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Fibred Closed Braids with Disc-Band Fibre Surfaces.

MARTA RAMPICHINI

Sunto. – Un risultato classico di Stallings fornisce una condizione necessaria e suffi-
ciente per stabilire se una data superficie immersa senza autointersezioni in S 3 è
una fibra per S 32¯S. In questo articolo si descrive come trovare una possibile fi-
bra per un link presentato come treccia chiusa. Si descrive anche un algoritmo, im-
plementato al calcolatore, che permette di trovare i principali ingredienti per veri-
ficare la condizione necessaria e sufficiente di Stallings, cioè una presentazione del
gruppo fondamentale della superficie e del suo complementare in S 3 , e una espres-
sione esplicita dell’omomorfismo indotto in omotopia dalla mappa di push-off.
L’articolo termina con una discussione di particolari proprietà della presentazio-
ne del gruppo p 1 (S 3 0SW ).

Summary. – A classical result by Stallings provides a necessary and sufficient condi-
tion to decide whether a given embedded surface S is a fibre in S 3 0¯S. In this paper
it is described how to find a candidate fibre surface for a a link presented as a
closed braid. Also it is described an implemented algorithm to find the main ingre-
dients of the necessary and sufficient condition of Stallings, namely presentations
of the fundamental groups of the surface and of its complement in S 3 , and an ex-
plicit expression of the homomorphism induced in homotopy by the push-off map.
The paper ends with a discussion of the particular properties of the presentation of
p 1 (S 3 0SW ).

1. – Introduction.

Fibred three-manifolds are very nice topological objects: they can be
described as a cartesian product of a surface cross an interval, S3 [0 , 1 ],
modulo a gluing map h which identifies the two copies of the surface,
h : S0 KS1. When a surface S is embedded in S 3 so that the complement
of its boundary is a three-manifold fibred over S 1 , then S is said to
be a fibre surface, and its boundary is called a fibred link. The unknot
is fibred, since its complement in S 3 can be filled by a continuous family
of discs, all with the given unknot as boundary. Famous examples of
fibred links are the algebraic links [13] and the closure of homogeneous
braids [24]. Harer gave instructions for constructing all possible fibred
links starting from the unknot, by modifying their fibre surfaces [10].
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Montesinos and Morton constructed all fibred links by using branched
coverings on closed braids [14].

Gabai gave a necessary and sufficient topological condition for a link to be
fibred by looking at a candidate fibre surface [7]. The question of detecting
whether a given link is fibred is related to the problem of finding a candidate
fibre surface. An algorithm for finding minimal genus fibred surfaces, based
on normal surfaces with respect to a triangulation of the three manifold, is
given in [25, 16].

In this paper, I am particularly interested in finding fibre surfaces for
links presented as closed braids, using the explicit expression of the braid for
finding a fibre surface, looking for direct connections between algebraic prop-
erties of the braid and topological properties of the surface.

Some necessary conditions for a Seifert surface of a link to be a fibre are
summarized in the following:

THEOREM 1 (cf. [23, 6] Prop. 4.1). – If S is a fibre surface then it is connect-
ed and it is a Seifert surface of minimal genus for its boundary. If L is a fi-
bred link, then all its minimal genus Seifert surfaces are fibre surfaces and
they are all isotopic.

There are partial results about the problem of finding minimal genus
Seifert surfaces for particular links, see [8, 9, 26], but for general links the
problem is still open.

A classical result by Stallings [24] gives a necessary and sufficient algebra-
ic condition for a given surface to be a fibre. It involves the fundamental
groups of the surface and of its complement in S 3. It consists in deciding
whether the particular homomorphism induced in homotopy by the push-off
map is an isomorphism. However, if we want to use this result, we first need to
find a candidate fibre surface.

Another way to attack the problem is that of representing links as closed
braids, which allows to deal with them as algebraic objects: this is not com-
pletely equivalent to the previous setting, since any link can be represented as
a closed braid in infinitely many different ways. But if we fix a braid axis for
the link, then we will be dealing with a single conjugacy class in a specified
braid group [15].

In order to make the paper self-contained, I have recalled known results
where useful. In order to make my algorithm more clear, I have considered it
along with an example, throughout the paper.

The paper is organized as follows.
In Section 2 some interesting properties of closed braids are collected,

and some Seifert surfaces embedded in a particular way are shown. I
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will define a fibred closed braid and in Proposition 5 I will prove how
to find a candidate fibre surface for a closed braid.

In Section 3 I explain an algorithm to find the ingredients of Stallings the-
orem, namely: presentations for the fundamental groups of the surface and of
its complement in S 3 , and an explicit expression for the homomorphism. Also I
prove that the homomorphism is always injective.

In Section 4 I explain some properties of the presentation of p 1 (S 3 0S), in
order to attack the problem (which in general is not solvable) of determining
whether the homomorphism is an isomorphism.

In the Appendix I explain an algorithm for computing the Alexander poly-
nomial for a braid given as a word in disc-band generators.

Throughout the paper, all topological objects under consideration (links,
surfaces, braids) are oriented.

The algorithms presented in this paper have been implemented using
GAP, a programming language for Group Theory (1), with the help of P. Bol-
di (2) and S. Vigna (2).

2. – Fibred closed braids.

The band presentation of the braid group given by Birman, Ko and Lee
in [2] provides a translation of many combinatorial and algebraic properties of
braid words and braids into topological properties of disc-band surfaces,
which are Seifert surfaces for the closed braids, embedded in a particular way.

In this section I will recall the band presentation of Bn , the definition of
disc-band surface, and some useful properties.

The band generators are a generalisation of the classical Artin generators:

for Bn there are gn

2
h generators aj , i with 1 G jE iGn , where aj , i is the braid

in which the i th strand crosses over the j th strand, both going over the other
intervening strands. The set of band generators includes the set of classical
Artin generators, in fact s i 4ai, i11 . To simplify the notation, I will write ( j , i)
for aj , i and ( j , i) for aj , i

21.
There are two types of relations (see Fig. 1):

1. ( j , i)(k , h) 4 (k , h)( j , i) whenever (i2h)(i2k)( j2h)( j2k) D0,
the condition meaning that the two pairs of indices are not interleaved, and

2. ( j , i)(k , j) 4 (k , j)(k , i) 4 (k , i)( j , i) whenever nF iD jDkF1.

(1) [GAP 99] The GAP Group, GAP — Groups, Algorithms, and Programming, Ver-
sion 4.1; Aachen, St Andrews, 1999. The package is available at http://www-gap.dcs.st-
and.ac.uk/ gap/gap.html.

(2) Dipartimento di Scienze dell’Informazione, Università Statale di Milano, Italy.
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Fig. 1. – Relations of band generators.

To each word in band generators we can associate a Seifert surface for the
closed braid embedded in a particularly nice way.

DEFINITION 2. – Given a word W expressed in the band generators of Bn ,
we associate to it the disc-band surface SW , constructed in the following
way:

l take n discs Dk , each pierced once by the braid axis, all in the same
direction;

l for any letter ai , j
e of W , connect the discs Di and Dj by an half-twisted

band, the twist depending on the sign of the letter.

If b is the braid represented by W , the boundary of SW is the closure b×, and
the sign of each letter corresponds to the sign of the associated crossing.

See Fig. 2 for an example. I will go on with this example throughout the
paper.

Disc-band surfaces are also called braided surfaces in [19, 20, 21, 22]. Fol-
lowing Rudolph [19] let me represent each half-twisted band as a half curl, so
that we always see the positive side of the surface, as in Fig. 3.

There are infinitely many disc-band surfaces associated to a given closed
braid: in fact there are closed braids with more than three strands that
can be represented by infinitely many different conjugacy classes of
braids [4]; moreover any braid can always be represented by infinitely
many different words in the band generators. Nevertheless, many algebraic
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Fig. 2. – The disc-band surface SW for the braid word W4 (5 , 6)(1 , 4)
(2 , 5)(3 , 4)(1 , 6)(1 , 3) (2 , 5)(3 , 6).

and combinatorial equivalences of braids and braid words can be easily
translated into isotopies of these surfaces.

The following algebraic changes in a braid word W correspond to isotopies
of the associated disc-band surface SW in the complement of the braid axis:

1. the disc-band relations; an example of the corresponding isotopy is
shown in Fig. 4;

2. conjugations by d4 (n21, n)(n22, n21)R(1 , 2 ), which have the
effect of shifting indices by 1 (mod n) on each band generator: d21 ( j , i)d4

( j11, i11); the corresponding isotopy is a cycling of the discs Dk of SW along
the axis;

Fig. 3. – How to see the half-twisted bands as half curls.
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Fig. 4. – How to see the relation ( j , i)(k , j) 4 (k , j)(k , i) as isotopy of disc-band
surfaces.

3. conjugations by initial or final letters of W , which correspond to cy-
cling the letters of W; the corresponding isotopy is a cicling of the bands
around the discs of SW .

I call 2 and 3 easy conjugations.

It is still open the question whether all isotopies among two disc-band sur-
faces in the complement of the axis can be expressed by a finite chain of moves
1, 2 and 3 above, cf Rudolph [22], p. 263.

We can also read from a word W an important topological property of the
surface SW . The Euler characteristic of SW is related to the number n of
strands of the braid and the length l(W) of the word in the band genera-
tors:

x(SW ) 4n2 l(W) ;

this can be seen for instance by retracting SW on a graph G W as shown in fig-
ures 7 and 8.

Notice that all relations and easy conjugations are length preserving. In-
stead, the free reduction of words is not length preserving, and in fact does
not correspond to an isotopy of disc-band surfaces.

In what follows, any link L will be seen as a closed braid b×, with both the
axis A and the number n4 lk(L , A) of strands fixed. This will allow me to
study L as an algebraic object, the conjugacy class [b] in Bn . This will not com-
promise my study, thanks to the following:

TH E O R E M 3 (R u d o l p h , P r o p o s i t i o n 1 of [ 2 0 ] ) . – F o r a n y f i x e d b r a i d a x i s
A (i . e . f o r a n y f i x e d e m b e d d e d u n k n o t , w i t h t h e f i b r a t i o n b y d i s c s o f S 3 0A
f i x e d) , a n y g i v e n e m b e d d e d o r i e n t e d c o n n e c t e d f i b r e s u r f a c e S ca n b e i s o -
t o p e d i n S 3 s o t h a t i t l i e s a s a di s c - b a n d s u r f a c e r e l a t i v e t o t h e c h o s e n
b r a i d a x i s A .

In what follows the term «closed braid» will mean both the isotopy class of
a closed braid in S 3 0A , or the corresponding conjugacy class in Bn .
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DEFINITION 4. – A closed braid b× is called a fibred closed braid if it has a
disc-band surface which is a fibre.

PROPOSITION 5. – A closed braid b× is fibred if and only if for each word W of
minimal length in the conjugacy class of b the surface SW is a fibre
surface.

PROOF. – If b× is fibred, then all its fibres are isotopic and have minimal
genus, and by definition there exists at least one which is a disc-band surface.
Since the genus of a disc-band surface is minimal (among disc-band surfaces)
when the length of the word is minimal in the conjugacy class, there is at least
one of these minimal-length words such that SW is a fibre. But for all such
words the corresponding surfaces are isotopic, since they have the same genus
and isotopic boundary; therefore they all are fibre surfaces. r

Notice that any fibred link L can be seen as a fibred closed braid b×, with
b�Bn , but usually it is not known for which n this is possible. The theorem of
Bennequin studied in [3] guarantees that all braids with at most three strands
have minimal genus disc-band Seifert surfaces, but this is no longer true in Bn

with nF4: Ko and Lee in [11] give an example by Morton of a 4-braid whose
closure is the unknot (therefore it is a fibred link), which has not a disc-band
surface of minimal genus, because the minimal length of a word in its conjuga-
cy class is 7, while it should be 3. Anyway in B4 there are conjugacy classes
representing the unknot and with minimal length 3.

So, if we are given a braid and we want to find a candidate fibre surface we
have to look for a minimal-length word in its conjugacy class, whose disc-band
surface is connected.

The general problem of finding a minimal-length word in a given conjugacy
class of Bn is not solved, but for fibred closed braids we can use the Alexander
polynomial of the closed braid to know what the minimal length should be.

PROPOSITION 6. – The following are necessary conditions for a closed braid
b× to be fibred:

1. the minimal length l for a word in its conjugacy class is such
that

lFdeg D b× (t)1n21, if b× has one component , and

lFdeg D b× (t)1n , if b× has more than one component ;

2. in the Alexander polynomial D b× (t) the coefficients of the extreme
powers of t are 61.
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PROOF. – This is a corollary of the following:

THEOREM 7 (cf. [17, 18]). – A necessary condition for a link L to be fibred is
that the Alexander polynomial D L (t) satisfies the following conditions:

1. if S is a fibre, then

deg D L (t) G12x(S), if L has one component ;

deg D L (t) G2x(S), if L has more than one component ;

2. in the Alexander polynomial D L (t) the coefficients of the extreme
powers of t are 61. r

In the Appendix I explain an algorithm for computing the Alexander poly-
nomial of a braid expressed by a word in band generators.

Once we have computed the Alexander polynomial, we can easily check the
required property on the coefficients of extreme powers of t. If this is satisfied,
we can look for a word with prescribed length and with the same exponent
sum as b; then we can check conjugacy e.g. by the algorithm of [2]. The set of
words of Bn with prescribed length and exponent sum is finite, so either we
end with a negative answer, or we find a word W giving a candidate fibre sur-
face SW , to which we will apply the Stallings theorem.

3. – The algorithm.

The aim of this section is to explain how to find in our settings the main in-
gredients of Stallings’ necessary and sufficient condition for a given surface to
be a fibre. We first need the following:

DEFINITION 8. – Given a connected oriented surface S embedded in S 3 , the
push-off map i 1 : SKS 3 0S is the continuous map (defined up to isotopy in
S 3 0¯S) which sends S in a homeomorphic copy S 1 , which lies in S 3 0S , ob-
tained from S by pushing each point off from S along the positive normal
direction.

THEOREM 9 (Stallings, [24]). – A given connected surface S embedded in S 3

is a fibre in S 3 0¯S if and only if the homomorphism

i 1

* : p 1 (S) Kp 1 (S 3 0S)

induced in homotopy by the push-off map is an isomorphism.

l The fundamental group p 1 (SW ) is a free group on 12x(SW ) generators,
but we need an explicit expression of such generators in topological terms to
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Fig. 5. – The surface SW of Fig. 2, flattened, with the vertices of the graph G W embedded
as intersections of SW with the braid axis. The edge e7 is shown as an example. Each ge-
nerator b j of p 1 (S 3 0SW ) is a loop from your eye to the arrow and back to your
eye.

know how the homomorphism i 1

* will act on them. We can read them explicitly
from W: look at Fig. 5, where the surface of Fig. 2 has been flattened as ex-
plained in Fig. 3.

To find an explicit expression of the generators, we can consider a graph
G W which is a strong deformation retract of SW , look at a spanning tree TW of
G W and then read a loop a k for each edge in G W 0TW. All this information can
be read directly from W. Choose a base point on D1 in a small neighbourhood

of the point where the braid axis intersects the disc. Suppose W4 »
j41

l(W)

wj
e j ,
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Fig. 6. – The graph G W (a) and a spanning tree TW for it (b).

where each wj is a band generator and e j 461. The graph G W has one vertex
vj on each disc Dj of SW , that is one vertex for each index j� ]1, 2 , R n( (they
are marked by «big dots» in Fig. 5). The edges of G W are one for each band of
SW , that is one edge ei for each letter wi . If wi 4 (h , k), then ei is a simple arc
which joins vh to vk going along Dh , then along the i th band then along Dk (in
Fig. 5, the edge e7 is shown as an example). We can see a schematic picture of
G W in Fig. 6 (a) and a spanning tree in Fig. 6 (b). Our GAP procedures Build-
Graph(W , n) and SpTree(G) give automatically the graph and the spanning
tree from the braid word W.

It is convenient for the implementation of the algorithm to write the 12

x(SW ) generators a h’s as words in the letters ei’s, with the convention that
each edge is directed from the smallest to the greatest of its two vertices. This
is done by our GAP procedure ReadGenerators(G , T), which for our example
gives

a 1

a 2

a 3

4

4

4

e6 e4 e2
21 ,

e5 e1
21 e3

21 e7 e1 e5
21 ,

e6 e8 e5
21 .

l We can apply the well known Wirtinger algorithm to find a presentation
of the fundamental group p 1 (S 3 0SW ). Look at Fig. 5: choose one generator b i

for each band of SW , i.e. for each letter wi of W; each generator is a loop sur-
rounding exactly one band, as indicated schematically by the arrow in Fig. 5.
To read the relations, the surface can be retracted as in Fig. 7 and 8.

In order to write the relations, for each generator b k I define two conju-
gates, g k and d k , which can be seen in the corner of Fig. 8: g k (respectively d k)
is the loop on the same strand as b k , but as near as possible to the initial (re-
spectively final) vertex of the simple arc ek . Their expression as conjugates of
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Fig. 7. – (a) The disc D1 of Fig. 5 and (b) its retract.

the b k’s can be obtained from W as follows: suppose wk 4 (i , j) and let wr 4

(p , q) be another generic letter. Then

g k 4Pk b k Pk
21 and d k 4Qk b k Qk

21 ,

Fig. 8. – The graph G W as deformation retract of the surface SW , with arrows indicating
the generators of p 1 (S 3 0SW ). In a corner, a zoom of a neighbourhood of a vertex.
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where

Pk 4 »
r41

k21

b r
sr and Qk 4 »

r41

k21

b r
tr ,

and

sr 4
.
/
´

1

0

if pG iEq

otherwise ,
tr 4

.
/
´

1

0

if pG jEq

otherwise .

For instance, from Fig. 8 it is easy to read g 4 4b 2 b 3 b 4 b 3
21 b 2

21.
The conjugates g k and d k are useful in order to read relations of the group

p 1 (S 3 0SW ); look at a neighbourhood of each vertex (as at the corner of Fig. 8):
we get

rm 4 »
k41

l

g k
xk d k

yk ,

where

xk 4
.
/
´

21

0

if i4m

otherwise ,
yk 4

.
/
´

1

0

if j4m

otherwise .

For instance, from Fig. 8 it is easy to read r3 4g 4
21 d 6 g 8

21 .
Our GAP procedure CompleteHomotopyRelations(F , W , n) (here F is the

free group on l(W) generators) gives

r1

r2

r3

r4

r5

r6

4

4

4

4

4

4

b 6
21 b 5

21 b 2
21 ,

b 2 b 5 b 6 b 7
21 b 6

21 b 5
21 b 3

21 b 2
21 ,

b 2 b 3 b 5 b 6 b 7 b 8
21 b 7

21 b 5
21 b 4

21 b 3
21 b 2

21 ,

b 2 b 3 b 4 b 3
21 ,

b 3 b 5 b 7 b 5
21 b 1

21 ,

b 1 b 5 b 8 .

There exists a GAP procedure which simplifies presentations (using Tiet-
ze’s moves); in our example, it immediately gives a free group on three genera-
tors. We get p 1 (S 3 0SW ) 4 ab 2 , b 3 , b 5N2b, with

b 1

b 4

b 6

b 7

b 8

4

4

4

4

4

b 3 b 5 b 2 b 3
21 b 2

21 b 5
21

b 3
21 b 2

21 b 3

b 5
21 b 2

21

b 2 b 3
21 b 2

21

b 2 b 3 b 2
21 b 5

21 b 3
21 .
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l The homomorphism i 1

* . For each arc ek one can see in Fig. 5 how to
read its image i 1 (ek ) as a product of loops b j’s: it is sufficient to read one b j

each time ek passes under the corresponding band in the same direction as b j ,
and the inverse when it passes in the opposite direction. All this information
can be read directly from W as follows:

i 1 (ek ) 4Pk b k
e Qk

21 ,

where e4
e k 11

2
and Pk , Qk have been defined above. Our GAP procedure

IPlusEks (W) computes the list of images of the ek’s. In our example we
get

i 1 (e1 )

i 1 (e2 )

i 1 (e3 )

i 1 (e4 )

i 1 (e5 )

i 1 (e6 )

i 1 (e7 )

i 1 (e8 )

4

4

4

4

4

4

4

4

b 1

b 2

b 2 b 1
21

b 2 b 3 b 3
21 4b 2

b 2 b 5

b 2 b 5 b 6 b 5
21 b 4

21 b 3
21 b 2

21

b 2 b 3 b 5 b 6 b 5
21 b 1

21

b 2 b 3 b 4 b 5 b 7 b 8 .

Now we can use the expression of the generators a j as products of ek’s and
substitute their images i 1 (ek ) to get the images i*

1 (a j ). Our GAP procedure
IPlus(W , n , H) gives the list of images i*

1 (a j ), using the word W , the braid
index n and the fundamental group H4p 1 (S 3 0SW ) as found by our GAP pro-
cedure HomotopyGroup(W , n). In our example, we get:

i 1

* (a 1 )

i 1

* (a 2 )

i 1

* (a 3 )

4

4

4

b 2 b 5 b 6 b 5
21 b 4

21 b 3
21 b 2

21

b 2 b 5 b 3 b 5 b 6 b 5
22 b 2

21 b 5
22 b 2

21

b 2 b 5 b 6 b 7 b 8 b 5
21 b 2

21 .

In this case, by substituting the expressions found above we get

i 1

* (a 1 )

i 1

* (a 2 )

i 1

* (a 3 )

4

4

4

b 5
21 b 3

21

b 2 b 5 b 3 b 2
21 b 5

22 b 2
21 b 5

22 b 2
21

b 5
21 b 3

21 b 5
21 b 2

21 ,
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from which we can easily get

b 1

b 2

b 3

4

4

4

i 1

* (a 3
21 a 1 a 3

21 a 1 a 3 a 2 a 3
21 a 1 )

i 1

* (a 1
21 a 3

21 a 1 a 3 a 2 a 3
21 a 1 )

i 1

* (a 1
21 a 3 a 2

21 a 3
21 a 1

21 a 3 ).

To summarise, the algorithm presented in this section allows to find explicitly
all the ingredients to apply Stallings’ theorem, which are:

1) an expression of the generators of the free group p 1 (SW ) in terms of
loops on SW ;

2) a presentation of the group p 1 (S 3 0SW );

3) an explicit expression of the homomorphism i 1

* .

One more step can be done:

PROPOSITION 10. – If SW is a connected surface of minimal genus for ¯SW ,
then i 1

* : p 1 (SW ) Kp 1 (S 3 0SW ) is injective.

PROOF. – Since SW is of minimal genus, it is incompressible; this means
what follows: for any simple closed curve g%SW , boundary of a disc D%S 3 ,
with DOSW 4g , there is a disc D 8%SW with ¯D 84g. Since i 1

* ( [g] ) 41 in
p 1 (S 3 0SW ) if and only if i 1 (g) bounds a disc D embedded in S 3 0SW , one can
attach to this disc the annulus n3g (where n is the normal positive vector
used to define i 1): in this way one gets a disc in S 3 bounded by g , therefore g
is nullhomotopic in SW . r

4. – Combinatorial properties of the presentation of p 1 (S 3 0SW ).

To decide whether a braid is fibred or not, once we have found all ingredi-
ents of Stallings’ theorem, we need to decide whether the homomorphism i 1

* is
surjective or not. This is an open problem of combinatorial group theory, which
is known to be solvable in some large families of groups: the free groups for in-
stance, and the groups satisfying the so called small cancellation conditions.
A good reference is [12].

To give an idea about the small cancellation conditions we need some ter-
minology of combinatorial group theory (cf. [12]). Suppose we are given a pre-
sentation aXNRb for a group G , where X is a set of generators and R a set of re-
lations. Suppose w4x1 x2 R xk is a word in the generators (and their invers-
es): say that w is cyclically reduced if xk cx1

21. Say that R is symmetrized if
all elements of R are cyclically reduced and, for each r�R , all cyclically re-
duced conjugates of r and of r 21 belong to R. Now suppose that there are two
elements r1 , r2 of R such that there are words b , c1 , c2 such that r1 4bc1 , r2 4
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bc2 . Then b is called a piece relative to R. The small cancellation conditions as-
sert that pieces are relatively small. The most usual conditions are the
following:

– Condition C 8 (l): for all r�R , if r4bc and b is a piece, then NbNE

lNrN , with l�R , lD0.

– Condition C(p): for all r�R , r is the product of at least p pieces.

REMARK. – In both groups with free presentation and groups with presen-
tations satisfying these small cancellation conditions for appropriate l , p , the
word problem is solvable.

In what follows I explain some combinatorial properties of the presentation
of p 1 (S 3 0S) found in the preceding section.

PROPOSITION 11. – For a given word W�Bn , of minimal length l4 l(W) in
its conjugacy class, the presentation for p 1 (S 3 0SW ) has l generators and n
relations; each relation is the product of some conjugates g j , d j of the genera-
tors, with the following properties:

1) in each g j 4Pj b j Pj
21 , the generator b j occurs only once; and a gen-

erator b k can occur, at most once in Pj , only if kE j ; similarly for
d j 4Qj b j Qj

21 ;

2) if wj 4 (p , q), then the length of g j equals the number of letters wh

with hE j such that wh 4 (r , s), rGpEs ; similarly, the length of d j equals
the number of letters wh with hE j such that wh 4 (r , s), rGqEs ;

3) considering the set of n relations, each g j and each d j occur in one
relation, and they do not occur in the same relation;

4) the number of g j’s and d j’s occurring in rk equals the number of let-
ters wj in which the index k occurs.

Summarising we get for all j41, 2 , R l and all k41, 2 , R n

Ng j N

Nd j N

Nrk N

G

G

E

2 j11

2 j11

l(2 l11).

All these properties are clear from the explicit construction given in the
preceding section.

Moreover, suppose there is one index 1 G iGn which only occurs in one
letter of W. Then we can conjugate W by its initial letter until the letter with
the index i becomes the first. Thus ri 4b 1 , which means b 1 41, so it can be
cancelled. This corresponds to the result of a Markov move on the sur-
face.
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Therefore we can always suppose that each index 1 G iGn occurs at least
twice in W; hence for all relations we get

NriNF2.

Concerning the number of generators, we can say the following:

PROPOSITION 12. – If W is a word of minimal length in the conjugacy class
of b

1) if NWN4n21 and b× has one component, then b× is a fibred
braid;

2) if NWN4n21 and b× has more than one component, or if NWNEn2

1, then b× is neither a fibred braid nor a fibred link.

PROOF. – In the first case x(SW ) 41, therefore SW is a disc, which is trivial-
ly a fibre surface. In the second case SW is a minimal genus Seifert surface
which is not connected (for a surface S4S1 I2I S2 , x(S) 4x(S1 )1x(S2 )), there-
fore the boundary link cannot be fibred. r

COROLLARY 13. – In the presentation of p 1 (S 3 0SW ) obtained as above, the
number of generators is greater than or equal to the number of rela-
tions.

PROOF. – We can always suppose NWNFn. r

An interesting example. For the braid

W4 (1 , 4)(2 , 6)(1 , 3)(2 , 4)(3 , 5)(1 , 4)(2 , 6)(1 , 3)(2 , 4)(3 , 5)

the Alexander polynomial

D b× (t) 4211 t 2 2 t 4

satisfies the necessary conditions requested by Theorem 7. After some Tietze
transformations, we get the presentation

p 1 (S 3 0SW ) 4 ab 1 , b 2 , R , b 6 Nrb ,

where the relation is

r4b 2 b 6
21 b 5

21 b 4
21 b 2

21 b 1
21 b 2 b 5 b 2

21 b 1 b 2 b 3 b 4 b 6 b 2
21 b 6

21 b 3
21 b 1

21 ,

with length NrN418, and pieces of maximal length = 2 (b 1 b 2 , b 1
21 b 2 and

b 2 b 6
21 , which occur in r and in r 21), therefore it satisfies the small cancella-

tion conditions C 8 (1 /8) and C(12).
Open question Do these properties of p 1 (S 3 0SW ) lead in general to some
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small cancellation conditions, so that one can always solve the problem
of deciding whether i 1

* is surjective?

5. – Appendix: The Alexander polynomial.

The Alexander polynomial is a well-known invariant for knots and links.
Definitions and results about it can be found e.g. in [1, 18]. We are interested
in the reduced Alexander polynomial for a closed braid, that is the polynomial
in which the same variable t has been associated to all components of the
link.

Our algorithm, implemented in GAP, is adapted to links presented as
closed braids written in band generators. Since the classical Artin generators
form a subset of the band generators, it can be used also for braids written in
the classical way.

The algorithm is based on the method of Seifert matrices:

DEFINITION 14. – If S is a connected Seifert surface for a link L , define a
Seifert matrix M as follows: let a1 , a2 , R aN be free abelian generators of
H1 (S) (here N412x(S)); then the elements of M are

Mij 4 lk(ai , i*
1 (aj ) ),

where lk denotes the linking number, i 1 is the push-off map, and the i*
1 (aj )’s

are elements of H1 (S 3 0S).

PROPOSITION 15. – If M is any Seifert matrix for a given link L , then the
Alexander polynomial is given by:

D L (t) 4 det (tM2M T ) if L has one component ;

D L (t) 4
det (tM2M T )

12 t
if L has more than one component .

In order to find a Seifert matrix for a braid b given by a word W , we need
to find a connected Seifert surface for it. The fact that the associated disc-
band surface SW is connected corresponds to the fact that the associated graph
G W is connected. If it is not connected, it is easy to find a connected one, by ad-
dying the necessary edges. This can be done on W by conjugating it by the let-
ters corresponding to the added edges. Our GAP procedure Connect-
Braid(W , n) gives a new word W 8 with connected SW 8 in case SW was not
connected.

We already know how to find generators of p 1 (SW ) in terms of edges ek of
G W (see Section 3). The same loops a j’s (or their abelianisations aj’s) can be
used as generators of H1 (SW ). We also already know how to find their images
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Fig. 9. – How to compute lk(ai , i*
1 (aj ) ).

i*
1 (aj ) in H1 (S 3 0S), for instance by abelianising the images i*

1 (a j ) found in
Section 3.

It is now very easy to read the elements Mij (look at Figure 9):

lk(ai , i 1 (aj ) ) 4 !
k41

l

2( power of ek in ai )(power of bk in i*
1 (aj ) ) .

This is computed by our GAP procedure SeifertMatrix (W , n).
The number of components of a closed braid can be easily read from W:

Nb×N4 number of disjoint cycles in the induced permutation r(W) �Sn

(where Sn is the symmetric group on n elements). This is an invariant of the
closed braid. Our GAP procedure IsnCycle (p , n) finds «true» if p is a permu-
tation of just one cycle on n points.

All the computations are performed in one step by our GAP procedure
Alexander (W , n).
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