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Entropy Flux far From Equilibrium
in Solids and in Non Viscous Gases.

M. S. MonGIovi - R. A. PERUZZA (%)

Sunto. — Una delle principali questioni che sorge nella termodinamica estesa riguarda
il significato fisico della temperatura lontano dall’equilibrio. Alcuni autori defini-
scono temperatura termodinamica T, il reciproco del coefficiente che lega il flusso
di entropia e il flusso di calore. Altri autori, invece, definiscono temperatura di
non-equilibrio 6 il reciproco della derivata parziale dell’entropia rispetto all’ener-
gia a densita e flusso di calore costanti. Lo scopo fondamentale di questo lavoro é di
determinare le espressioni complete del flusso di entropia in alcuni materiali
quando vengono considerati fenomeni lontano dall’equilibrio termodinamico. Per
tale scopo si utilizza la formulazione della termodinamica estesa, conosciuta come
Termodinamica Estesa Razionale, che usa i moltiplicatori di Lagrange. St pren-
dono in esame due situaziont fisiche particolarmente semplici ma molto impor-
tanti: il caso della propagazione termica che avviene nei cristalli a bassa tempera-
tura e il caso dei gas non viscost soggetti a riscaldamento. St mostra che la tempe-
ratura di non-equilibrio e la temperatura termodinamica in generale non coinci-
dono, e si determinano le espressionti approssimate della loro differenza.

Summary. — One of the main question arising in Extended Thermodynamics concerns
the physical meaning of the temperature far from equilibrium. Some authors de-
fine thermodynamic temperature T, the inverse of the coefficient linking the en-
tropy flux with the heat flux. Other authors, instead, define non-equilibrium tem-
perature 6 the inverse of the partial derivative of entropy with respect to energy, at
density and heat flux constant. The aim of this paper is to determine the expression
of entropy flux in some materials when phenomena far from equilibrium are con-
sidered, using the formulation of Extended Thermodynamics which uses the La-
grange multipliers, known as Rational Extended Thermodynamics. The case of
thermal propagation that occurs in low-temperature crystals and the case of non
viscous gases subject to heating are considered. It is shown that the non-equilibrium
temperature and the thermodynamic temperature not agree, except mear equi-
libriwm, when second order terms in q; can be neglected. Approximate expressions
for Ty, and 6 are determined in both cases.

(*) This work is supported by MIUR under grant Nonlinear Mathematical Pro-
blems of Wave Propagation and Stability in Models of Continuous Media.
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1. — Introduction.

During the last decades a new thermodynamic formalism, known as Extend-
ed Thermodynamics (E.T.) [10,20] has been developed, in order to describe
rapid phenomena or materials in which the relaxation times of some fluxes are
long. This theory, in fact, uses dissipative fluxes, beside traditional variables, as
independent fields. When this new formalism is adopted and the entropy is con-
sidered to depend for example also on heat flux, it has been found that the en-
tropy flux is also modified and new terms naturally appear.

In classical thermodynamics of solids or fluids, the absolute temperature
(or the equilibrium temperature) is equal to the inverse of the coefficient link-
ing entropy flux and heat flux and it is identical to the inverse of the partial
derivative of entropy with respect to energy, at density constant. As known, if
we consider a thermometer immersed in a system in which there is a heat flux,
assuming that the wall between the thermometer and the system is ideal (i.e.
in this wall no entropy is produced), from energy and entropy balance laws it
can deduce that both entropy flux and heat flux are continuous across an ideal
wall; for this reason, some authors [2, 3] define thermodynamic temperature
Ty, the inverse of the coefficient linking entropy flux with heat flux. Other au-
thors [10, 11, 12], instead, define non-equilibrium temperature 6 the inverse
of the partial derivative of entropy with respect to energy, at density and heat
flux constant [5].

The aim of this paper is to determine the expressions of the entropy flux in
some materials when phenomena far from equilibrium are considered, using
the formulation of E.T. which uses the Lagrange multipliers [14], known as
Rational Extended Thermodynamics [20]. The case of thermal propagation
that occurs in low-temperature crystals and the case of non viscous gases sub-
ject to heating, which are two simple but very important and representative
physical situations, will be considered. It is shown that the non-equilibrium
temperature and the thermodynamic temperature not agree, except near
equilibrium, when second order terms in heat flux ¢; can be neglected. Approx-
imate expressions for 7y, and 6 are determined in both cases.

2. — Entropy flux in a solid subject to heating.

In order to explain the propagation of second sound in pure crystals at low
temperatures, in [7, 8] it has been proposed a generalization of Cattaneo equa-
tion [4]. A different point of view has been considered in [22] using Rational
Extended Thermodynamics [20]. Following this latter approach, the energy
density £ and the heat flux g; are chosen as fundamental fields and for these
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fields the following general balance equations are written:

J) :
@.1) OE [ % _q
ot aﬂ(/'k
amz aFik
2.2 =

where m;, F;, and Q; are quantities depending on the fundamental fields. A
similar system of field equations is used in [1].

Since in system (2.1), (2.2) there are more unknowns than equations, it’s
necessary to complete it by adding constitutive equations, relating the vari-
ables m;, Fy, and Q; to independent fields £ and g;. Suppose that the fields m;,
Fy, and @; depend on fundamental fields in a manner such that the so-called
principle of frame indifference is satisfied; i.e. the constitutive equations must
be the same in all frames. Therefore, the constitutive quantities must be
isotropic functions of their arguments, so that using the representation theo-
rems for isotropic functions [21, 24], one can write:

2.3) mi=a(E,q2)qi, sz=ﬁ(E,q2)5ij+1/)(Eyqz)fI(in), Qi=b(E,q2)%‘,

where a, 5, ¥ and b are scalar functions. The coefficient o, playing the role of
thermal inertia, has been introduced in [13, 22], whereas other authors [9, 10]
take directly a = 1; a possible physical meaning for this coefficient is proposed
in [23].

In Rational Extended Thermodynamics, restrictions on constitutive rela-
tions (2.3) are obtained imposing the validity of entropy principle: there exist
an entropy density & and an entropy flux &, which are both isotropic func-
tions of £ and g, i.e.

(2-4) h:h(Er q2)7 ¢k:¢(E; qz) Gk

such that the entropy production is supposed to be non-negative for every
thermodynamic process, i.e.

oh b,
_|_

2.5 —

=0.

Remark that equations (2.1) and (2.2) can be considered as constraints for
fields £ and g;. In order to satisfy entropy principle, a procedure, known as
Liu method of Lagrange multipliers [14], will be used. It states that the fol-
lowing inequality

oh oD ok o om; oF’;
ko E|: +ﬂ:|_/1|: mz+ ik

26 i il .
ot 8ack ot axk

- i 2 0
ot axk Q
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must be satisfied for arbitrary values of fields £ and g;. The quantities A 5 and
A; are the Lagrange multipliers, which are supposed also isotropic functions of
fundamental fields; thus we can write:

@1 Ag=AxE,q¢*, L;=ME,¢*q.

The following proposition holds:

PROPOSITION 2.1. — The must general constitutive function for the entropy
flux compatible with entropy and material objectivity principles is fur-
nished by the following expression:

3
(2.8) ¢k:AEQA+ E},lF(Z@.

ProoF. — Inserting constitutive relations (2.3) in inequality (2.6) a linear
expression in the time and space derivatives of fundamental fields is obtained.
In particular the coefficients of all derivatives must vanish. Putting zero the
time derivatives of energy £ and heat flux ¢;, one obtains:

oh om; oh om;
2.9) (—) —Apt+a; (—) =,

oK /,, oF 3q® | dq*>
from which one deduces

Imposing that the coefficients of space derivatives E' and g¢; vanish, one
finds:

op oF'; o, aq; oF;
(2.11) ( k) =1, == ( ’“) Ay Sy, Tk
oF ], OF 3q; |g 3q; ag;
from whence:
(212) d(pk:AEqu'i‘lidFik.
Substituting (2. 3), in (2.11), one gets:
2] ) 2 .9
(2.13) (_¢’) :lq(_ﬁJr_qz_w)’
OF | 2 OF 3 OF

B 2 ,0p 1 )
2.14 2 =22 22 v 2y,
@10 ( qz)E (8q2 59 52 T
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and
(2.15) ¢ =Ag+ypq?;
from (2.13) and (2.14) finally one finds:

2 1
(2.16) dg =A|dp + ngdw-i- Ewdqz].
Substituting (2.15) in (2.4), the following expression for the entropy flux is

obtained:

(2.17) D= (A +Ayg®) gy
The proof is completed observing that %liF@-@ = g/l(wq@ @) ¢ = Apq® gy

REMARK 2.1. — The relation found shows that the entropy flux is known
once the constitutive relations for Lagrange multipliers and for only trace-
less part of tensor Fy, have been determined.

Denoting the coefficient linking entropy flux and heat flux with Ti’ one
has: "

1
(2.18) T, = ——.
g A E + /llpq 2
Recalling now that the non-equilibrium temperature has been defined as the

inverse of partial derivative of entropy with respect to energy, at density and
heat flux constant [10]:

1 oh )
2.19) —=(—) =/1E+/1q2(—a) ,
0 oF /, OF /2
one obtains also:
1
(2.20) =
AE + lquZE

REMARK 22 Ty, =0 < v =ayp. — We conclude that thermodynamic tem-
perature and non-equilibrium temperature can be identified, in general,
only near equilibrium, when terms of second order in q; can be neglected.

2.1. Approximate constitutive relations.

In this subsection the attention is focused to processes far from equilibri-
um, considering constitutive relations for m; and F;; to fourth order in heat
flux ¢;, and for entropy % and entropy flux @, to fifth order in heat flux. De-
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note with ¥ any of the quantities &, ¢, a, 8, v, A and A, put
2.1.1) Y=Y(E)+ Y (E)q*+ Yy(E) ¢* + q°),

and observe from (2.10) that near equilibrium di can be written as dh, =
A dE; therefore the energy Lagrange multiplier at equilibrium can be iden-
tified with the inverse of absolute equilibrium temperature 7"

1
0 _
2.1.2) Ay T
In this subsection the equilibrium temperature 7 will be used as independent
variable instead of E. The symplified hypothesis £ = E(T) will be made. A
prime will be denote the derivative with respect to T'.
Substituting (2.1.1) in expressions (2.10), (2.15) and (2.16), to the first or-
der, one obtains:

1
2.1.3) hy = ?E’,
(2.1.4) po=A%,
(2.1.5) Do=7210B0;

using (2.1.2) from (2.1.5) one gets:

1
(2.1.6) 0= ——.
Bo 70,
From which one obtains 4, = ¢—f), in accord with [22]. In this approximation,
0
the entropy flux is @, = %qk, as in classical thermodynamics.

To the second order in heat flux q;, one obtains

1
2.1.7) hy = —Aoay,
2
(2.1.8) h{ =/1%)E’ +Agayg,
1
(2.1.9) ¢1:/10,31+E/101/)0,

2
(2.1.10) p1=AB1+ 5/101/)6“‘11@/);
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comparing (2.1.9) with relation ¢; =A% + 1,1, obtained by (2.15), one
gets:

(2.1.11) A(El):lo(ﬁl—%w(])'
From (2.1.7) and (2.1.8) one obtains:
1
(2.1.12) E(/Ioao)’—/loa(’)z/l%)E’,
and then
AY
(2.1.13) ao(T) =2yl ¢ — 2f E’ dé |;
with ¢; = ZO((;O) When A%’ =0, one recovers the result of [22].
From (20.1.9), (2.1.10) and (2.1.11) one obtains:
(2.1.19) ASYo—240A0%0=2A A% —A0A1B0),
and then
Ti’/l(l) AoA1 B¢
(2.1.15) o(T) =23 02+2f 0k ;4 0 lﬂOdg ;
T, 0
with ¢, = f°;;°) From (2.1.11), the knowledge of A%’ furnishes fj;.
From (201 7) and (2.1.13) one has:
1 TA“)
(2.1.16) hy= =12 cl—2f S E'dE|,
2 7 A%
AoAY —Agh
(2.1.17) ¢1=/1(1)+i30’(c2+2f 0 - 1 )
T, Ao
To fourth order in heat flux g; one obtains:
1
(2.1.18) h/zz Z(3ioa1+/11a0),
(2.1.19) hs =APE"+oai+ A al,
1 5 1
(2.1.20) ¢2:§ Ayt 5/101/11‘*'6/111/}0 + 0Bz,

2 2
(2.1.21) ‘Pé:llﬂﬁ'§lowi+§llwé+ioﬁé+lzﬂ6-
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and
(2.1.22) Po=AF + Ao+ A19.
Comparing (2.1.22) and (2.1.19) one obtains:
@ 7 11
(2.1.23) A= —211— —Aoy1— —2111/)0"‘/10/32-

From (2.1.18) and (2.1.19) the followmg linear ordinary differential equation in
unknown a; is obtained:

(2.1.24) Aoat—8Aba1=Alag—8Aap—4ARE",
and then
Tl’ 310y —4APE"’
(2.1.25) a(T) =13 03+f 1oy — 1/?40— EE e
0
with ¢; Z;f?’; . To the fourth order in heat flux ¢;, the entropy flux can be
0 0

1 1
(2126) @, = [? +io(ﬁ1+ gwo) q*+

5 1 1
(Ao(ﬁ2+ Ewl) +11(§ﬁ1+ Ewo)) q4] g + O(g").

Finally, the following approximate expressions for thermodynamic tempera-
ture Ty, and for non-equilibrium temperature 6 are obtained:

1
(2.1.27) Tth=T—ioT2(ﬁ1+€¢0) q*+
) 1
2T =A1B1+ —Aog¥1 + 12/111/)0+/10ﬂ2 q +

+AOT3(/31 n %wo) ¢4+ 0P,

5 !
(2.1.28) 9=T—/10T2(ﬁ1— gwﬁ %) ¢+
1+HAa
Aoai 1a0)q4+

11
_ZTZ( i —Ao1— —=AiYotAoBet ok

i TS(ﬁl— Dot E)q + g,
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from which

’

2129) T, -0= _AOTz(%_ %) ot

’

Aol +A;a)
u) HOTs(%_ g_)] '+ O,

_[2T2(/101/)1+11¢0_ oL

3. — Entropy flux in a non viscous gas subject to heating.

The behavior of fluids and gases in the presence of high values of heat flux
has been in recent years the object of many investigations. Many materials re-
quire the use of the heat flux as an independent variable for their description:
superfluids, hydrodynamical models for the charge transport inside semicon-
ductors, hydrodynamics of phonons and photons, plasmas, ultrarelativistic flu-
ids, ete. (see the bibliography in [9, 10], [18]-[20]). The approximation to as-
sume the hypothesis of zero-viscosity in gases may be useful [17], and in E.T.
this hypothesis means to set equal to zero the evolution time of non-equilibri-
um part of pressure tensor.

In this section, using Rational Extended Thermodynamics the complete
expression of entropy flux in a dilute non viscous gas will be determined, i.e. a
gas whose evolution time of heat flux is high, while the evolution time of stress
deviator is zero.

The behavior of a dilute gas can be described by the following balance
equations [20]:

90 4 n 90 Ak

3.1

=P, A=.,1,17,yk,...)

In these equations, the quantities 0, are the moments of various order of
phase density of kinetic theory of gases [6], 0 4, are the fluxes of fields o4,
which in this theory are just the moments of successive order, P, are the pro-
duction terms. In the following the gas will be supposed in an inertial frame,
and in absence of external forces.

In Extended Thermodynamics of ideal and real gases the central moments
are often chosen as independent fields instead of complete moments. Denoting
with f the phase-density function, with m the atomic mass and with c; the pecu-
liar velocity, the central moment ;3 ; is defined as [6]:

(32) /éijk.ul = fmci CiCp ... ledc .

This paper deals with balance equations for the first 13 moments o, 04, 0, 0j
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only. Total moments are expressed easily as functions of central moments, in
the following way [6],

33) °0=0

(3.4) 0= 0V; = Qv;,

(3.5) Q= 0y + 0V ),

(3.6) Q ik = Oyjie + 3 0(ij Uiy + QU V; Vg

3.7 0 it = Oijir T4 0(ij iy + 6 (i Vi vy + 0V V; V), V),

Insertion of these relations into balance equations for first 13 moments leads to:

. n avk _
QT Er. ,
. p;
oY; + Dk - 05
dx,
. o 0 ov;
(3.8) B+ ¢ Sy, 20—,
T 89(;19 a.’)(fk axk
o+ pry —2 + (L gu0 2p ) _ P
Dy T Py —— ( GOy t+ ka)) +2Pji —— = Likys
axj ox; \ 5 o
w ; ;1 904 3 Mk 1 =
¢+q— O +q — + 0y ]+——ﬂ__p(zjj_]:—Pizz-
a k @ k axk 2 aﬂck 2Q axk 2

\

In this system we have put p;=0;; £ = — Pzz is the internal energy density,
Py the deviatoric part of stress tensor p; and q;i=— th heat flux. In this the-

ory the trace of stress p; =3p (p is the pressure) is hnked to internal energy
density E' by the relation: 3p =2F.

In order to describe, with a sufficient approximation, the behavior of a
given material using extended thermodynamics, it is not necessary to consider
all 13 moments g 4 as fundamental fields, but it could be sufficient to maintain
only those whose evolution times are relatively slow. For instance, the evolu-
tion of an ordinary fluid may be described using the moments o, o; and o0 ;:
mass density, momentum density and energy density respectively. In the
presence of high values of heat flux, if one supposes high the evolution time of
heat flux and zero the evolution time of stress deviator only density o, velocity
v;, internal energy density £ and heat flux ¢; can be used as fundamental
fields. As it has been shown in [16], this is equivalent to suppose zero the in-
trinsic Lagrange multiplier Z<ij> of stress deviator pg;. The evolution equa-
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tions for these fields can be obtained from (3.8) neglecting the evolution equa-
tion of stress deviator; we obtain:

@xk

o aqy. ;
890;6 axk axk

vy 8vi o N 1 904 3 ik 1

z+z 7 Pi-
q qak 3k Q;k 1

3.9) J

ox Xp 2 890k _gp(ij aﬁﬁk - 2

\

Assuming the validity of material objectivity principle, the constitutive equa-
tions for non fundamental fields pyy, 0y and 04 can be expressed in the
form:

2
~ 2 9
(3.11) Qijk = E(Qiajk + 40kt a0y +x(0, B, q%) 95 Q,
(3.12) Oii = B0, E, ¢%) 04+ v(0, E, ¢°) 4 Gy,

where a, x, f and v are scalar functions.
Restrictions on the constitutive relations (3.10, 3.11, 3.12) are obtained
using entropy principle, i.e. imposing that the following inequality is satisfied

for every thermodynamic process:
a'l)k 8¢k

(3.13) ho+h—2 +
8xk 3ack

=0.

In this inequality, 2 and @, are objective functions of fundamental fields:
(3.14) h=ho, E, ¢*), @,=¢o,E,q* q.
The following proposition holds:

PRrROPOSITION 3.1. — The must general constitutive function for the entropy
flux compatible with entropy principle and material objectivity principle is
Sfurnished by the following expression:

(3.15) @, = [ZEM(% —aG) qz] -
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5E +2aq?

where we have put G = ; Ag and X are the non convective parts of

0
Lagrange multipliers of energy and of heat flux respectively [19, 20].

Proor. — Applying Liu method of Lagrange multipliers, the following in-
equality is obtained:

. 0 oD —~|. 0
3.16) h+hE 4 Sk —A[Q +Qﬂ]—
X 390k a%k
T 1ope] = [. _ov 0 v,
Ai[vi—i—— pk]—AE[E+Eﬂ 'l Lk—”]—
% 8ack Xp aﬁﬁk axk

~ ov; ov;

lai+q—= +q — + 0, — +
[q q B % B Qijk B,

-~ py == - P,
2 om, 2000 o 2

1 90y 3 Wi 1 ] S0
The quantities A, A;, Ay and A; are the non convective parts of Lagrange
multipliers, which are also objective functions, so that we can write A =
Z(Q, E, q2), Zz = Zv(@a E, qz) i ZE‘ = ZE‘(Q’ E, qz)’ Zi = Z(Q, E, q2) q;-
As shown in [17, 18], imposing zero the coefficients of time and space
derivatives one obtains:

(3.17) A,=0, dh=Ado+ AgdE + A;dg;.
5 ~ — = 9+3yq?
(3.18) h—QA—gAEE—ziqZ:O, ady+ 22224 g,
— (1 3
(3.19) AP = Apdgy + 4; EiniﬁC—%p(iidpj)k .

From (3.19) one can write:

(3.20) ¢—2E—Iq2[g —aG] -0,

T1 1 1 1
3.21) d¢=i[§dﬁ+§q2dv+g(g—aG)dqz—EG(4dE+4q2da).

Using (3.14), and (3.20), equation (3.15) is obtained.
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REMARK 3.1. — Denoting with TL the coefficient linking @, and g, one
obtains: .

1
(3.22) Ty = )

2E+zq2[§-ag]

while = - |

E
3.1. Approximate constitutive relations.

In this subsection only processes near equilibrium will be considered. De-
note with ¥ any of the 9 quantities &, ¢, a, 5, v, x, A, A; and A, and
put:

3.1.1) r="(o, E)+ (o, E)q*+ O(g").

Neglecting terms of order greater than 3 with respect to g; a set of relations
are obtained: the following relations involving only constitutive quantities:

3.1.2) 20y — Ay =0,
— 5 -
3.1.3) hy—o0Ay— gEA%zo,
3.1.4) bo— Z% =0,
(3.1.5) 4hy— 2, =0,
— 9 .
(3.1.6) aoA% + E 2,0 = 0,
— 5 — —~
(3.1.7) hl_QAl_ gEAE_Zj‘O:O?
~ 1 Y
(3.1.8) 2¢1_10|:ﬁ1+ —VO_—CLO:| =O,
6 90
— 5 50K
(31.9) 5(]51—3/1,1@—/10([31-1——1/0——@0) :0,
3 9o

and the following differential relations:
(3.1.10)  dhy= Aydo + AYdE,

~ 11 10K
3.1.11) d¢0:/10[—dﬁ0—0—dE],
2 90

(3.1.12)  dhy = A, do + AP dE,
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~ (1 1 4 1
(3.1.13) d¢1:lo(—dﬁ1+ —dVO_ _aodE_ _OEda0)+
2 3 90 90
~ (1 1
A ( —df,— —OEdE)
2 90
Equation (3.1.10) can be written:
— E
(3.1.14) d(@):Ag[d(—)—%dQ].
0 Q 0

Denoting with #, = ky/0 and ¢ = E/o the equilibrium specific entropy and the
specific internal energy respectively, and identifying A% with the inverse of
absolute equilibrium temperature 7', the Gibbs equation of thermostatic is
obtained:

1 p
3.1.15 dyp==|de — =do|.
( ) n T[s o7 Q]

From this relation, reasoning as in [15], we deduce that the state equation
must have the form:

(3.1.16) p=T"F() with z= % .
By (3.1.4) one obtains ¢, = %; substituting in (3.1.11) one gets:
1 ~ (1 5
3.1.17 dl = | =24 =db,— —edp],
( ) ( T) 0( 5 Bo 3 € p)
which yields the following integrability conditions:
19 ) 19 ) 1
(3.1.18) _ﬂ_gg_p:(), _ﬂ_gg_p:_
2 % 3 9do 2 9T 3 aT T2
Putting:
19 5 0
(3.1.19) g= L% 5 00
2 0 3 T
one can write:
~ 1 1

(3.1.20) o= ——1V,b hy=-— ’

T%¢ 2T%¢

94 9 1 1 3
B121) = —w = ——, ¢1:——(2ﬁ1+—v0——p )
5A% 5Tt 4T%¢ 3 oT¢
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Substituting this latter quantity in (3.14) one gets the following expression
of entropy flux approximate to third order in g;,

1 1 1 3p
(3.1.22) @, = (? - m(zm tgves m) qz) i + Olg*).

Finally, the following relation between thermodynamic temperature and non-
equilibrium temperature is obtained:

~ 5
(3.1.23) T, — 6= —AOT(% - Si‘)E) g2+ O(gh),
0

which shows that also in a non viscous dilute gas the thermodynamic tempera-
ture do not coincide with the non-equilibrium temperature 6.
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