF1

.
M(En ) is unconditionally convergent. We recall

that a selection of an additive multifunction M from F to K(X) is an additive
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function m from F to X such that m(E) �M(E) for all E� F. An additive multi-
function M is said to be rich if

M(E) 4cl(]m(E) : m� S(M)() for all E� F ,

where S(M) is the family of all selections of M. We mention that a multimea-
sure with values in K(X) is rich when X is a separable Banach space or when X
has the Radon-Nikodym Property; see [10].

This section is devoted to the study of the multivalued extensions of
Radon-Nikodym Theorem, the Riesz Representation Theorem and the inter-
play between them. Before making this precise, we start with a look at the fol-
lowing result, which is a consequence of [13, Theorem 4.1].

LEMMA 2. – Let G be an A-measurable multifunction taking its values in
Kc (X). Assume that G is integrably bounded. Then

cl gs[W 1 1W 2 ] Gdmh4cl gsW 1 Gdmh1
.

cl gsW 2 Gdmh
for all W 1 , W 2 �L 1 (V , A; R1 ). r

REMARK 1. – The assumption of W i (i41, 2) being nonnegative in the
last result cannot be removed as the following simple example shows. Let
A4 [1 , 2 ], a421 and b42, then 0 � (a1b)A4A4 [1 , 2 ] ’I aA1bA but
0 4 (21)321231) �aA1bA.

At first glance, one can define a concept of a multivalued operator from
L 1 (V , A; R) to K(X) as a map T satisfying T(af1g) 4aT( f ) 1

.
T( g) for all

a�R and f , g�L 1 (V , A; R). But, Lemma 2 and Remark 1 illustrate that the
map f O cl (s fGdm) is additive only when f is taken in the space L 1 (V , A; R1 ).
Thus, since we are mostly interested in a generalization of representable ope-
rators, by a multivalued operator, we will mean a mapping T from
L 1 (V , A; R1 ) (however, see the observation in the remark below) to K(X)
satisfying the following conditions:

1) T( f1g) 4T( f ) 1
.

T( g) for all f , g in L 1 (V , A; R1 ).

2) T(af ) 4aT( f ) for all f�L 1 (V , A; R1 ) and a�R1.

A continuous multivalued operator taking values in K(X) endowed with the
Hausdorff topology is Riesz representable (or simply representable) if there
exists an integrably bounded multifunction G with VG(.)V�L Q (A) such that
T( f ) 4cl (s fGdm) for all f�L 1 (V , A; R1 ).

REMARK 2. – 1) As one might worry about, our definition, restricted to
operators acting on L 1 (V , A; R1 ), covers the case of representable vector
valued operators. In fact for such an operator T defined on the space
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L 1 (V , A; R), for any f in L 1 (V , A; R), T( f ) can be written as T( f ) 4T( f 1 )2

T( f 2 ). Hence, if T , restricted to L 1 (V , A; R1 ) is representable, then
T( f 1 )4cl (s f 1 Gdm) and T( f 2 )4cl (s f 2 Gdm) where G is an essentially
bounded multifunction. Since in this situation G is vector valued we ob-
tain

T( f ) 4s f 1 Gdm2s f 2 Gdm4s fGdm .

2) The condition VG(Q)V�L Q (A) in the definition of a representable opera-
tor is essential since it asserts the non-vacuity of S 1

fG (A) for all f in
L 1 (V , A; R1 ) which allows us to define s fGdm.

3) It is a basic fact that a continuous multivalued operator T gives rise to a
multimeasure M , by letting M(E) 4T(x E ).

PROPOSITION 2. – Let T be a continuous multivalued operator from
L 1 (V , A; R1 ) to K(X). For E� A, define M(E) by

M(E) 4T(x E ) .

Then T is representable if and only if there exists an integrably bounded
multifunction G such that

M(E) 4clg s
E

Gdmh
for all E� A. In this case, VG(Q)V�L Q (A) and T( f ) 4cl (s fGdm) for all
f�L 1 (V , A; R1 ).

PROOF. – If T is representable, then there exists an integrably bounded
multifunction G such that T( f ) 4cl (s fGdm) for all f�L 1 (V , A; R1 ). Thus, if
E� A, then M(E) 4T(x E ) 4cl (s

E
Gdm). This proves the necessity.

For the converse, let M(E) 4T(x E ) 4cl (s
E

Gdm) for some integrably

bounded multifunction G and all E� A. Since for E� A one has

VM(E)V4VT(x E )V4h(T(x E ), ]0() GkVx E V1 4km(E), (k�R)

it follows that the variation NMN (which is defined in an obvious way) of M
satisfies NMN(E) Gkm(E) for all E� A. Since for E� A and each selection f of
G , the measure m defined on A by

m(E) 4s
E

f dm
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is a selection of M , one has

s
E

V f V dm4NmN(E) GNMN(E) Gkm(E),

it follows immediately that V f (Q)VGk a.s. Hence VG(Q)VGk a.s., and G is essen-
tially bounded.

To finish the proof, note that the identity M(E) 4cl (s
E

Gdm) for every E� A

says that T( f ) 4cl (s fGdm) whenever f is a characteristic function. Then an al-
gebraic manipulation shows that this is also true when f is a simple function.
Finally approximate an arbitrary element of L 1 (V , A; R1 ) by a simple func-
tion and use routine properties of Hausdorff distance to complete the
proof. r

In order to apply in the last section the multivalued version of the Radon-
Nikodym Property we establish the following result.

THEOREM 5. – Let ]G n , An (nF1 be a multivalued martingale with values
in Kc (X) such that

)MD0 : VG n VQGM for all nF1 .

Then, for each W�L 1 (A), the sequence ]cl (sWG n dm)(nF1 converges in the
Hausdorff distance topology.

PROOF. – We divide the proof in two steps. Let B 4 0
nF1

An and S(V , B, R)

be the subspace of B-measurable simple functions from V to R.

First step. – For f� S(V , B, R), the result is a direct consequence of the
definition of a multivalued martingale. Moreover, we obtain much more: For
f� S(V , B, R) there exists an integer n0 depending on f such that

cl gs fG n0
dmh4cl gs fG n dmh for all nFn0 ,

which shows that lim
n

cl (s fG n dm) 4cl (s fG n0
dm).

Let T be the map from S(V , B, R) to the complete metric space Kc (X) de-
fined by

T(W) 4 lim
n

cl gsWG n dmh .

Then if f1 and f2 are elements of S(V , B, R), let n1 and n2 be integers and p4
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max (n1 , n2 ) such that

T( f1 ) 4cl gs f1 G n1
dmh and T( f2 ) 4cl gs f2 G n2

dmh .

Then for any x *�X *, applying Proposition 1 we have,

Nd*(x * NT( f1 ) )2d*(x * NT( f2 ) )N4

Nd*gx * Ncl gs f1 G p dmhh2d*gx * Ncl gs f2 G p dmhhN4

Nsd*(x * Nf1 (v) G p (v) ) dm2sd*(x * Nf2 (v) G p (v) ) dmNG

sNd*(x * Nf1 (v) G p (v) )2d*(x * Nf2 (v) G p (v) )Ndm .

On the other hand,

Nd*(x * Nf1 (v) G p (v) )2d*(x * Nf2 (v) G p (v) )N4

Nd*(x * f1 (v)NG p (v) )2d*(x * f2 (v)NG p (v) )NG

VG p (v)V Vx * f1 (v)2x * f2 (v)VX * ,

then integrating, we obtain

h(T( f1 ), T(f2 ) GVG p VQ V f1 2 f2 V1 GMV f1 2 f2 V1 .

Second step. – Thus, since (Kc (X), h) is a complete metric space, T can be
uniquely extended to a continuous map (with the same bound), T, from the
V QV1-completion of S(V , B, R), which is L 1 (V , A, R), to Kc (X). Hence, for each
f in L 1 (A), there is a sequence of elements ] fn (nF1 in S(V , B, R) with fn K f as
nKQ and T( f ) 4 lim

n
T( fn ). So, for nF1, we can find kn F1 such that for all

kFkn

T( fn ) 4cl g s fn G kn
dmh4cl g s fn G k dmh .

Now the result follows by a routine argument. r

4. – Multivalued Radon-Nikodym Property.

A nonempty closed convex subset C of X is said to be a Radon-Nikodym
subset, if given a finite mesure space (E , S , n) and a n-continuous vector mea-
sure m : SKX of bounded variation such that m(A) ’n(A)C for A�S with
n(A) D0, there exists f�L 1 (E , S ; X) such that m(A) 4 s

A
fdn for all A�S.

With the help of martingales, we see the Radon-Nikodym property of a subset
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transform itself into an internal geometric property of the subset. According
to a result of Chatterji [7] from 1968, a subset C has the Radon-Nikodym prop-
erty if and only if for every finite measure space (E , S , n) every bounded uni-
formly integrable martingale in L 1 (S , n ; X) taking values in C converges in
L 1 (E , n ; X)-norm. For more details, we refer to the monograph of Bourgin
[2].

THEOREM 6. – Let C be a nonempty convex closed and bounded subset of X
and M be a multimeasure from A to Kc (X) such that M(E) ’m(E)C for all E�
A. If C is a Radon-Nikodym subset, then there exists an A-measurable mul-
tifunction G with values in Kc (X) such that:

(i) M(E) 4cl (s
E

Gdm) (E� A.

(ii) G is essentially bounded.

PROOF. – Since X is a separable Banach space,

M(E) 4cl (]m(E) : m� S(M)() for all E� A .

If m is a selection of M , then for all E� A, m(E) �m(E) C and hence m is m-
continuous. Thus, since C is a Radon-Nikodym subset, there exists fm in
L 1 (A, m ; X) such that m(E) 4 s

E
fm dm for all E� A.

If H denote the subset of L 1 (A, m ; X) defined by

H 4 ] fm : m� S(M)( ,

then it is easy to check that H is a nonempty, convexe, A-decomposable, closed
and bounded subset of L 1 (V , A; X). Therefore, there exists an integrably
bounded multifunction G : A K K(X) such that

H 4S 1
G (A) 4 ] f�L 1 (V , A; X) : f (v) �G(v) a.s.( .

Consequently, since for E� A,

M(E) 4cl (]m(E) : m� S(M)() 4clgm s
E

fdm : f�S 1
G (A)nh ,

it follows that M(E) 4cl (s
E

Gdm) for all E� A. On the other hand for all v�V ,
we have

VG(v)V4 sup
f� H

V f (v)VG sup
f� H

V f VQGVCV a.s.,

which shows that G is essentially bounded. r

We can now state the multivalued Radon-Nikodym Property.
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THEOREM 7. – Let C be a nonempty convex closed and bounded subset of X.
Then the following conditions are equivalent:

(i) C is a Radon-Nikodym subset.

(ii) For any multivalued continuous operator T from L 1 (V , A; R1 ) to
Kc (X) such that

T(W) ’CsW dm for all W�L 1 (V , A; R1 ),

there exists an A-measurable multifunction G taking its values in Kc (X) in
such way that G is essentially bounded and T(W) 4cl (sWGdm) for all
W�L 1 (V , A; R1 ).

(iii) For any Kc (X)-valued martingale ]G n , An (nF1 such that

G n (v) ’C for all nF1 a.s.

there exists a unique (a.s.) Kc (X)-valued and A-measurable multifunction G
such that G is essentially bounded and E n (G) 4G n for all nF1.

PROOF. – (i) ¨ (ii). Consider an operator T from L 1 (V , A; R1 ) to Kc (X)
such that T(W) ’CsWdm for all W�L 1 (V , A; R1 ). If M is the multimeasure
associated to T , then M(A) 4T(x A ) ’m(A)C for all A� A. By Theorem 6,
there exists an A-measurable multifunction G with values in Kc (X) satisfying
VG(Q)V�L Q (A) and M(E) 4cl (s

E
Gdm) for all E� A. Finally Proposition 2 shows

that

T(W) 4cl gsWGdmh for all W�L 1 (V , A; R1 ).

(ii) ¨ (iii). Let ]G n , An (nF1 be a multivalued martingale taking values in
Kc (X) such that G n (v) ’C for all nF1 a.s. Then VG n VQGVCV for all nF1. By
Theorem 5, the mapping T from L 1 (V , A; R1 ) to Kc (X) defined by

T(W) 4 lim
n

cl gsWG n dmh
is a continuous multivalued operator such that

T(W) ’CsW dm for all W�L 1 (V , A; R1 ).

Hence, there exists an essentially bounded multifunction G from V to Kc (X)
such that T(W) 4cl (sWGdm) for all W�L 1 (V , A; R1 ).
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Now for every fixed integer k and any A� Ak , since for nFk we
have

clg s
A

G n dmh4clg s
A

G k dmh ,

it follows that

clg s
A

Gdmh4T(x A ) 4 lim
n

clg s
A

G n dmh4clg s
A

G k dmh ,

taking into account that VG(Q)V and VG k (Q)V are elements of L Q (A), Theorem 3
says that E k (G) 4G k for all kF1. Finally arguing as in the proof of Theorem
4, we obtain that G is the unique in the a.s. sense verifying E n (G) 4G n for all
nF1.

(iii) ¨ (i). Let ] fn , An (nF1 be a martingale with values in C , then consider
the multivalued martingale ]G n , An (nF1 defined by G n (Q) 4 ] fn (Q)( for all nF

1. Then there exists an A-measurable multifunction G with values in Kc (X)
such that E n (G) 4G n for all nF1. Since for all nF1

cl (]E n ( f ) : f�S 1
G (A)() 4S 1

E n (G) (An ) 4S 1
G n

(An ) 4 ] fn ( ,

it follows that E n ( f ) 4 fn for all nF1 and lim
n

V f2 fn V1 40. r
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