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Weak Solutions for a Well-Posed Hele-Shaw Problem.

S. N. ANTONTSEV - A. M. MEIRMANOV - V. V. YURINSKY

Sunto. – Analizziamo l’esistenza e l’unicità di soluzioni deboli del problema ben posto
di Hele-Shaw con condizioni generali sul contorno assegnato, equazione governan-
te non-omogenea nel dominio incognito e condizione dinamica non-omogenea a
contorno libero. Il nostro approccio permette anche di indebolire le restrizioni sui
dati iniziali e di contorno. Otteniamo infine alcune stime per la soluzione negli
spazi BV, proviamo un teorema di comparazione, e mostriamo che la soluzione di-
pende in modo continuo dai dati iniziali e di contorno.

Summary. – We analyze existence and uniqueness of weak solutions to the well-posed
Hele-Shaw problem under general conditions on the fixed boundaries and non-ho-
mogeneous governing equation in the unknown domain and non-homogeneous dy-
namic condition on the free boundary. Our approach allows us also to minimize
the restrictions on the boundary and initial data. We derive several estimates on
the solutions in BV spaces, prove a comparison theorem, and show that the solution
depends continuously on the initial and boundary data.

1. – Introduction.

The aim of this article is to generalize the approaches of Kamin, Oleinik,
and Kruzhkov to the study of well-posed Hele–Shaw problem. We establish
existence and uniqueness of weak solutions under a non-homogeneous condi-
tion on the free boundary and general boundary conditions on the fixed
boundary.

The Hele-Shaw problem is a well-known model of liquid filtration in a
porous medium. In this model, the evolution of liquid pressure is considered in
the variable flow region V(t), 0 G tGT , which is a part of the larger fixed do-
main Q%Rn .

In V(t) the pressure p(x , t) satisfies the field equation, which is below the
Poisson equation (here and in the sequel all variables are dimensionless)

2Dp4 div F(x) .(1.1)

This equation follows from Darcy’s law for the liquid velocity, 2v4˜p1F(x),
and the continuity equation div v40. The nature of the body force F(x) may
vary, it being caused, e.g., by gravity or rotation. A recent example of a free
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boundary problem arising in physics with a source term of this kind is con-
tained in [13].

The boundary of the unknown flow region V(t) %Q is

¯V(t) 4SNG(t) ,

where both the fixed boundary S4¯Q and the free (moving) boundary G(t)
may each include a finite number of disjoint bounded connected compo-
nents.

At the initial moment, the free boundary is known:

G(0) fG 0 , V(0) 4V 0 .(1.2)

Its evolution is determined by the boundary conditions

pNG(t) 40(1.3)

and

2Vn (x , t) 4˜p(x , t) Qn(x , t)1F(x) Qn ,(1.4)

where Vn (x , t) is the velocity of the free boundary in the direction of the
normal n(x) measured at the point x�G(t). (When ˜pc0, the normal is
n4N˜pN21 ˜p , and the normal velocity is Vn42N˜pN21 pt . )

On the fixed boundary S , we assume the third type boundary condition

a(x)
¯p

¯n
1b(x) p4ps (x , t) , x�S ,(1.5)

where ¯/¯n is the derivative in the outward normal direction.
The above problem is well-posed if its solution is nonnegative, and ill-posed

otherwise. We use the abbreviation WHSP to refer to the well-posed Hele-
Shaw problem.

An alternative description of a solution to the Hele-Shaw problem is in
terms of the indicator function x : Q3 (0 , T) K ]0, 1( of the flow domain and
the extended pressure pA:

V(t) 4 ]x�Q : x(x , t) 41( , pA(x , t) 4
.
/
´

p(x , t),

0 ,

x�V(t),

x�Q0V(t).
(1.6)

The above equations imply the following integral identity:

(1.7) s
Q

s
0

T

(xW t 2xF Q˜W1pA DW) dx dt42s
Q

x 0 W(x , 0 ) dx1

s
S 8

s
0

T

ps
¯W

¯n
ds dt2 s

S 0 S 8

s
0

T

g Wps

a
1WxF Qnh ds dt ,
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where S 8 is the part of the fixed boundary that carries the Dirichlet boundary
condition (a40, b41), the test function W belongs to the space

K4
defmW�W2

2, 1 (Q3 [0 , T] ), W(x , T) 40, ga
¯W

¯n
1bWhN

x�S
40n ,

and

x 0 (x) 4
def.

/
´

1,

0 ,

x�V 0 ,

x�Q0V 0 ,
(1.8)

is the indicator function of the known initial flow domain.
In a loose sense, the definition of x and the integral identity (1.7) corre-

spond to the non-linear equation

¯

¯t
x2DpA 4div (xF) , x�H(pA) ,(1.9)

where H is the Heaviside graph,

H(j) 4 ]0( for jE0, H(0) 4 [0 , 1 ], H(j) 4 ]1( for jD0 ,

and the inclusion reflects the fact that pA vanishes outside the flow region.
We define weak solutions to problem (1.1)-(1.5) following [14].

DEFINITION 1.1. – A pair (pA, x) of nonnegative functions from the space
L Q (QT ) with QT 4Q3 (0 , T) defines a weak solution to problem (1.1)-(1.5) if
x satisfies the integral equality (1.7)-(1.8) and the inclusion

((x , t) x(x , t) �H(pA(x , t) ) .(1.10)

Note that problem (1.1)-(1.5) corresponds to the one-phase Stefan model
problem of a phase transition with vanishing heat capacity. The Stefan pro-
blem has been intensively studied over past decades. Its analysis was initiated
by Rubinstein [16].

The concept of the weak solution has been introduced by Kamin [6] and
Oleinik [14] who proved the existence and uniqueness of global-in-time weak
solutions to the multidimensional two-phase Stefan problem. Using the
Kamin-Oleinik approach, several authors have obtained stability estimates for
weak solutions (see, e.g., [1]). In early nineties, Götz and Zaltzman have used
Kruzhkov’s method of BV estimates [8] to analyze qualitative properties of
weak solutions to the multidimensional two-phase Stefan problem [3]. A re-
view of work on the Stefan problem was given by Meirmanov in [12], and most
of subsequent development is covered by Visintin’s book [17].

The vanishing heat capacity does not allow us to extend the cited results
for the Stefan problem to WHSP in a straightforward manner. The main diffi-
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culty lies in obtaining a priori estimates for weak solutions. In particular, the
maximum principle fails for zero heat capacity. In the general case, a weak
solution to WHSP has no regularity in the time variable. This motivated the
independent study of WHSP undertaken by several authors (see [5] and refe-
rences therein), who mainly used the variational inequality methods.

Using the approach through variational inequalities, problem (1.1)-(1.5)
was studied for a one-component fixed boundary under strong restrictions on
the functions in condition (1.5) on the given boundary. Namely, for the Laplace
equation ( f (x) 40) or the Cauchy problem with no fixed boundary and a speci-
fic source term in the Poisson equation, it was assumed that either the pres-
sure ps is strictly positive in the Dirichlet condition (a40) or the flux ps is con-
stant in the Neumann condition (a41). Elliot and Janovsky [2] have proved
the existence theorem for WHSP with a constant flux on the fixed boundary.
The Cauchy problem with the source term f (x) 4C logNx1 iyN in the Poisson
equation was investigated by Gustafsson [4]. Louro and Rodrigues [11] stud-
ied WHSP with strictly positive Dirichlet data on the fixed boundary. WHSP
with non-local boundary conditions was considered by Primicerio and Rodrigues
[15].

It is well-known that x(x , t)is an increasing function of time if the free
boundary condition (1.4) is homogeneous (i.e., F(x) has compact support in
V 0 ). This fact allows one to apply the Duvaut transformation and reformulate
problem (1.1)-(1.5) as a variational inequality.

However, if condition (1.4) is non-homogeneous, then the inclusion

V(t1 ) %V(t2 ) , t1 E t2

may fail, and one cannot reduce the problem to a variational inequality. In fact,
if ps 40 and div F40, then p(x , t) f0 in V(t), and x(x , t) satisfies the
equation

¯x

¯t
2F Q˜x40 .(1.11)

Thus, the behavior of x(x , t) depends only on the source term F , and in the
general case the flow region V(t) 4 ]x41( is not necessarily increasing.

In what follows, we study the existence and uniqueness of weak solutions
to WHSP with the Poisson field equation (1.1) under the non-homogeneous
condition (1.4) and general boundary conditions (1.5). We construct its solution
as a limit of solutions to a family of regularized problems.

To avoid complications in constructing solutions to the regularized prob-
lems in an unbounded domain Q , we first restrict the equations to the bounded
domain Qmod (see (2.1) below). We establish the existence and uniqueness of
the solution and its properties for the «modified problem», i.e., for the auxil-
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iary problem in Qmod , under the additional assumption that the pressure van-
ishes on the supplementary spherical boundary.

The key ingredient of the method used to return to the unbounded domain
are estimates for the maximum of the solution to the modified WHSP which
have explicit dependence on the radius R* of (2.1). These estimates permit us
to show that for an arbitrary time interval [0 , T] there exists a common radius
R*4R*(T) such that the modified problem is equivalent to the original
one:

pA(x , t) 40 , NxNF
1

2
R*, t� [0 , T] .

To arrive at this last conclusion, we use explicit solutions of the Hele-Shaw
problem and the comparison theorems for generalized solutions.

ACKNOWLEDGMENTS. The authors are sincerely grateful to Prof. B. Zaltz-
man and Prof A. Fasano for a most stimulating discussion of the preprint
version of this article.

2. – The main results.

2.1. Notation.

Below, we use the standard notation NxN for the Euclidean norm in Rn , and
dist (a , G) 4 inf ]Na2yN : y�G( is the corresponding distance from a point to
a set. The d-neighborhood of a set G%Rn is

Ud (G) 4 ]x : dist (x , G) Ed( , dD0 .

A ball of radius r centered at a is B(r , a); we abbreviate B(r) 4B(r ; 0 ). The

characteristic function of a set is 1G (x) 4m1,

0 ,

x�G ,

x�G .As usual, for TD0

QT 4Q3 (0 , T) , ST 4S3 (0 , T) , etc .

Notation of function spaces is that of [9, 10]. The definition of functions of
bounded variation and the space BV is standard (see, e.g., § IV.7 in [7]).

We use several kinds of constants in our calculations. Below C (with or
without indices) denotes a constant that depends only on the number of di-
mensions n and the shape of S . A constant whose value is determined by the
above and the constants in the boundary and initial conditions is denoted M
(with or without indices). We write K for a constant that depends on argu-
ments introduced in intermediate calculations.

In the proof below, we first consider an auxiliary Hele-Shaw problem in the
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bounded «modified domain» defined using a large enough radius R* as

Qmod 4QOB(R*) .(2.1)

We use a cutoff function of special form to derive the a priori estimate for
pressure on Qmod :

z d (x) 4Zg 1

d
dist (x , S)h Zg 1

d
dist (x , ¯B(R*) )h ,(2.2)

where Z : RK [0, 1] is an infinitely differentiable function such that Z(0)40,
Z(t) 41 for tF1, and for some cD0

Z 8 (t) F0, cZ(t) F tZ 8 (t), ckZ(t)FZ 8 (t)1NZ 9 (t)N , tF0 .(2.3)

It follows from the regularity of S that if d is sufficiently small, then for each
point x� Ud (S) there is a unique point j(x) �S such that

dist (x , S) 4Nx2j(x)N , ˜dist (x , S) 4
x2j(x)

Nx2j(x)N
,(2.4)

and

x2j(x) 42n(j(x) )Nx2j(x)N ,

where n(x) is the unit vector of the outward normal at the point x�¯Qmod .

2.2. Existence and uniqueness theorems.

Below, we consider problem (1.1)-(1.5) under the following restrictions on
the given data:

CONDITION 2.1. – The fixed boundary is twice continuously differentiable,
and a, bF0, a 21b 241. The initial flow region is bounded and regular:

x 0 (x) �BV(Q), x 0 (x) 40, x�Rn 0B(R0 ), R0 EQ .(2.5)

CONDITION 2.2. – On the given boundary

0 Gps GM0 .(2.6)

CONDITION 2.3. – The source term is smooth, F�C 2 (Q), and NFN(2) GM0 . It
is solenoidal outside a bounded domain, supp ( div F) %B(R0 ) for some R0 D0,
and on the fixed boundary

F(x) Qn(x) G0, x�S ,(2.7)

where n(x) is the normal vector. Moreover, outside a larger sphere B(R1 ),
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R0 ER1 , the source F satisfies the condition

F(x) QxG0, NxNDR1 .(2.8)

For the cutoff function (2.2), it follows from (2.4) that

˜z d (x) 42
1

d
Z 8g 1

d
dist (x , S)h n(j(x) ) .

Consequently, (2.3) and Conditions 2.2-2.3 imply the inequality

(2.9) F(x) Q˜z d (x) 42
1

d
Z 8g 1

d
dist (x , S)h F(x) Qn(j(x) )

F2
1

d
Z 8g 1

d
dist (x , S)h F(j(x) ) Qn(j(x) )2

1

d
M0 Nx2j(x)NZ 8g 1

d
dist (x , S)hF2cM0 z d (x)

for all points in the d neighborhood of the boundary of the domain QOB(R)
provided that RFR1 DR0 (here n(x) is the unit vector of the outward normal
to ¯(QOB(R) ) ). The constant c does not depend on the constants in the cited
restrictions.

We now state our principal result on existence, stability, and comparison of
solutions to the Hele-Shaw problem.

THEOREM 2.1. – The following assertions hold true under Conditions
2.1-2.3:

(a) Problem (1.1)-(1.5) has at least one weak solution (pA(x , t), x(x , t) )
with a compact support.

(b) The first component of the solution pA(x , t) is bounded, and the
second one x(x , t) has bounded variation: x�BV(QT8 ) if Q 8%Q .

(c) Under the assumption aFa0 4constD0, the weak solutions to
problem (1.1)-(1.5) enjoy the following property of stability and monotonicity:

If pairs (pA1 (x , t), x 1 (x , t) ) and (pA2 (x , t), x 2 (x , t) ) are weak solutions of
(1.1)-(1.5) that correspond, respectively, to the given data ps 4ps , i , x 0 4x 0, i ,
and F4Fi , i41, 2 , then

(2.10) max
0GtGT

s
Q

Nx 1 (x , t)2x 2 (x , t)NdxGs
Q

Nx 0, 1 (x)2x 0, 2 (x)Ndx1

1

a0
s

ST

Nps , 1 2ps , 2Nds dt .

Inequality (2.10) remains true if aF0 and ps , 1 4ps , 2 .
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(d) If aF0 and the given data satisfy the inequalities

ps , 1 Gps , 2 , F1 4F2 , x 0, 1 Gx 0, 2 ,

then

x 1 (x , t) Gx 2 (x , t), pA1 (x , t) G pA2 (x , t) .(2.11)

(e) If supp F%V 0 and div FF0, then x(x , t) is an increasing function
of time t , and the integral equality (1.7) can be rewritten as

(2.12) s
QT

(xW t 1pA DW) dx dt42s
Q

x 0 W(x , 0 ) dx1

s
S 8T

ps
¯W

¯n
ds dt2 s

ST 0 ST8

Wps

a
ds dt2s

QT

W div F dx dt .

Moreover, if the given data satisfy the inequalities

ps , 1 Gps , 2 , div F1 Gdiv F2 , x 0, 1 Gx 0, 2 ,

then the corresponding solutions (pA1 , x 1 ) and (pA2 , x 2 ) satisfy inequalities (2.11).

Theorem 2.1 can be complemented by the following uniqueness result.

THEOREM 2.2 (Uniqueness). – If the closures of S 8and S 94S0S 8 are dis-
joint and b40, F Qn40 on S 9 , then each bounded weak solution (p , x) to
problem (1.1)-(1.5) is unique.

3. – Proof of Theorem 2.1.

We consider only the case of unbounded domain Q because all the argu-
ments apply to that of bounded one with minor modifications. The proof con-
sists of several steps, which are exposed in separate subsections below.

First, we replace Q with the bounded modified domain Qmod of (2.1) and regu-
larize the original problem for Qmod to obtain smooth approximations to its
solution. The regularized problems that are solved in Qmod depend on an auxil-
iary large parameter R*D0 (see (2.1)). We suppose that R*D max]R1 , 4R0 (

(see Conditions 2.1 and 2.3), so Qmod includes the initial flow region. We solve
the auxiliary problem under the assumption that the pressure vanishes on the
additional spherical boundary:

p e N¯B(R*) 40 .(3.1)

We derive uniform estimates for the solutions of the regularized problem.
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Next, we establish the convergence of the solutions of the regularized
problems to a solution of the original problem in the modified domain. We use
the term «modified problem» to refer to the original WHSP restricted to Qmod

with the additional condition (3.1).
Finally, it is shown that for each TD0 and t� [0 , T] the flow domain V(t)

does not reach the exterior boundary of Qmod if R* is chosen large enough, so
the solution of the modified problem also solves the original one for the un-
bounded domain. The argument is based on comparing the solution of WHSP
on Qmod with a spherically symmetric solution of WHSP that has known speed
of propagation of the free boundary.

3.3 Regularization. – We construct a family of regularizations of system
(1.7), (1.8), (1.10) depending on a small parameter eD0.

First, we approximate the Heaviside function by a smooth function
He (p) in such a way that

(p�RHe8 (p) D0, (pF0 lim
eK0

He (p) 4H(p),

He (p) 4
1

e
p for pGe , He (p) 4e(p22e)11 for pD2e .

(3.2)

In this case He has a well defined inverse function F e (x) 4
def

He
21 (x). We

regularize the initial conditions so that

x(x , 0 ) 4x 0
e (x) � [0 , 1 ] , x 0

e (x) 41 in V 0 , Vx 0
e
VBV GM0 ,(3.3)

where the value of M0 is determined by the BV norm of the initial function
x 0 , and

x 0
e (x) 7x 0 (x) as e70 .

We use the boundary conditions (3.1) and

ae (x)
¯p

¯n
1b(x) p4ps (x , t), x�S , ae4a1e .(3.4)

Below the term «regularized solution» refers to the solution of the
regularized analogue of the integral equality (1.7) with the inclusion of
(1.10) replaced by equality. In other terms, the regularized solution satisfies
the equations that correspond to (1.9),

¯

¯t
xe (p)2Dp e4 div (xe (p) F e ), p e4F e (xe ) ,(3.5)

as well as the pertinent boundary and initial conditions (3.3) and (3.1).
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The existence of a unique smooth regularized solution p e (x , t) is well
known [9].

3.4. Uniform a priori estimates.

Throughout this subsection, the time TD0 is supposed to have the same
arbitrarily chosen fixed value, and notation Q refers to the modified domain
(2.1), QT to Qmod 3 (0 , T), etc. Notation of constants is as described in subsec-
tion 2.1. Dealing with regularized solutions (3.5), we omit the superscript «e»
wherever possible.

The first estimate for the modified problem is given by Lemma 3.2
below.

To derive it, we construct the function u(x) as a solution of the boundary
value problem

2Du2eF Q˜u4F , x�Q ,(3.6)

uNNxN4R*
40 ,(3.7)

¯u

¯n
N

S
41(3.8)

where the source term F(x) 4M0 1B(R0 ) (x) is constant in B(R0 ) and vanishes in
Q0B(R0 ). To avoid trivial complications we suppose that the constant M0 in
(2.6), (2.9), and Condition 2.2 is the same, and eD0 is much smaller than
min ]M0 , 1(.

LEMMA 3.1. – If 0 EeGe 1 4e 1 (R*), then the solution of problem (3.6),
(3.7), (3.8) admits the following estimates:

0 Gu(x) GK1 (M0 ) ln R*
0 Gu(x) GK1 (M0 )

for n42 ,

for nD2 .
(3.9)

Proof of this lemma is placed in Appendix A.1.

REMARK 3.1. – The estimates of Lemma 3.1 are sharp. To check this, it suf-
fices to consider the solution of the problem

Du40, R0 ENxNER*, uN¯B(R*) 40,
¯u

¯n
N

¯B(R0 )
41 .

LEMMA 3.2 (The first a priori estimate). – The following estimate holds
uniformly in e�]0 , e *], e *4e *(M0 , R*): for (x , t) �QT

0 Gp e (x , t) GK(M0 , R*) ,(3.10)
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where K(M0 , R*) 4C(11K2 (M0 ) ln R*) for n42 and K(M0 , R*) 4C(11

K2 (M0 ) ) for nD2.

PROOF. – The maximum principle shows that the solution x(x , t) of problem
(3.1), (3.3), (3.4), (3.5) is nonnegative, so p(x , t) 4F e (xe (x , t) ) F0 by (3.2). We
define the function

v(x , t) 4
p(x , t)

u(x)11
F0 ,

where u is the solution to problem (3.6)-(3.8). By the choice of u and (3.5), the
new function v solves the problem

(11u) H 8 (p) vt 4 (11u) Dv1L Q˜v2cv , x�Q , tF0 ,

vN¯B(R*) 40, g(11u) a
¯v

¯n
1 (a1b(11u) ) vhN

S
4ps , vNt40 4

p0

11u
,

where L4 (11u) H 8 (p) F12˜u and

c4F(x)1 (e2H 8 (p) F Q˜u2 (11u)
H(p)

p
div F .(3.11)

If the maximum of v(x , t) is positive and attained on the fixed boundary S ,
then the estimate follows directly from the boundary conditions for v and
Lemma 3.1:

max
S

vG
ps

a1b(11u)
G

ps

a1b
Gps GM0 .

Similarly,

max vNt40 G
p0

u11
Gp0 GM0 .

Suppose that the maximum of v is positive and attained in the interior of Q .
In this case, it can only be attained at a point where cE0. We show now that
this implies an upper bound on p .

If at the point of maximum pG2e , then

max v4
p

u11
G2eGM0 .
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If at the point of maximum pD2e , then we can use (3.2) to conclude
that

cE0, H 8 (p) 4e ,
H(p)

p
4e1

122e 2

p
,

so (3.11) implies an inequality for p:

0 Dc4F(x)2 (11u)ge1
122e 2

p
h div F .(3.12)

The maximum of v cannot be attained on Q0B(R0 ): on this part of the do-
main F4 div F40 and F40, so c40, which contradicts (3.12).

If the maximum is attained at a point x�B(R0 ), then F(x) 4M0 , so in-
equality (3.12) reads

0 Dc4M0 2 (11u)ge1
122e 2

p
h div F .(3.13)

Therefore it follows from Condition 2.3 that there exists a constant C 8 such
that

M0 (11u)
122e 2

p
FM0 2e(11u) C 8 M0 .

Combining this estimate with the inequality of Lemma 3.1, we see that if
eEe 1 (R*) is chosen small enough, then at the point of maximum

pG
(122e 2 )(11u)

12eC2 (11u)
G2(11u) G2(11K×(M0 , R*)) ,

where

K×(M0 , R*) 4{K1 (M0 ) ln R*,

K1 (M0 ) ,

n42 ,

nD2 .

This proves Lemma 3.2. r

We derive now some additional uniform estimates for the regularized solu-
tion. Below z d is the cutoff function (2.2).

LEMMA 3.3 (The second a priori estimate). – For all 0 EeEe *(M0 , R*)
and 0 EdGd 0

s
QT

z d N˜p eN2 dx dtGK(M0 , R*, d) .(3.14)
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PROOF. – Multiplying equation (3.5) by z d (x) p e (x , t) and integrating over
Q we obtain

d

dt
s

Q

z d (x) V(p e ) dx1s
Q

z d (x)N˜p eN2 dx42s
Q

xz d F e Q˜p e dx1 !
k41

3

Ik ,

where V(p) 4
def

s
0

p

qHe8 (q) dq for pF0 and

I1 4
1

2
s

Q

Np eN2 Dz d dx , I2 42
1

2
s
S

Np eN2 ¯z d

¯n
dS , I3 42s

Q

xp e F e Q˜z d dx .

We estimate the terms on the right-hand side using the uniform estimate
(3.10):

NI1N1NI2N1NI3NGCgg 1

d
K(M0 , R*)h2

1
1

d
K(M0 , R*)hGK1 (M1 , d) .

We complete the proof applying the estimate NF e (x)NGCM0 and the Cauchy
inequality:

Ns
Q

xz d F e Q˜p e dxN G
1

2
s

Q

z d (x)N˜p eN2 dx1
1

2
s

Q

z d NF eN2 dx . r

3.5. Stability, monotonicity, and BV estimates.

The regularized solutions enjoy the following property of stability and
monotonicity. Consider the regularized solutions (pi

e (x , t), x i
e (x , t) ), i41, 2 ,

that correspond to the given data ps 4ps , i , x 0 4x 0, i , and the source terms
Fi 4F . Recall that we always suppose aF0 (see Condition 2.1).

LEMMA 3.4. – If the given data satisfy the inequalities

ps , 1 Gps , 2 , F1 4F2 , x 0, 1 Gx 0, 2 ,

then

x 1
e (x , t) Gx 2

e (x , t) and p1
e (x , t) Gp2

e (x , t) .(3.15)

If aFa0 4constD0 in Condition 2.1, then the regularized solutions satis-
fy inequality (2.10). Inequality (2.10) remains true without the assumption
that aF0 is separated from zero in the special case ps , 1 4ps , 2 .

PROOF. – The main step in the proof of estimate (3.15) is an application of
the maximum principle. The rest of this argument is an adaptation of results
obtained by several authors [1, 12].

To derive the stability estimate (2.10), we multiply the equation for
the difference x 4x 1

e (x , t)2x 2
e (x , t) by x /kx2 1l 2 , integrate over Q , and
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pass to the limit as lK0 using condition (2.7) on S and the fact that
p xf(p1

e2p2
e ) xF0. r

The following lemma provides the necessary BV estimates.

LEMMA 3.5 (BV estimates). – For each e�]0 , Ee *] and t� [0 , T]

s
Q

z d (x)Nxe (x1h , t)2xe (x , t)NdxGK2 NhN(3.16)

and

s
Q

z d (x)Nxe (x , t1t)2xe (x , t)NdxGK2 kNtN ,(3.17)

where z d is the same as in Lemma 3.3, and the constant K2 can be described
in terms of those in Conditions 2.1-2.3 and Lemma 3.3: K2 (M0 , d , R*) 4

C maxmM0 , 1

d 2
kK(M0 , R*, d)n .

In the statement of the lemma TD0 is arbitrary; the constants e *4

e *(M0 , R*) and K(M0 , R*, d) are those of Lemma 3.3.

PROOF of Lemma 3.5 is a modification of the argument used by Götz and
Zaltzman [3]. Its main idea is to derive integral estimates for the functions

qi 4¯xe /¯xi and q4 !
k41

n

NqiN through calculations with an appropriately regu-
larized sign function.

Differentiating equation (3.5) with respect to xi , we arrive at the
equation

¯qi

¯t
2

¯

¯xi

(˜x QF1x div F)2div (˜(F 8 (x) qi ) ) 40 ,(3.18)

where F 8 (x) qi 4¯p/¯xi . We multiply (3.18) by z d qi /kqi
2 1l 2 and integrate

the result over the cylinder Qt . After integration by parts, we derive for t�
[0 , T] the equality

s
Q

z d kqi
2 1l 2dxN

0

t
1I1 1I2 1I3 1I4 4J1 1J2 1J3 ,(3.19)

where the summands on the right-hand side are

J1 4s
Qt

2(F Q˜z d ) qi
2

kqi
2 1l 2

dx dt , J2 4s
Qt

Dz d

¯p

¯xi

qi

kqi
2 1l 2

dx dt ,

J3 4s
Qt

z d

qi

kqi
2 1l 2

gx
¯

¯xi

( div F)1!
j41

n

qj

¯Fj

¯xi
h dx dt .
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The numbered summands on the left hand side of (3.19) are

I1 4s
Qt

z d F 8 (x)N˜qiN
2 l 2

(qi
2 1l 2 )3/2

dx dtF0

and several «small» summands which converge to zero as lK0 by the domi-
nated convergence theorem,

I2 4s
Qt

z d l 2 qi

(qi
2 1l 2 )3/2

(F Q˜qi ) dx dt , lim
lK0

I2 40 ,

I3 4s
Qt

z d F 9 (˜x Q˜qi )
qi l 2

(qi
2 1l 2 )3/2

dx dt , lim
lK0

I3 40 ,

I4 42s
Qt

(˜z d Q˜qi ) F 8 (x)
qi l 2

(qi
2 1l 2 )3/2

dx dt , lim
lK0

I4 40 .

Obviously, kqi
2 1l 27Nqi N as l70, so it suffices to evaluate the limit of

the first summand on the left hand side of (3.19) in terms of s
Qt

z d qdx dt and

eventually use the Gronwall inequality to get the desired estimate for instant
values of sz d q . By the above, the terms Ik , kF2, are no obstacles to this
approach.

The summands on the right hand side need more attention, and it is at this
stage that the special choice of the cutoff z d is essential.

On the neighborhood of the fixed boundary where the integrand does not
vanish 2F(x) Q˜z d (x) GcM0 z d (x) by (2.9), so

J1 GcM0s
Qt

z d NqiNdx dtGcM0s
Qt

z d q dx dt .

Assumption (2.3) and smoothness of the fixed boundary permit us to use
estimate (3.14) to evaluate J2 using the Cauchy-Buniakovsky inequality:

NJ2NGg s
Qt

z d N˜pN2 dx dth1/2g s
Qt

NDz dN2

z d

dx dth1/2

G

C

d 2 g s
QT

z d N˜p eN2 dx dth1/2

G
C

d 2
kK(M0 , R*, d) .

Since x4He (p) G11ep , the estimate of Lemma 3.2 for the pressure and
the assumption NFN(2)GM0 yield the following estimate for the integral J3 :

NJ3NGCM0s
Qt

(11z d q) dx dt .
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Next, we pass to the limit in lK0 and sum the inequalities that result from
(3.19) with i41, 2 , R , n to obtain for q the estimate

s
Q

z d (x) q(x , t) dxGK2u11s
0

tg s
Q

z d q dxh dtv(3.20)

with K2 4C maxmM0 , 1

d 2
kK(M0 , R*, d)n . Combined with Gronwall’s in-

equality, inequality (3.20) guarantees estimate (3.16).
The rest of the proof is the same as in [3]. r

3.6. Convergence of regularized solutions.

Estimate (3.10) allows us to choose sequences e4e j 70 for which p e j and
xe j converge in the following sense:

p e (x , t) K
L2 (QT ) -weak

pA(x , t), xe (x , t) K
L2 (QT ) -weak

x(x , t)(3.21)

(here and below we omit the index «j»). It is clear that the limit pressure in-
herits the estimate of Lemma 3.2

0 G pA(x , t) GM1 .(3.22)

Making use of the inequality

xe (x , t) 4He (p e (x , t) ) GHe (max
e

p e ) G11eM1

we find that

0 Gxe (x , t) G11eM1 and 0 Gx(x , t) G1 .(3.23)

Weak convergence in (3.21) allows us to conclude that the functions x and pA

satisfy the integral equality (1.7).
Using (3.16), (3.17), and a standard diagonalization procedure in d , we ob-

tain sequences of solutions that converge strongly in the modified region (2.1),
which proves (1.10) and assertions (a)-(d) of Theorem 2.1 — the latter follow
from Lemma 3.4 and Lemma 3.5.

The last statement (e) of Theorem 2.1 does not follow immediately from the
assumption supp ( div F) %V 0 . Yet, if we prove that there exists at least one
solution (x , pA) to problem (2.12), (1.8), (1.10) such that

V 0 %supp (x(t) ), 0 G tGT ,

then this solution can only be the unique solution to the original problem (1.7),
(1.8), (1.10). To show that problem (2.12), (1.8), (1.10) does have a solution, we
repeat the preceding steps in the proof of (a)-(d) with minor modifica-
tions.
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The monotonicity of x(x , t) follows from the comparison result (2.11).
To establish it, we consider the solution (p 1 , x 1 ) that corresponds to the

data

ps
1 (x , t) 4{ps ,

0 ,

0 G tG t0 ,

tD t0 ,
f 1 4{f ,

0 ,

0 G tG t0 ,

tD t0 ,
x 0

1 4x 0 .

For this solution, its second component stops to evolve after t0 :

x 1 (x , t) 4{x(x , t),

x(x , t0 ),

0 G tG t0 ,

tF t0 .

Let us compare x 1 (x , t) with the corresponding component of the solution
(p 2 , x 2 ) obtained from the original data ps

2 4ps , f 2 4 f , and x 0
2 4x 0 . Conditions

of part (b) of the theorem being satisfied, it follows from (2.11) that

x(x , t0 ) 4x 1 (x , t) Gx 2 (x , t) 4x(x , t) .

3.7. Equivalence of modified and original problems.

To complete the proof of Theorem 2.1 in the case of unbounded Q , we now
prove that the solutions of the modified and original problems coincide over
each finite time interval [0 , T] for sufficiently large R*4R*(T).

Below, the time TD0 is an arbitrary fixed number. Let us consider the
weak solution (pA, x) of the modified problem obtained above. To show that it
solves the original problem with unbounded domain Q , it suffices to prove the
inclusion

supp x(x , t) %Bg 1

2
R*h , t� [0 , T] .(3.24)

We prove (3.24) applying our comparison results for bounded domains to the
solutions of the modified problem and a spherically symmetric auxiliary pro-
blem in the spherical layer B(R*)0B(R0 ) for large R*.

Let us define the upper barrier functions (pA1 , x 1 ) as the solution of (1.7)
and (1.10) in the layer R0 ENxNER* with the source term

F1 42
M0 R*

n21

r n21

x

r
, r4NxN ,(3.25)

the boundary conditions

pA1NNxN4R0
4K , pA1NNxN4R*

40 ,(3.26)
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with the constant K defined using the constant in Lemma 3.1 as

K4{K1 (M0 ) ln R*,

K1 (M0 ),

n42,

nD2,

and the initial condition

x 1 (x , 0 ) 4{1,

0 ,

R0 ENxNGR1 ,

R1 ENxNGR*,

in which R1 is one more parameter chosen so that R1 /R0 De .
The solution (pA1 , x 1 ) is spherically symmetrical and can be found explicitly.

In particular

x 1 (x , t) 4{1,

0 ,

R0 ENxNER(t),

NxNDR(t),

where R(t) is determined by the following equations for the ratio z4

(R(t) /R0 )n (which proves non decreasing): for n42

dz

dt
4g 4K1 (M0 ) ln R*

R0
2 ln z

12
M0 R*

R0
2 hF0 ,

while for nD2 and a412
2

n

dz

dt
4g n(n22) K1 (M0 )

R0
2

z a

z a21
1

nM0 R*
n21

R0
n hF0 .

In both cases z(t) De for all tD0 and

dz

dt
4

d

dt
g R(t)

R0
hn

GC1 K1C2 R*
n21 M0 ,(3.27)

where

C1 4 max{1,
e a

e a21

n 2

R0
2
} , C2 4

n

R0
n

.

Integrating (3.27) we conclude that

R(t)

R0

G (R1
n 1 (C1 K1C2 R*

n21 M0 ) t)1/n .(3.28)

Below, we consider very large values of the size R* of domain (2.1). The above
inequality implies that the size R(t) of the flow region for the auxiliary pro-
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blem grows slower than R*: for each dimension n and fixed TD0

lim
R*KQ

max
0 G tGT

R(t)

R*
40 .(3.29)

Note that the regularized solutions x 1
e (x) of the auxiliary problem are also

spherically symmetrical, and if we choose x 1, 0
e (r) as a decreasing function,

then the radial derivative of x 1 remains non positive,

¯x 1
e

¯r
G0 .(3.30)

We show now that xe (x , t) Gx 1
e (NxN , t) in (Qmod 0B(R0 ) )3 (0 , T).

The differences x 4x 1
e 2xe and p 4p1

e2p e solve the equation

¯x

¯t
2F Q˜x2Dp 4If (F1 2F) Q˜x 1

e ,

with boundary and initial data that satisfy the conditions x(x , 0 ) F0, xNS F0,
and xN¯B(R*) 40. Hence, if we show that

IF0 ,(3.31)

then it would follow that x(x , t) F0 for (x , t) �QT .
Inequality (3.31) is a simple consequence of the choice of F1 and (3.30).

Namely, for rGR*

If (F1 2F) Q˜x 1
e 42gg M0 R*

n21

r n21

x

r
1FhQ

x

r
h ¯x 1

e

¯r
4

2
¯x 1

e

¯r
g M0 R*

n21

r n21
1gF Q

x

r
hhF N ¯x 1

e

¯r N(M0 2NFN) F0 .

Passing to the limit in eK0, we get the estimate

x(x , t) Gx 1 (x , t) for NxNGR(t) ,

so x(x , t) also vanishes outside B(R(t) ). This estimate and (3.29) show that for
each TD0 there exists a value of R*4R*(T) D0 such that

(t� [0 , T] supp x(t) %Bg 1

2
R*h .

Hence the solution to the modified problem solves the original problem in un-
bounded domain as well. r
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4. – Proof of Theorem 2.2.

Let (p , x) be a solution of problem (1.1)-(1.5) which corresponds to the data
(ps , x 0 ), and denote by (pA, xA) a solution to the same problem with the same
data (ps , x 0 ) which is obtained by the regularization method. As shown above,
the support of the latter solution is compact in QT . By Definition 1.1, the dif-
ferences x 4x2xA and p 4p2pA satisfy the integral identity

Ifs
0

T

s
Q

(xW t 2xF Q˜W1pDW) dx dt40 .(4.1)

We introduce the domains QT
14 ](x , t) �QT , Nx(t , x)ND0( and QT 4Q3

(0 , T). Using these, we rewrite (4.1) in the form

I4 s
QT

1

x(W t 2F Q˜W1mDW) dx dt40, m4 p /x ,(4.2)

where mF0 by (1.10).
We use m of (4.2) to introduce the auxiliary functions

m e (x , t) 4

.
/
´

m(x , t),

1

e
,

0 Gm(x , t) G
1

e
,

m(x , t) D
1

e
,

, n e (x) 4ee 2NxNE1 ,(4.3)

and

l(x , t) 4l e (x , t) 4
def

m e (x , t)1n e (x) .(4.4)

Note that n eGl eG
1

e
1n e and l e4m1n e if 0 GmG

1

e
, while l e4

1

e
1n e if

mD
1

e
.

The above functions are used for e so small that emax p(t , x) E1. We apply
the following auxiliary proposition proved in Appendix A.2.

LEMMA 4.1. – Suppose that F�C 1 and the continuously differentiable
function h(x , t) vanishes for x outside a compact subset of Q . If the source
term satisfies Condition 2.3 and

ee 2NxNGl(x , t) G
1

e
1ee 2NxN , eD0 ,(4.5)
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then the problem

¯W

¯t
2F Q˜W1lDW4h(t , x), (x , t) �QT 4Q3 (0 , T) ,(4.6)

WNS 840,
¯W

¯n
N

S 9
40, t� (0 , T) , WNt4T 40, x�Q ,(4.7)

has a solution W�W 2, 1 (QT). Moreover, this solution admits the estimates

max
t� [0 , T]

s
Q

N˜W(x , t)N2 dx1s
0

T

s
Q

lNDWN2 dx dtGC0 ,(4.8)

where C0 4C0gT , s
0

T

s
Q

N˜hN2 dx dt , VFVQT
(1)h , and

s
0

T

s
Q

1

l N ¯W

¯t N
2
dx dtG3 s

0

T

s
Q

glNDWN2 1
h 2 1NFN2 N˜WN2

l
h dx dt .(4.9)

Let W(x , t) be a solution to problem (4.6)-(4.7) with the function l given by
(4.4) and an arbitrary function h satisfying conditions of Lemma 4.1. For this
choice of W , the relation (4.2) takes on the form

s
QT

1

xh dx dt1I 140, I 14 s
QT

1

x(m2m e2n e ) DW dx dt .(4.10)

As shown in subsection 3.7, if x lies outside of some ball B(R0 ), then

xA(x , t) 40, x(x , t) 4x(x , t), m(x , t) 4p(x , t) .(4.11)

We represent I 1 in the form

I 14I1 1I2 ,(4.12)

where

I1 4 s
BT

1

x(m2m e2n e ) DW dx dt , I2 4 s
QT

1 0 BT
1

x(m2m e2n e ) DW dx dt ,

and BT
14 ](x , t) �B(R0 )3 (0 , T) : Nx(x , t)ND0(.

We start with estimates over the set where x�B(R0 ) (see (4.11)). Using es-
timate (4.8) of Lemma 4.1, we evaluate I1 in the following way:

(4.13) NI1N
2Gu s

BT
1

x 2 (m2m e2n e )2

(m e1n e )
dx dtv3u s

BT
1

(m e1n e )NDWN2 dx dtvGI0 C0 ,
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where

I0 4 s
BT

1

x2 (m2m e2n e )2

(m e1n e )
dx dt4 s

BT
1

p2N m2m e2n e

m
N

2 dx dt

(m e1n e )
.

From the definition of the function m e in (4.3), we conclude that at the points

where mD
1

e

N m2m e2n e

m
N

2 p2

m e1n e

G
e

11en e

max p2 , lim
eK0

e

11en e

maxp2 40 .

At the points where mE
1

e
and m4m e by (4.3)

x2 (m2m e2n e )2

m e1n e

4 x2 n e
2

m1n e

Gn e , lim
eK0

n e40 .

Thus lim
eK0

I1 40.

Let us now consider the integral I2 over the complementary set QT
1 0BT

1 ,
where we can make use of (4.11). In its integrand x 4x and m4p/x . We de-
compose I2 into integrals over the smaller domains

Q0 4 (QT
1 0BT

1 )O ]0 Ex(x , t) E1(, Q1 4 (QT
1 0BT

1 )O ]x(x , t) 41( .

For (x , t) �Q0 , it follows from the definition of solution that p40 and m4

m e40. Thus

Ns
Q0

x(m2m e2n e ) DW dx dtN 4 Ns
Q0

xn e DW dx dtN G

g s
Q0

n e dx dth1/2g s
Q0

(m e1n e )NDWN2 dx dth1/2

GkC0 eg s
Q0

e 2NxN dx dth1/2

and consequently lim
eK0Ns

Q0

x(m2m e2n e ) DW dx dtN 40.

For (x , t) �Q1 , there are relations m4pE
1

e
and m4m e , so

Ns
Q1

x(m2m e2n e ) DW dx dtN 4 Ns
Q1

xn e DW dx dtN G

g s
Q1

(m e1n e )NDWN2 dx dth1/2

keg s
Q1

e 2NxN dx dth1/2

,

and consequently lim
eK0Ns

Q1

x(m2m e2n e ) DW dx dtN 40.
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Next, we pass to the limit in (4.10) for eK0 and finally arrive at the
equality

s
QT

1

xh dx dt40(4.14)

for an arbitrary function h , which signifies that x 40 and, respectively, p 40.
This proves the theorem. r

A. – Proofs of auxiliary propositions.

A.1. Proof of Lemma 3.1.

Let us define the function W(x) as the solution of (3.6), (3.7), (3.8) in the
smaller domain QOB(3R0 ) with the Dirichlet condition (3.7) satisfied on the
sphere ¯B(3R0 ) instead of ¯B(R*). The solution W(x) is unique and bounded
independently of R*. Using the pertinent local estimates, we find that the gra-
dient of W is bounded at a finite distance from V 0 :

N˜W(x)NGC , R0 GNxNG3R0 .

Choose a function h�C Q (Q) such that

h(x) 4
.
/
´

1,

0 ,

NxNGR0 ,

NxNF2R0

Conditions (3.7) and (3.8) hold for hW and

2D(hW)2eF Q˜(hW) 4F 1 (x), x�Q ,

where

F 1 (x) 4
.
/
´

F(x),

0 ,

NxNER0 ,

NxND2R0 ,
NF 1 (x)NGC if R0 GNxNG2R0 .

The function V4u2hW solves the boundary value problem (3.6), (3.7) with
the homogeneous boundary condition (3.8) and a bounded right hand side in
(3.6), which vanishes outside of the spherical layer B(2R0 )0B(R0 ).

Let us rewrite (3.6) as an equation for V , multiply this equation by V , and
integrate the result over the domain Q . Integration by parts shows that for
eGe *(R*)

I1
2
fs

Q

N˜VN2 dxGI2 fC s
NxNG2R0

NVNdx .(A.1)

Now, we estimate the right hand side of this inequality. Put I0 (r) 4
def
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s
NxN4r

NVNdS and pass to the spherical coordinates (r , u). Using the equality

NV(x)N4Ns
NxN

R*
¯V

¯r
(r , u) drN, V(r , u) 4

def
(x(r , u) ) ,

we obtain the estimates

NV(x)NG

.
`
/
`
´

kln (R* /R0 )u s
NxN

R*

rN˜VN2 drv
1/2

,

g R*
n22 2R0

n22

R0
n22 R*

n22 (n22)
h1/2u s

NxN

R*

rN˜VN2 drv
1/2

,

n42,

nD2.

(A.2)

These estimates yield the inequalities

I0 (r) G
.
/
´

C( ln R*)1/2g s
Q

N˜VN2 dxh1/2

4CI1 kln R*,

CI1 ,

n42,

nD2.

(A.3)

Using (A.3) we find that

I2 4 s
0

2R0

I0 (r) drG
.
/
´

CI1 kln R*,

CI1 ,

n42,

nD2.
(A.4)

Combining (A.4) with (A.1) yields the estimate

I1 G
.
/
´

Ckln R*,

C ,

n42,

nD2.
(A.5)

Substituting (A.5) into (A.3) we see that

I0 G
.
/
´

C ln R*,

C ,

n42,

nD2.

The inequality

max
NxN4R0

NVNG
.
/
´

C ln R*,

C ,

n42,

nD2,
(A.6)

now follows from the local estimate [9]. The maximum principle for the func-
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tion V(x) implies the boundedness of NV(x)N and, consequently, that of u(x) in
B(R0 ):

max
NxNGR0

u(x) G
.
/
´

C ln R*,

C ,

n42,

nD2.

Outside of B(R0 ), the function u(x) satisfies the homogeneous equation (3.6).
One more application of the maximum principle for u(x) in QOB(R0 ) com-
pletes the proof of estimates (3.9). r

A.2. Proof of Lemma 4.1.

First, we consider problem (4.6)-(4.7) in the bounded domain Q R 4QO
B(R) and suppose that h(x , t) vanishes outside a compact subset of Q R for
each t� (0 , T). The equation for W is

¯W

¯t
2F Q˜W1lDW4h(x , t), x�Q R , t� (0 , T) .(A.7)

The boundary conditions are WNS 940, ¯W/¯nNS 840, WNNxN4R 40; moreover,
WNt4T 40.

We introduce the new time variable t4T2 t . This transforms the problem
stated above for equation (A.7) into that of finding W4W(x , t) from the
equation

2
¯W

¯t
2F Q˜W1lDW4h , (x , t) �QT

R
fQ R 3 (0 , T) ,(A.8)

under the boundary and initial conditions

WNS 840,
¯W

¯n
N

S 9
40, WNNxN4R 40, WNt40 40 .(A.9)

In (A.8), we use the original notation of (A.7) for the function of the reversed
time t that corresponds to h .

It is well known [9] that problem (A.8)-(A.9) has a unique solution W�
W 2, 1 (QT

R ). We seek estimates for this solution which do not depend either on
R or on l .

We multiply equation (A.8) by DW and integrate over Q R 3 (0 , t). For each
t� (0 , T), this yields the equality

(A.10)
1

2
s

Q R

N˜W(t , x)N2 dx1s
0

t

s
Q R

lNDWN2 dx dt 84s
0

t

I(t 8 ) dt 81J(t) ,
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where

I4 s
Q R

(F Q˜W) DW dx , J(t) 4s
0

t

s
Q R

hDW dx dt 8 .(A.11)

It is evident that

(A.12) NJ(t)N4Ns
0

t

s
Q R

hDW dx dt 8N4Ns
0

t

s
Q R

2˜h˜W dx dt 8NG

1

2
s
0

t

s
Q R

(N˜hN2 1N˜WN2 ) dx dt 8 .

We represent the integrand of the first summand in (A.10) in the form

I4 s
Q R

g N˜WN2 div F

2
2˜W Q [ (˜W Q˜) F]h dx1JS ,(A.13)

where

JS 4 s
¯Q R

g(F Q˜W)
¯W

¯n
2

1

2
N˜WN2 (F Qn)h ds

is the boundary integral and (repeated indices imply summation)

(F Q˜W) DW4Fj
¯W

¯xj

¯2 W

¯xi
2

, ˜W Q [ (˜W Q˜) F] 4
¯Fj

¯xi

¯W

¯xj

¯W

¯xi

.

This identity is derived using integration by parts and the elementary
formula

(F Q˜W) DW4divg(F Q˜W) ˜W2
N˜WN2 F

2
h1

N˜WN2 div F

2
2˜W Q [ (˜W Q˜) F] .

Using (A.9), (2.7), and (2.8) we conclude that the boundary integral in
(A.13) is non-negative:

JS 4 s
NxN4R

g(F Q˜W)
¯W

¯n
2

1

2
N˜WN2 (F Qn)h ds4

1

2
s

NxN4R

N˜WN2 (F Qn) dsG0 .
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Hence in (A.10)

(A.14) s
0

t

I(t) dt4s
0

t

s
B(R)

g 1

2
N˜WN2 div F2˜W Q [ (˜W Q˜) F]h dx dtG

C(VFV

(1) )s
0

t

s
B(R)

N˜WN2 dx dt .

We collect (A.10), (A.12), and (A.14) to obtain the following estimate, which is
valid for t� (0 , T):

(A.15)
1

2
s

Q R

N˜W(t , x)N2 dx1s
0

t

s
Q R

lNDWN2 dx dtG

C(VFV

(1) )s
0

t

s
Q R

(N˜hN2 1N˜WN2 ) dx dt .

The Gronwall inequality permits us to deduce from (A.15) an estimate for in-
stant values of the L 2 norm of ˜W that is uniform in t� (0 , T). Combined with
(A.15), this estimate yields the desired inequality (4.8), where the constant C0

does not depend on R .
Denote by W r (t , x) the solution of (A.7) that corresponds to R4r . For

each fixed RD0, the restrictions of functions from the family ]W r , rDR(

constitute a weakly precompact class in W 2, 1 (QT
R ). Using a diagonal process,

we can choose a sequence r k 6Q so that for each RD0 there is weak conver-
gence W r k

K
weak

W in W 2, 1 (QT
R ). The limit W solves (4.6)-(4.7) and inherits the es-

timates of the lemma from W r k
.

Inequality (4.9) is obvious from (4.6) and the Cauchy inequality. This
proves the lemma. r
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